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Abstract. In this work, we investigate the S-pseudospectra of closed linear operators defined by non-strict
inequality in Banach space. We begin the analysis by studying some of this basic properties. After that, we
characterize the S-pseudospectra of closed linear operator by means the S-spectra of all perturbed operators
with perturbations that have norms strictly less than ε, where ε > 0, in Banach spaces.

1. Introduction

Let X, Y be Banach spaces. We denote byL(X,Y) (resp. C(X,Y)) the set of all bounded (resp. closed)
linear operators from X into Y. For A ∈ C(X,Y), we will denote by D(A) the domain, N(A) the null space
and R(A) the range of A. The nullity α(A) of A is defined as the dimension of N(A) and the deficiency β(A)
of A is defined as the codimension of R(A) in Y. If the range R(A) of A is closed and both α(A) and β(A) are
finite, then A is called a Fredholm operator denoted by Φ(X,Y). The number i(A) = α(A)− β(A) is called the
index of A. It is clear that if A ∈ Φ(X,Y), then i(A) is finite.
If X = Y, then we write L(X,Y) = L(X), C(X,Y) = C(X) and Φ(X,Y) = Φ(X).

Let F be a subspace of X and E be a subspace of X′ (the dual space of X), then we have

F⊥ = {x′ ∈ X′ : x′(x) = 0, for all x ∈ F}

and
E⊤ = {x ∈ X : x′(x) = 0, for all x′ ∈ E}.

The resolvent set of closed linear operator A acting on X is define by:

ρ(A) = {λ ∈ C : λ − A is invertible and (λ − A)−1
∈ L(X)}

and the spectrum set of A is define by: σ(A) = C\ρ(A).
In the last years, the spectral theory, which attracted the attention of many researchers, has witnessed

an explosive development. It has numerous applications in many branches of sciences for example math-
ematics and physics. The goal of this theory can be described as trying to give useful information about
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linear operators. In the order to determine and localize σ(·), many mathematician propose to investigate
the concept of the pseudospectra. This concept was introduced and studied by several authors. We can cite
J. M. Varah (1967), H. J. Landau (1975), L. N. Trefethen (1992) and E. B. Davies (1996). There are many ways
to define the pseudospectra of a closed linear operator in a Banach space (see, for example [1–4, 6, 13–15]).
Among them we are interested of this

Σε(A) = σ(A)
⋃{

λ ∈ C : ∥(λ − A)−1
∥ ≥

1
ε

}
,

where A ∈ C(X) and ε > 0. By convention ∥(λ − A)−1
∥ = +∞ if, and only if, λ ∈ σ(A)(see [13]). In [10], E.

Shargorodsky has proved that we have the following relationship⋃
∥D∥≤ε

σ(A +D) ⊊ Σε(A).

This is equivalent to say that the pseudospectrum of closed linear operator is not equal to the union of the
spectra of all perturbed operators with perturbations that have norms non-strictly less than ε. However,
in [3], F. C. Chetelin and A. Harrabi have proved that if the resolvent norm of the closed linear operator A
acting in Banach space cannot be constant on an open set of ρ(A), then we can obtain

Σε(A) =
⋃
∥D∥≤ε

σ(A +D).

This paper is devoted to examine some properties of the S-pseudospectrum of closed linear operator in
Banach spaces and achieve a characterization of this notion.

The contents of the paper are as follows. Section 2 contains preliminary properties that we will need to
prove the main results of the other sections. In Section 3, we begin giving the definition and some proprieties
of S-pseudospectrum of linear operators in the Banach space. After that, we establish a characterizaton of
the S-pseudospectrum of linear operators by means of perturbation of its spectrum in a Banach space (see
Theorem 3.14).

2. Preliminary results

The goal of this section consists in establishing some preliminary results which will be needed in
the sequel.

Theorem 2.1. [9, Theorem 2.7] Let X be a normed vector space and x a nonzero element of X. Then, there exist
x′ ∈ X′ such that ∥x′∥ = 1 and x′(x) = ∥x∥. ♢

Theorem 2.2. [8, Theorem 7.3.1] Let X be a Banach space and let A ∈ L(X). If ∥A∥ < 1, then (I − A)−1 exists as a
bounded linear operator on X and

(I − A)−1 =

+∞∑
n=0

An. ♢

Definition 2.3. Let X,Y be two Banach spaces. Let S ∈ L(X,Y), for A ∈ C(X,Y) such that A , S and S , 0, we
define the S-resolvent set of A by:

ρS(A) = {λ ∈ C : λS − A has a bounded inverse},

and the S-spectrum set of A by: σS(A) = C\ρS(A). ♢

The following result is developed by A. Jeribi in [7, Chapter 3].
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Lemma 2.4. Let X,Y be two Banach spaces. Let A ∈ C(X,Y) and S ∈ L(X,Y) such that S , A and S , 0. Then, we
have

(i) (λS − A)−1
− (µS − A)−1 = (µ − λ)(λS − A)−1S(µS − A)−1, for all λ, µ ∈ ρS(A).

(ii) The S-resolvent set ρS(A) is open.

(iii) The function λ 7−→ (λS − A)−1 is holomorphic at any point of ρS(A). ♢

Lemma 2.5. Let X,Y be two Banach spaces. Let A ∈ C(X,Y) and S is an invertible bounded operator from X to Y
such that S , A. Then, we have

σS(A) = σ(S−1A)
⋂
σ(AS−1). ♢

Proof. The proof is similarly to proof of [7, Remark 3.3.1].

3. Main results

We start our investigation with the following definition of the S-pseudospectra of a closed linear
operators on Banach spaces.

Definition 3.1. Let X, Y be Banach spaces, ε > 0 and let A ∈ C(X,Y). Let S be a non-null bounded operator
acting from X into Y such that S , A. We define the S-pseudospectra and S-pseudoresolvent set of the operator A,
respectively, by:

ΣS,ε(A) = σS(A)
⋃{

λ ∈ C : ∥(λS − A)−1
∥ ≥

1
ε

}
,

and
ρS,ε(A) = ρS(A)

⋂{
λ ∈ C : ∥(λS − A)−1

∥ <
1
ε

}
,

by convention ∥(λS − A)−1
∥ = +∞ if, and only if, λ ∈ σS(A). ♢

Now, let us study some basic properties of the S-pseudospectra.

Proposition 3.2. Let X, Y be Banach spaces, ε > 0, A ∈ C(X,Y) and let S be a non-null bounded operator acting
from X into Y such that S , A.
(i) ΣS,ε(A) is not empty.
(ii) ΣS,ε(A) is closed.
(iii) If 0 < ε1 < ε2, then σS(A) ⊂ ΣS,ε1 (A) ⊂ ΣS,ε2 (A).

(iv)
⋂
ε>0

ΣS,ε(A) = σS(A). ♢

Proof. (i) We argue by contradiction. Let us assume that ΣS,ε(A) = ∅. Then, we have ∥(λS−A)−1
∥ <

1
ε

, for all

λ ∈ C. Letφ : C −→ L(X) be defined by: φ(λ) = (λS−A)−1. By using the fact that ∥φ(λ)∥ <
1
ε

, Lemma 2.4 (iii)
and Liouville’s theorem, we infer that φ is a constant function. Therefore, for all λ, µ ∈ C such that λ , µ,
we get that

(λS − A)−1
− (µS − A)−1 = 0. (1)

Let λ, µ ∈ C such that λ , µ, then it follows from (1) and Lemma 2.4 (i) that

(µ − λ)(λS − A)−1S(µS − A)−1 = 0.

Using the fact that λ , µ and S , 0, we deduce that (λS−A)−1 is null, for all λ ∈ C, which is a contradiction.
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(ii) Since λ 7−→ ∥(λS−A)−1
∥ is continuous, then

{
λ ∈ C : ∥(λS−A)−1

∥ ≥
1
ε

}
is closed. Moreover, from Lemma

2.4 (ii), we get that σS(A) is closed. Hence, we conclude that ΣS,ε(A) = σS(A)
⋃{

λ ∈ C : ∥(λS − A)−1
∥ ≥

1
ε

}
is

closed.
(iii) For ε > 0, we have

σS(A) ⊂ ΣS,ε(A). (2)

Let 0 < ε1 < ε2, we show that
ΣS,ε1 (A) ⊂ ΣS,ε2 (A).

Let λ ∈ ΣS,ε1 (A)\σS(A). Then, we have λ ∈ ρS(A) and ∥(λS − A)−1
∥ ≥

1
ε1

. The fact that
1
ε2
<

1
ε1

implies that

∥(λS − A)−1
∥ ≥

1
ε2

. Hence, we infer that

ΣS,ε1 (A)\σS(A) ⊂ ΣS,ε2 (A).

Finally, the use of (2) gives the wanted inclusion and achieves the proof of (iii).
(iv) It is clear that ⋂

ε>0

ΣS,ε(A) = σS(A)
⋃(⋂

ε>0

{
λ ∈ C : ∥(λS − A)−1

∥ ≥
1
ε

})
.

Then, it is sufficient to show that ⋂
ε>0

{
λ ∈ C : ∥(λS − A)−1

∥ ≥
1
ε

}
⊂ σS(A).

Let us assume thatλ ∈
⋂
ε>0

{
λ ∈ C : ∥(λS−A)−1

∥ ≥
1
ε

}
. Then, for all ε > 0, we have ∥(λS−A)−1

∥ ≥
1
ε

. As ε→ 0+,

we obtain ∥(λS − A)−1
∥ = +∞ . This implies that λ ∈ σS(A). Hence, we infer that σS(A) =

⋂
ε>0

ΣS,ε(A).

The following lemma give a relationship between the S-pseudospectra of A and the pseudospectra of
S−1A, for all bounded and invertible linear operator S.

Lemma 3.3. Let X, Y be Banach spaces, ε > 0, A ∈ C(X,Y) and let S ∈ L(X,Y) such that S , A, 0 ∈ ρ(S) and S−1

commute with A. Then,

(i) Σε∥S∥−1 (S−1A) ⊂ ΣS,ε(A).

(ii) ΣS,ε(A) ⊂ Σε∥S−1∥(S−1A). ♢

Proof. (i) Let λ < ΣS,ε(A). Then, we have λ ∈ ρS(A) and ∥(λS − A)−1
∥ <

1
ε

. By referring to Lemma 2.5, we

have λ ∈ ρ(S−1A). Therefore, (λ − S−1A)−1 can be expressed in the form

(λ − S−1A)−1 = (S−1(λ S − A))−1 = S(λ S − A)−1. (3)

This implies that

∥(λ − S−1A)−1
∥ ≤ ∥S∥ ∥(λS − A)−1

∥

<
1

ε∥S∥−1 .

Hence, we conclude that λ < Σε∥S∥−1 (S−1A). Thus, Σε∥S∥−1 (S−1A) ⊂ ΣS,ε(A).
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(ii) Let λ < Σε∥S−1∥(S−1A). Then, λ ∈ ρ(S−1A) and ∥(λ − S−1A)−1
∥ <

1
ε∥S−1∥

. Since S−1A = AS−1, then by

Lemma 2.5, we obtain λ ∈ ρS(A). Hence, we deduce from (3) that

∥(λS − A)−1
∥ ≤ ∥S−1

∥ ∥(λ − S−1A)−1
∥

<
1
ε
.

As a result, ΣS,ε(A) ⊂ Σε∥S−1∥(S−1A) as desired.

Proposition 3.4. Let X, Y be Banach spaces, ε > 0, A ∈ C(X,Y) and let S ∈ L(X,Y) such that S , A and S , 0.
For D ∈ L(X,Y) satisfying ∥D∥ ≤ ε and δ < ε − ∥D∥, we have

ΣS,ε−δ−∥D∥(A +D) ⊂ ΣS,ε(A). ♢

Proof. Let us assume that λ < ΣS,ε(A). Then, λ ∈ ρS(A) and ∥(λS − A)−1
∥ <

1
ε
. Therefore, we can write

λS − A −D = (λS − A)(I − (λS − A)−1D) (4)

Using the fact that ∥(λS − A)−1D∥ < 1, together with Theorem 2.2, we get (I − (λS − A)−1D)−1
∈ L(X) and

∥(I − (λS − A)−1D)−1
∥ ≤

1
1 − ∥(λS − A)−1D∥

≤
ε

ε − ∥D∥
. (5)

Hence, it follows from (4) that λ ∈ ρS(A +D) and

∥(λS − A −D)−1
∥ ≤ ∥(λS − A)−1

∥ ∥(I − (λS − A)−1D)−1
∥.

The use of (5) makes us conclude that

∥(λS − A −D)−1
∥ ≤

1
ε − ∥D∥

<
1

ε − δ − ∥D∥
.

This shows that ΣS,ε−δ−∥D∥(A +D) ⊂ ΣS,ε(A).

Proposition 3.5. Let X, Y be Banach spaces, ε > 0, A ∈ C(X,Y) and let S ∈ L(X,Y) such that S , A, 0 ∈ ρ(S) and
S−1 commute with A. For any α ∈ C, β ∈ C\{0}, we have

ΣS,ε∥S−1∥−1 (αS + βA) ⊂ α + β Σε |β|−1 (S−1A) ⊂ ΣS,ε∥S∥(αS + βA). ♢

Proof. In view of Lemma 3.3, we have

ΣS,ε∥S−1∥−1 (αS + βA) ⊂ Σε(S−1(αS + βA)) ⊂ ΣS,ε∥S∥(αS + βA). (6)

Then, it is sufficient to show that

Σε(S−1(αS + βA)) = α + β Σε |β|−1 (S−1A). (7)

For α ∈ C and β ∈ C\{0}, we have

Σε(S−1(αS + βA)) = Σε(α + βS−1A). (8)

Now, we have to prove that

Σε(α + βA) = α + β Σε |β|−1 (A). (9)
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For α ∈ C and β ∈ C\{0}, we can write

β−1(λ − α) − A = β−1(λ − α − βA). (10)

Let us assume that λ < Σε(α + βA). Then, we have λ ∈ ρ(α + βA) and

∥(λ−α− βA)−1
∥ <

1
ε

. Hence, it follows from (10) that β−1(λ−α) ∈ ρ(A) and ∥(β−1(λ−α)−A)−1
∥ <

1
ε |β|

. This

is equivalent to saying that
β−1(λ − α) < Σε |β|−1 (A).

Hence, we conclude that λ < α + β Σε/|β|−1 (A). Conversely, a same reasoning as before leads to the result.
Finally, it follows from (8) and (9) that (7) holds.

Now, our goal is to give a characterization of S-pseudospectra of closed linear operators.

Theorem 3.6. Let X, Y be Banach spaces, ε > 0 and let A ∈ C(X,Y). Let S be a non-null bounded operator acting
from X into Y such that S , A. Then, the following assertions are equivalent:

(i) ΣS,ε(A)\σS(A).

(ii)
{
λ ∈ C : ∃(xn) ⊂ D(A), ∥xn∥ = 1 and lim

n→+∞
∥(λS − A)xn∥ ≤ ε

}
\σS(A). ♢

Proof. (i) ⇒ (ii): Let us assume that λ ∈ ΣS,ε(A)\σS(A). Then, we get λ ∈ ρS(A) and ∥(λS − A)−1
∥ ≥

1
ε

. The
fact that

∥(λS − A)−1
∥ = sup

∥y∥=1
∥(λS − A)−1y∥,

implies that for every n ∈N\{0}, there exists (yn) such that ∥yn∥ = 1 and

∥(λS − A)−1
∥ −

1
n
≤ ∥(λS − A)−1yn∥ ≤ ∥(λS − A)−1

∥.

Hence, we infer that

lim
n→+∞

∥(λS − A)−1yn∥ = ∥(λS − A)−1
∥

≥
1
ε
. (11)

Putting xn = ∥(λS − A)−1yn∥
−1(λS − A)−1yn. Then, xn ∈ D(A), ∥xn∥ = 1 and

∥(λS − A)xn∥ = ∥(λS − A)−1yn∥
−1. (12)

It follows from (11) and (12) that

lim
n→+∞

∥(λS − A)xn∥ = lim
n→+∞

∥(λS − A)−1yn∥
−1

=
(

lim
n→+∞

∥(λS − A)−1yn∥

)−1

≤ ε.

(ii) ⇒ (i): Let us assume that λ < σS(A) and there exists (xn) ⊂ D(A), ∥xn∥ = 1 and lim
n→+∞

∥(λS − A)xn∥ ≤ ε.

Putting yn = ∥(λS − A)xn∥
−1(λS − A)xn. Then, we have ∥yn∥ = 1 and

∥(λS − A)−1yn∥ = ∥(λS − A)xn∥
−1. (13)
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The fact that |(λS − A)−1yn∥ ≤ ∥(λS − A)−1
∥, for ∥yn∥ = 1, implies from (13) that

lim
n→+∞

∥(λS − A)−1
∥ ≥ lim

n→+∞
∥(λS − A)xn∥

−1

≥
1
ε
.

This completes the proof.

As a direct consequence of Theorem 3.6, we have the following:

Corollary 3.7. Let X be a Banach space, ε > 0 and let A ∈ C(X). Let S be a non-null bounded operator such that
S , A. Then, the following sets are equivalents

(i) σS(A)
⋃{

λ ∈ C : ∥(λS − A)−1
∥ ≥

1
ε

}
.

(ii)σS(A)
⋃{

λ ∈ C : ∃(xn) ⊂ D(A), ∥xn∥ = 1 and lim
n→+∞

∥(λS − A)xn∥ ≤ ε
}
. ♢

Theorem 3.8. Let X, Y be Banach spaces, ε > 0 and let A ∈ C(X,Y). Let S ∈ L(X,Y) such that S , 0 and S , A+D,
for all D ∈ L(X,Y) with ∥D∥ ≤ ε, then ⋃

∥D∥≤ε

σS(A +D) ⊂ ΣS,ε(A). ♢

Proof. Let λ ∈
⋃
∥D∥≤ε

σS(A+D). Then, there exists D ∈ L(X,Y) such that ∥D∥ ≤ ε and λ ∈ σS(A+D).We derive

a contradiction from the assumption that λ ∈ ρS(A) and ∥(λS − A)−1
∥ <

1
ε
. For λ ∈ ρS(A), we can write

λS − A −D = (λS − A)
(
I − (λS − A)−1D

)
. (14)

By using Theorem 2.2, we infer that I − (λS − A)−1D is invertible, and by applying (14), we conclude that
λS − A −D is invertible. This is equivalent to saying that λ ∈ ρS(A +D).

Remark 3.9. We should notice that if X, Y are Banach spaces, ε > 0, A ∈ C(X,Y) and S ∈ L(X,Y) such that S , 0
and S , A +D, for all D ∈ L(X,Y) with ∥D∥ ≤ ε, then we do not have⋃

∥D∥≤ε

σS(A +D) = ΣS,ε(A).

In fact, it suffices to consider the following examples: ♢

Example 3.10. Let l1(N) =

(x j) : x j ∈N and
+∞∑
j=1

|x j| < ∞

 with the standard norm defined by ∥x∥ =
+∞∑
j=1

|x j|,

ε1 ∈]0, 1] and (εn) be a sequence of positive numbers monotonically decreasing to 0 . Consider the linear operator
K : l1(N) −→ l1(N) defined by

Kx =
(
(1 + 2ε1)x1 −

+∞∑
j=3

x j,−ε2x2, . . . ,−εnxn, . . .
)
,

and the linear operator S : l1(N) −→ l1(N) defined by:

Sx =
(
x1,

x2

ε1
, x3, . . . , xn, . . .

)
, where x = (x1, . . . , xn, . . . ) ∈ l1(N).
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Then,

(i) S ∈ L(l1(N)) and K is a compact operator on l1(N).

(ii) 2ε1 ∈ ΣS,ε1 (K).

(iii) 2ε1 <
⋃
∥D∥≤ε1

σS(K +D). ♢

Proof. (i) Let x ∈ l1(N) = D(S) = D(K). Then, we have

∥Sx∥ =
+∞∑
j=1

|x j| − |x2| +

∣∣∣∣∣x2

ε1

∣∣∣∣∣
= ∥x∥ +

( 1
ε1
− 1
)
|x2| (15)

and

∥Kx∥ =

∣∣∣∣∣∣∣∣(1 + 2ε1)x1 −

+∞∑
j=3

x j

∣∣∣∣∣∣∣∣ +
+∞∑
j=2

ε j|x j|

≤ (1 + 2ε1) |x1| +

∣∣∣∣∣∣∣∣
+∞∑
j=3

x j

∣∣∣∣∣∣∣∣ +
+∞∑
j=2

ε j|x j|

≤ (1 + 2ε1) |x1| + (1 + 2ε1)

∣∣∣∣∣∣∣∣
+∞∑
j=3

x j

∣∣∣∣∣∣∣∣ +
+∞∑
j=2

ε j|x j|

≤ (1 + 2ε1)∥x∥ +
+∞∑
j=2

ε j|x j|. (16)

Using the fact that 0 < ε1 ≤ 1, we get
1
ε1
− 1 ≥ 0. Hence, it follows from (15) that

∥Sx∥ ≤ ∥x∥ +
( 1
ε1
− 1
)
∥x∥ =

1
ε1
∥x∥.

Therefore, we infer that S ∈ L(l1(N)).
Now, we show that K is a compact operator on l1(N). Using the fact that (εn) is a sequence monotonically
decreasing, we infer that 0 < ε1 ≤ 1. This implies that ε j ≤ ε1 for all j ≥ 1. By referring to (16), we obtain

∥Kx∥ ≤ (1 + 2ε1)∥x∥ +
+∞∑
j=2

ε1|x j|

≤ (1 + 2ε1)∥x∥ + ε1∥x∥
≤ (1 + 3ε1)∥x∥.

This implies that K ∈ L(l1(N)).
Let the finite rank operator Kn defined by

Knx =
(
(1 + 2ε1)x1 −

+∞∑
j=3

x j,−ε2x2, . . . ,−εnxn, 0, . . .
)
, for x ∈ l1(N).
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Since

lim
n→∞
∥Knx − Kx∥ = lim

n→∞

+∞∑
j=n+1

ε j|x j|

≤ ε1 lim
n→∞

+∞∑
j=n+1

|x j|

≤ 0,

then we infer that K is a compact operator.

(ii) We have

(K − 2ε1S)x =
(
x1 −

+∞∑
j=2

x j,−(2 + ε2)x2, . . . ,−(2ε1 + εn)xn, . . .
)

and ∥∥∥∥(K − 2εS)x
∥∥∥∥ = ∣∣∣∣x1 −

+∞∑
j=3

x j

∣∣∣∣ + 2|x2| + 2ε1

+∞∑
j=3

|x j| +

+∞∑
j=2

ε j|x j|.

Let

ψ(x) =
∣∣∣∣x1 −

+∞∑
j=3

x j

∣∣∣∣ + 2|x2| + 2ε1

+∞∑
j=3

|x j|.

Assume ∥x∥ = 1, so ψ(x) =
∣∣∣∣x1 −

+∞∑
j=3

x j

∣∣∣∣ + 2|x2| + 2ε1

(
1 − |x1| − |x2|

)
.

If |x1| <
1
2

, then we have

ψ(x) ≥ 2|x2| + 2ε1

(
1 − |x1| − |x2|

)
≥ 2ε1|x2| + 2ε1

(
1 − |x1| − |x2|

)
, (as ε1 ≤ 1)

≥ 2ε1

(
1 − |x1|

)
≥ ε1.

If |x1| ≥
1
2

, then we have

ψ(x) ≥ |x1| −

∣∣∣∣ +∞∑
j=3

x j

∣∣∣∣ + 2|x2| + 2ε1

(
1 − |x1| − |x2|

)
≥ |x1| −

(
1 − |x1| − |x2|

)
+ 2|x2| + 2ε1

(
1 − |x1| − |x2|

)
≥ |x1| + (2ε1 − 1)

(
1 − |x1| −

)
+ (−2ε1 + 3)|x2|

≥ (2ε1 − 1) + 2(1 − ε1)|x1| (as 0 < ε1 ≤ 1)
≥ ε1.

Consequently,
ψ(x) ≥ ε1, ∥x∥ = 1,
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where equality is reached if, and only if, x2 = 0, |x1| =
1
2

and
+∞∑
j=3

x j = x1. Hence,

∥∥∥∥(K − 2ε1S)x
∥∥∥∥ = ∣∣∣∣x1 −

+∞∑
j=3

x j

∣∣∣∣ + |(−ε2 − 2)x2| +

+∞∑
j=3

∣∣∣(−ε j − 2ε1)x j

∣∣∣
=
∣∣∣∣x1 −

+∞∑
j=3

x j

∣∣∣∣ + 2 |x2| + 2ε1

+∞∑
j=3

∣∣∣x j

∣∣∣ + +∞∑
j=3

ε j

∣∣∣x j

∣∣∣ + ε2 |x2|

= ψ(x) +
+∞∑
j=2

ε j|x j| > ε1, ∥x∥ = 1 (17)

and
∥∥∥∥(K − 2ε1S)x(k)

∥∥∥∥→ ε1 as k→ +∞, where x(k) =
(1

2
, 0, . . . , 0︸  ︷︷  ︸

k zeros

,
1
2
, 0, . . .

)
, k ∈N. Thus, we obtain

inf
∥x∥=1

∥∥∥∥(K − 2ε1S)x
∥∥∥∥ = ε1. (18)

Now, we can see that the operator K − 2ε1S is invertible and (K − 2ε1S)−1 : l1(N) −→ l1(N) is defined by

(K − 2ε1S)−1y =
(
y1 −

+∞∑
j=3

(2ε1 + ε j)−1y j,−(2 + ε2)−1y2,−(2ε1 + ε3)−1y3, . . . ,−(2ε1 + εn)−1yn, . . .
)
.

It follows from (18) that
∥∥∥∥(K − 2ε1S)−1

∥∥∥∥ = 1
ε1
. This means that

2ε1 ∈ ΣS,ε1 (K).

(iii) Let D ∈ L(l1(N)) such that ∥D∥ ≤ ε1. It is clear that S is invertible, with its inverse S−1 : l1(N) −→ l1(N)
is defined by:

x 7→
(
x1, ε1x2, x3, . . . , xn, . . .

)
where x = (x1, . . . , xn, . . . ) ∈ l1(N).

Moreover, we have

∥S−1x∥ = |x1| + ε1|x2| +

+∞∑
j=3

|x j|, x ∈∈ l1(N)

≤

+∞∑
j=3

|x j| = ∥x∥, (as ε1 ≤ 1).

Consequently, ∥S−1
∥ ≤ 1. Since S is invertible and ε1 , 0, then we can write

D − 2ε1S = 2ε1S
( 1

2ε1
S−1D − I

)
, (19)

and ∥∥∥∥∥ 1
2ε1

S−1D
∥∥∥∥∥ ≤ 1

2
ε−1

1 ∥S
−1
∥∥D∥

≤
1
2
.
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By referring to Theorem 2.2, we infer that (2ε1)−1S−1D − I is invertible operator. Hence, it follows from
(19) that D − 2ε1S is invertible operator. The use of [6, Theorems 2.2.17 and 2.2.44] makes us conclude that
K +D − 2ε1S ∈ Φ(l1(N)) and

i(K +D − 2ε1S) = 0. (20)

Suppose that N(K +D − 2ε1S) , 0. Then, there exists x ∈ l1(N) such that ∥x∥ = 1 and (K − 2ε1S)x = −Dx. By
referring to (17), we have

∥D∥ ≥ ∥Dx∥ =
∥∥∥∥(K − 2ε1S)x

∥∥∥∥ > ε1, ∥x∥ = 1.

This contradiction implies that N(K − 2ε1S +D) = 0. Hence, by using (20), we infer that

β(K − 2ε1S +D) = α(K − 2ε1S +D) = 0.

This leads to K+D− 2ε1S is invertible. Thus, we deduce that 2ε1 ∈ ρS(K+D). This is equivalent to say that

2ε1 <
⋃
∥D∥<ε1

σS(K +D).

Remark 3.11. (i) The above Example is a generalization of [10, Theorem 1.1].

(ii) In [3], F. Chaitin-Chetelin and A. Harrabi have proved that

Σε(A) =
⋃
∥D∥≤ε

σ(A +D),

if the resolvent norm of the closed linear operator A acting in Banach space cannot be constant on an open set of ρ(A).
Now, the goal is to extend this result for the S-pseudospectra. ♢

The aim of the following lemma consists in studying the S-resolvent of a closed linear operator in Banach
space can have constant norm.

Lemma 3.12. Let X, Y be Banach spaces, A ∈ C(X,Y), S ∈ L(X,Y) such that S , A, 0 ∈ ρ(S) and λ ∈ ρS(A).
Suppose there (λS − A)−1 attains its norm, that is, there is a vector x ∈ Y of norm one such that

∥(λS − A)−1
∥ = ∥(λS − A)−1x∥. (21)

Then, any neighborhood of λ contains a point µ such that

∥(µS − A)−1
∥ > ∥(λS − A)−1

∥. ♢

Proof. Since λ ∈ ρS(A), then we have (λS − A)−1 , 0. This implies from (21) that

(λS − A)−1x , 0, ∥x∥ = 1.

It follows from Theorem 2.1 that there exists x′ ∈ X′ such that ∥x′∥ = 1 and

x′((λS − A)−1x) = ∥(λS − A)−1x∥
= ∥(λS − A)−1

∥, (by (21)). (22)

Consider the function ψ : C −→ C defined by: ψ(λ) = x′((λS − A)−1x). We divide this part of the proof into
two steps.

Step 1. We show that ψ is a holomorphic function.
Let λ, µ ∈ C, then

ψ(λ) − ψ(µ) = x′
[(

(λS − A)−1
− (µS − A)−1

)
x
]
. (23)
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Hence, it follows from (23) and Lemma 2.4 (i) that

lim
λ→µ

ψ(λ) − ψ(µ)
λ − µ

= lim
λ→µ
−(λ − µ)

x′
[(

(λS − A)−1S(µS − A)−1
)
x
]

λ − µ

= −x′
[(

(µS − A)−1S(µS − A)−1
)
x
]
.

Step 2. We show that ψ is a not constant function.
Assume that ψ is constant function. Let λ, µ ∈ C such that λ , µ and ψ(λ) = ψ(µ). Then, by using (23) and
Lemma 2.4 (i), we infer that

x′
[
(λS − A)−1S(µS − A)−1x

]
= 0.

Therefore, x′ ∈ X⊥ = {0}. This means that x′ is null operator. This contradicts the fact that ∥x′∥ = 1. Hence,
we conclude that ψ is a not constant function. Thus, ψ not have a maximum locally. This implies that there
exists µ belongs to the

neighborhood of λ such that |x′((µS − A)−1x)| > |x′((λS − A)−1x)|. Hence, by refereing to (22), we obtain

x′((µS − A)−1x) > ∥(λS − A)−1
∥.

Moreover, we have

|x′((µS − A)−1x)| ≤ ∥x′∥∥(µS − A)−1
∥∥x∥

≤ ∥(µS − A)−1
∥.

This proves that ∥(µS − A)−1
∥ > ∥(λS − A)−1

∥.

Remark 3.13. It follows from Lemma 3.12 that a closed operator whose S-resolvent norm is constant on no open set
ρS(A). In all that follows we will make the following assumption

(H) :
{

The S-resolvent norm of a closed operator acting
in Banach space cannot be constant on an open set.

♢

The following theorem gives a characterization of the S-pseudospectrum of closed operators on Banach
spaces satisfying the hypothesis (H) by means of its S-spectrum.

Theorem 3.14. Let X, Y be Banach spaces, ε > 0 and let A ∈ C(X,Y). Let S ∈ L(X,Y) such that S , A +D for all
D ∈ L(X,Y) with ∥D∥ ≤ ε and 0 ∈ ρ(S). We assume that A satisfies the hypothesis (H), then the following sets are
equivalents:

(i)
⋃
∥D∥≤ε

σS(A +D).

(ii) σS(A)
⋃{

λ ∈ C : ∥(λS − A)−1
∥ ≥

1
ε

}
.

(iii) σS(A)
⋃{

λ ∈ C : ∃ x ∈ D(A), ∥x∥ = 1 and ∥(λS − A)x∥ ≤ ε
}
. ♢

Proof. (i)⇒ (ii): From Theorem 3.8, we have
⋃
∥D∥≤ε

σS(A +D) ⊂ ΣS,ε(A), and by using Proposition 3.2 (ii), we

infer that ⋃
∥D∥≤ε

σS(A +D) ⊂ ΣS,ε(A).
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(ii) ⇒ (iii): Let us assume that λ < σS(A) and ∥(λS − A)−1
∥ ≥

1
ε
. Then, by using the hypothesis (H), there

exists µ belongs to the neighborhood of λ such that

∥(µS − A)−1
∥ > ∥(λS − A)−1

∥,

>
1
ε
. (24)

This implies that there exists y ∈ Y such that ∥y∥ = 1 and ∥(µS−A)−1y∥ >
1
ε
. Putting x = ∥(µS−A)−1y∥−1(µS−

A)−1y. Therefore, x ∈ D(A), ∥x∥ = 1 and

∥(µS − A)x∥ = ∥(µS − A)−1y∥−1. (25)

Since ∥(µS−A)−1y∥ ≤ ∥(µS−A)−1
∥, then by using (24) and (25), we obtain ∥(µS−A)x∥ < ε.Hence, we deduce

that ∥(λS − A)x∥ ≤ ε. This enables us to conclude that

ΣS,ε(A)\σS(A) ⊂
{
λ ∈ C : ∃ x ∈ D(A), ∥x∥ = 1 and ∥(λS − A)x∥ ≤ ε

}
.

This shows that

ΣS,ε(A) ⊂ σS(A)
⋃{

λ ∈ C : ∃ x ∈ D(A), ∥x∥ = 1 and ∥(λS − A)x∥ ≤ ε
}
.

(iii) ⇒ (i): Suppose that λ ∈ C such that there exists x0 ∈ D(A), ∥x0∥ = 1 and ∥(λS − A)x0∥ ≤ ε. It follows
from Theorem 2.1 that there exists x′ ∈ X′ such that ∥x′∥ = 1 and x′(x0) = 1. We consider the following linear
operator

D(x) = x′(x) (λS − A)x0, x ∈ X.

Let us observe that

∥D(x)∥ ≤ ∥x′∥ ∥x∥ ∥(λS − A)x0∥

≤ ε∥x∥,

then we have ∥D∥ ≤ ε and D is everywhere defined. Hence, D is a bounded operator. Moreover, we have
(λS − A −D)x0 = 0. Therefore, λS − A −D is not

injective. This implies that λ ∈
⋃
∥D∥≤ε

σS(A +D). Thus, we conclude that

λ ∈
⋃
∥D∥≤ε

σS(A +D).

As a direct consequence of Theorem 3.14, we have the following:

Corollary 3.15. Let X, Y be Banach spaces, ε > 0 and let A ∈ C(X,Y). Let S ∈ L(X,Y) such that S , A +D for all
D ∈ L(X,Y) with ∥D∥ ≤ ε and 0 ∈ ρ(S). We assume that A satisfies the hypothesis (H), then

ΣS,ε(A) =
⋃
∥D∥≤ε

σS(A +D). ♢
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