
Functional Analysis,
Approximation and
Computation
15 (2) (2023), 1–15

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. The purpose of this article is to establish some coupled fixed point results based on control
function in the setting of complex partial metric spaces. Furthermore, we give some consequences of the
established result. An example is given to support the result. The results of findings in this article extend
and generalize several results from the existing literature. Specially, our results extend the corresponding
results of Aydi [4].

1. Introduction

In 1922, Stefan Banach ([6]) has proved a fixed point theorem for a contraction mapping in a complete
metric space. It plays an important role in analysis to find a unique solution of many mathematical
problems. It is very popular tool in many branches of mathematics for solving existing problems.

There are many extensions of the famous Banach contraction principle, which states that every self
mapping R defined on a complete metric space (X, d) satisfying

d(R(s),R(t)) ≤ δ d(s, t), (1)

for all s, t ∈ X, where δ ∈ (0, 1), has a unique fixed point and for every x0 ∈ X, a sequence {Rnx0}n≥1 is
convergent to the fixed point. Inequality (1) also implies the continuity of R.

In 2011, Azam et al. [5] introduced the notion of complex valued metric space and established sufficient
conditions for the existence of common fixed points of a pair of mappings satisfying a contractive condition.
The results proved by Azam et al. [5] and Bhatt et al. [8] via rational inequality in a complex valued
metric space as a contractive condition. Complex valued metric space is very useful in many branches
of mathematics, including algebraic geometry, number theory, applied mathematics, applied physics,
mechanical engineering, thermodynamics and electrical engineering.

Recently many authors have done a wide range of research in complex valued metric spaces, see for
example, Abbas et al. [1], Sintunavarat and Kumam [26], Rouzkard and Imdad [20], Kutbi et al. [17], Ahmed
et al. [2], Sittikul and Saejung [27], Chandok and Kumar [9], Ansari et al. [3] and many others (see, also,
[11], [13], [28]).
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Very recently, Dhivya and Marudai [12] introduced new spaces called complex partial metric space and
demonstrated the existence of common fixed point results under contractive condition involving rational
expression.

On the other hand, Bhashkar and Lakshmikantham [7] introduced the concept of coupled fixed points in
ordered spaces and applied their results to boundary value problems for the unique solution. Ciric and
Lakshmikantham [10] introduced the concept of coupled coincidence, common fixed points to nonlinear
contractions in ordered metric spaces. More results on coupled fixed points, coupled coincidence points
and common coupled fixed points in various spaces, one can see [4, 14–16, 18, 19, 22–25] and many others.

Aydi [4] demonstrated a number of coupled fixed point results for contractive type conditions in partial
metric spaces and gave some examples in support of the results. Recently, Kim et al. [15] demonstrated
some common coupled fixed point theorems for contractive type conditions in the setting of partial metric
spaces.

Motivated by the works of Aydi [4], Azam et al. [5], Bhashkar and Lakshmikantham [7], Dhivya and Marudai
[12] and some others, the goal of this article is to establish some coupled fixed point results based on control
function in the framework of complex partial metric spaces. Also we give an example to support the result.
The results obtain in this article extend and generalize several previously published results in the existing
literature.

2. Preliminaries

Let C be the set of complex numbers and c1, c2 ∈ C. Define a partial order ≾ on C as follows:
c1 ≾ c2 if and only if Re(c1) ≤ Re(c2), Im(c1) ≤ Im(c2). It follows that c1 ≾ c2 if one of the following

conditions is satisfied:
(i) Re(c1) = Re(c2), Im(c1) < Im(c2);
(ii) Re(c1) < Re(c2), Im(c1) = Im(c2);
(iii) Re(c1) < Re(c2), Im(c1) < Im(c2);
(iv) Re(c1) = Re(c2), Im(c1) = Im(c2).
In particular, we will write c1 � c2 if c1 , c2 and one of (i), (ii), and (iii) is satisfied and we will write

c1 ≺ c2 if only (iii) is satisfied. Notice that:
(a1) If 0 ≲ c1 � c2, then |c1| < |c2|,
(a2) If c1 ≾ c2 and c2 ≺ c3, then c1 ≺ c3,
(a3) If t1, t2 ∈ R and t1 ≤ t2, then t1z ≾ t2z for all z ∈ C.

In 2017, Dhivya and Marudai [12] define the following.

Definition 2.1. ([12]) Let X be a nonempty set and C be the set of all complex numbers. A complex partial metric
space on X is a function Pc : X2

→ C+ such that for all p, q, r ∈ X:
(CPM1) 0 ≾ Pc(p, p) ≾ Pc(p, q) (small self-distance),
(CPM2) Pc(p, q) = Pc(q, p) (symmetry),
(CPM3) Pc(p, p) = Pc(p, q) = Pc(q, q) if and only if p = q (equality),
(CPM4) Pc(p, q) ≾ Pc(p, r) +Pc(r, q) − Pc(r, r) (triangularity).
A complex partial metric space is a pair (X,Pc) such that X is a non-empty set and Pc is complex partial metric

on X.

For the complex partial metric Pc on X, the function dPc : X ×X → C+ given by

P
t
c(p, q) = 2Pc(p, q) − Pc(p, p) − Pc(q, q), (2)

is a (usual) metric on X.
Also note that each complex partial metricPc onX generates a T0 topology τPc onXwith the base family

of open Pc-balls {BPc (p, ε) : p ∈ X, ε > 0}where
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BPc (p, ε) = {q ∈ X : Pc(p, q) < Pc(p, p) + ε},

for all p ∈ X and 0 ≺ ε ∈ C+.
Similarly, closed Pc-ball is defined as

BPc [p, ε] = {q ∈ X : Pc(p, q) ≤ Pc(p, p) + ε},

for all p ∈ X and 0 ≺ ε ∈ C+.
A complex valued metric space is a complex partial metric space. But a complex partial metric space

need not be a complex valued metric space. The following example illustrates such a complex partial metric
space.

Example 2.2. ([12]) Let X = [0,∞) endowed with complex partial metric Pc is defined by Pc : X ×X → C+ with

Pc(p, q) = max{p, q} + i max{p, q} for all p, q ∈ X.

It is easy to verify that (X,Pc) is a complex partial metric space and note that self distance need not be zero, for
example, Pc(1, 1) = 1 + i , 0. Now the metric induced by Pc is as follows

P
t
c(p, q) = 2Pc(p, q) − Pc(p, p) − Pc(q, q),

without loss of generality suppose p ≥ q, then

P
t
c(p, q) = 2

[
max{p, q} + i max{p, q}

]
− (p + ip) − (q + iq).

Therefore,

P
t
c(p, q) = |p − q| + i|p − q| = |p − q|(1 + i).

Definition 2.3. ([12]) Let (X,Pc) be a complex partial metric space (CPMS). A sequence {pn} in a CPMS (X,Pc)
converges to p0 if and only if for every ε ∈ C+ with 0 ≺ ε, there exists N0 ∈ N such that for all n ≥ N0, we have
Pc(pn, p0) ≺ ε or pn ∈ BPc (p0, ε) and we denote this by pn → p0 or limn→∞ pn = p0.

Definition 2.4. ([12]) Let (X,Pc) be a complex partial metric space (CPMS). A sequence {pn} in a CPMS (X,Pc) is
called a Cauchy sequence if for every ε ∈ C+ with 0 ≺ ε and a ∈ C+, there exists N0 ∈N such that for all n,m ≥ N0,
we have |Pc(pn, pm) − a| < ε.

Definition 2.5. ([12]) Let (X,Pc) be a complex partial metric space (CPMS).
• A CPMS (X,Pc) is said to be complete if a Cauchy sequence {pn} in (X converges with respect to τPc to a point

p0 ∈ X such that Pc(p0, p0) = limn,m→ +∞Pc(pn, pm).
• A napping G : X → X is said to be continuous at p0 ∈ X if for every 0 ≺ ε, there exists α > 0 such that

G

(
BPc (p0, α)

)
⊂ BPc

(
G(p0), ε

)
.

Definition 2.6. Let X be a non-empty set and let P,Q : X → X be two self mappings of X. Then a point γ ∈ X is
called a

(Γ1) fixed point of operator P if P(γ) = γ,
(Γ2) common fixed point of P and Q if P(γ) = Q(γ) = γ.

Definition 2.7. Let (X,Pc) be a complex partial metric space (CPMS). Then an element (p, q) ∈ X ×X is said to be
a coupled fixed point of the mapping F : X ×X → X if F(p, q) = p and F(q, p) = q.

Example 2.8. Let X = [0,+∞) and F : X ×X → X defined by F(p, q) = p+q
3 for all p, q ∈ X. One can easily see that

F has a unique coupled fixed point (0, 0).
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Example 2.9. Let X = [0,+∞) and F : X × X → X be defined by F(p, q) = p+q
2 for all p, q ∈ X. Then we see that F

has two coupled fixed point (0, 0) and (1, 1), that is, the coupled fixed point is not unique.

Lemma 2.10. ([12]) Let (X,Pc) be a complex partial metric space (CPMS). A sequence {pn} is a Cauchy sequence in
the CPMS (X,Pc), then {pn} is Cauchy in a metric space (X,Pt

c).

In the present paper, we will denote the control function Ω as follows:

Definition 2.11. Let Ω be the set of functions ω : [0,∞)→ [0,∞) satisfying the following conditions:
(Ω1) ω is continuous;
(Ω2) ω(t) < t for all t > 0.
Obviously, if ω ∈ Ω, then ω(0) = 0 and ω(t) ≤ t for all t ≥ 0.

3. Main Results

In this section, we shall prove some unique coupled fixed point theorems based on control function in
the framework of complex partial metric spaces.

Theorem 3.1. Let (X,Pc) be a complete complex partial metric space. Suppose that the mapping F : X × X → X
satisfying the following contractive condition for all p, q, r, s ∈ X:

Pc(F(p, q),F(r, s) ≾ R1 ∆1(p, q, r, s) + R2 ∆2(p, q, r, s), (3)

where

∆1(p, q, r, s) = ω
(
Pc(F(r, s), r)

1 +Pc(F(p, q), p)
1 +Pc(p, r)

)
, (4)

∆2(p, q, r, s) = max
{
ω(Pc(p, r)), ω(Pc(q, s)), ω(Pc(F(p, q), p)),

ω(Pc(F(r, s), r)), ω(Pc(F(p, q), r)),

ω(Pc(F(q, p), s))
}
, (5)

R1,R2 are nonnegative constants with R1 + R2 < 1 and ω ∈ Ω. Then F has a unique coupled fixed point.

Proof. Let p0, q0 ∈ X be arbitrary points. Set p1 = F(p0, q0) and q1 = F(q0, p0). Repeating this process, we
obtain two sequences {pn} and {qn} in X such that pn+1 = F(pn, qn) and qn+1 = F(qn, pn). Let ξn = Pc(pn, pn+1)
and ρn = Pc(qn, qn+1). Then, from equations (3)-(5) and using (CPM1), (CPM2), we have

Pc(pn, pn+1) = Pc(F(pn−1, qn−1),F(pn, qn))
≾ R1 ∆1(pn−1, qn−1, pn, qn) + R2 ∆2(pn−1, qn−1, pn, qn), (6)

where

∆1(pn−1, qn−1, pn, qn) = ω
(
Pc(F(pn, qn), pn)

1 +Pc(F(pn−1, qn−1), pn−1)
1 +Pc(pn−1, pn)

)
= ω
(
Pc(pn+1, pn)

1 +Pc(pn, pn−1)
1 +Pc(pn−1, pn)

)
= ω
(
Pc(pn, pn+1)

)
= ω(ξn), (7)
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and

∆2(pn−1, qn−1, pn, qn) = max
{
ω(Pc(pn−1, pn)), ω(Pc(qn−1, qn)),

ω(Pc(F(pn−1, qn−1), pn−1)), ω(Pc(F(pn, qn), pn)),

ω(Pc(F(pn−1, qn−1), pn)), ω(Pc(F(qn−1, pn−1), qn))
}

= max
{
ω(Pc(pn−1, pn)), ω(Pc(qn−1, qn)), ω(Pc(pn, pn−1)),

ω(Pc(pn+1, pn)), ω(Pc(pn, pn)), ω(Pc(qn, qn))
}

≾ max
{
ω(Pc(pn−1, pn)), ω(Pc(qn−1, qn)), ω(Pc(pn−1, pn)),

ω(Pc(pn, pn+1)), ω(Pc(pn, pn+1)), ω(Pc(qn, qn+1))
}

= max
{
ω(Pc(pn−1, pn)), ω(Pc(qn−1, qn)),

ω(Pc(pn, pn+1)), ω(Pc(qn, qn+1))
}

= max
{
ω(ξn−1), ω(ρn−1), ω(ξn), ω(ρn)

}
. (8)

From equations (6)-(8), we obtain

Pc(pn, pn+1) ≾ R1 ω(ξn) + R2 max
{
ω(ξn−1), ω(ρn−1), ω(ξn), ω(ρn)

}
,

which implies that

|Pc(pn, pn+1)| ≤ R1 |ω(ξn)| + R2

∣∣∣∣max
{
ω(ξn−1), ω(ρn−1), ω(ξn), ω(ρn)

}∣∣∣∣. (9)

Similarly, we obtain

Pc(qn, qn+1) = Pc(F(qn−1, pn−1),F(qn, pn))
≾ R1 ∆1(qn−1, pn−1, qn, pn) + R2 ∆2(qn−1, pn−1, qn, pn), (10)

where

∆1(qn−1, pn−1, qn, pn) = ω
(
Pc(qn, qn+1)

)
= ω(ρn), (11)

and

∆2(qn−1, pn−1, qn, pn) = max
{
ω(ρn−1), ω(ξn−1), ω(ρn), ω(ξn)

}
. (12)

From equations (10)-(12), we obtain

Pc(qn, qn+1) ≾ R1 ω(ρn) + R2 max
{
ω(ρn−1), ω(ξn−1), ω(ρn), ω(ξn)

}
,

which implies that

|Pc(qn, qn+1)| ≤ R1 |ω(ρn)| + R2

∣∣∣∣max
{
ω(ρn−1), ω(ξn−1), ω(ρn), ω(ξn)

}∣∣∣∣. (13)

Set

λn = |Pc(pn, pn+1)| + |Pc(qn, qn+1)|
= |ξn| + |ρn|, (14)
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Ω1 =
∣∣∣∣max

{
ω(ξn−1), ω(ρn−1), ω(ξn), ω(ρn)

}∣∣∣∣, (15)

and

Ω2 =
∣∣∣∣max

{
ω(ρn−1), ω(ξn−1), ω(ρn), ω(ξn)

}∣∣∣∣. (16)

Consider the following possible cases.

Case 1. If Ω1 = |ω(ξn−1)| and Ω2 = |ω(ξn−1)|, then from equations (9), (13)-(16), we obtain

λn ≤ R1 (|ω(ξn)| + |ω(ρn)|) + R2 (|ω(ξn−1)| + |ω(ξn−1)|),

using the fact that ω(t) < t for all t > 0, then we obtain

λn ≤ R1 (|ξn| + |ρn|) + R2 (|ξn−1| + |ξn−1|)
= R1 λn + 2R2 |ξn−1|.

This implies that

(1 − R1)λn ≤ 2R2 |ξn−1|. (17)

Case 2. If Ω1 = |ω(ρn−1)| and Ω2 = |ω(ρn−1)|, then from equations (9), (13)-(16), we obtain

λn ≤ R1 (|ω(ξn)| + |ω(ρn)|) + R2 (|ω(ρn−1)| + |ω(ρn−1)|),

using the fact that ω(t) < t for all t > 0, then we obtain

λn ≤ R1 (|ξn| + |ρn|) + R2 (|ρn−1| + |ρn−1|)
= R1 λn + 2R2 |ρn−1|.

This implies that

(1 − R1)λn ≤ 2R2 |ρn−1|. (18)

From equations (17) and (18), we obtain

2(1 − R1)λn ≤ 2R2 (|ξn−1| + |ρn−1|) = 2R2 λn−1,

or

λn ≤
( R2

1 − R1

)
λn−1. (19)

Case 3. If Ω1 = |ω(ξn)| and Ω2 = |ω(ξn)|, then from equations (9), (13)-(16), we obtain

λn ≤ R1 (|ω(ξn)| + |ω(ρn)|) + R2 (|ω(ξn)| + |ω(ξn)|),

using the fact that ω(t) < t for all t > 0, then we obtain

λn ≤ R1 (|ξn| + |ρn|) + R2 (|ξn| + |ξn|)
= R1 λn + 2R2 |ξn|.

This implies that

(1 − R1)λn ≤ 2R2 |ξn|. (20)



G. S. Saluja / FAAC 15 (2) (2023), 1–15 7

Case 4. If Ω1 = |ω(ρn)| and Ω2 = |ω(ρn)|, then from equations (9), (13)-(16), we obtain

λn ≤ R1 (|ω(ξn)| + |ω(ρn)|) + R2 (|ω(ρn)| + |ω(ρn)|),

using the fact that ω(t) < t for all t > 0, then we obtain

λn ≤ R1 (|ξn| + |ρn|) + R2 (|ρn| + |ρn|)
= R1 λn + 2R2 |ρn|.

This implies that

(1 − R1)λn ≤ 2R2 |ρn|. (21)

From equations (20) and (21), we obtain

2(1 − R1)λn ≤ 2R2 (|ξn| + |ρn|) = 2R2 λn,

or

λn ≤ (R1 + R2)λn < λn,

which is a contradiction, since R1 + R2 < 1. Hence the inequality (3) is satisfied.

Thus from equation (19), we have

λn ≤
( R2

1 − R1

)
λn−1 = τλn−1, (22)

where τ =
(

R2
1−R1

)
< 1, since R1 + R2 < 1.

Then for each n ∈N, we have

λn ≤ τλn−1 ≤ τ
2λn−2 ≤ · · · ≤ τ

nλ0. (23)

If λ0 = 0, then |Pc(p0, p1)| + |Pc(q0, q1)| = 0. Hence, we get p0 = p1 = F(p0, q0) and q0 = q1 = F(q0, p0), which
shows that (p0, q0) is a coupled fixed point of F. Now, we assume that λ0 > 0. For each n ≥ m, where
n,m ∈N, we have, by using condition (CPM4)

Pc(pn, pm) ≾ Pc(pn, pn−1) +Pc(pn−1, pn−2) + . . .
+Pc(pm+1, pm) − Pc(pn−1, pn−1) − Pc(pn−2, pn−2)
− · · · − Pc(pm+1, pm+1)

≾ Pc(pn, pn−1) +Pc(pn−1, pn−2) + · · · +Pc(pm+1, pm),

which implies that

|Pc(pn, pm)| ≤ |Pc(pn, pn−1)| + |Pc(pn−1, pn−2)| + · · · + |Pc(pm+1, pm)|. (24)

Similarly, we have

Pc(qn, qm) ≾ Pc(qn, qn−1) +Pc(qn−1, qn−2) + . . .
+Pc(qm+1, qm) − Pc(qn−1, qn−1) − Pc(qn−2, qn−2)
− · · · − Pc(qm+1, qm+1)

≾ Pc(qn, qn−1) +Pc(qn−1, qn−2) + · · · +Pc(qm+1, qm),

which implies that

|Pc(qn, qm)| ≤ |Pc(qn, qn−1)| + |Pc(qn−1, qn−2)| + · · · + |Pc(qm+1, qm)|. (25)
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Thus,

λn = |Pc(pn, pm)| + |Pc(qn, qm)|
≤ λn−1 + λn−2 + λn−3 + · · · + λm

≤ (τn−1 + τn−2 + · · · + τm)λ0

≤

( τm

1 − τ

)
λ0

≤

( τn

1 − τ

)
λ0 → 0 as n→ +∞, (26)

which implies that {pn} and {qn} are Cauchy sequences in (X,Pc) because 0 ≤ τ < 1. Since the complex
partial metric space (X,Pc) is complete, so there exist L,M ∈ X such that pn → L, qn →M as n→ +∞ and

Pc(L,L) = lim
n→∞
Pc(pn,L) = lim

n,m→∞
Pc(pn, pm) = 0, (27)

Pc(M,M) = lim
n→∞
Pc(qn,M) = lim

n,m→∞
Pc(qn, qm) = 0. (28)

We now show that L = F(L,M). Suppose on the contrary that L , F(L,M) and M , F(M,L) so that
0 ≺ Pc(L,F(L,M)) =W1 and 0 ≺ Pc(M,F(M,L)) =W2, then

W1 = Pc(L,F(L,M))
≾ Pc(L, pn+1) +Pc(pn+1,F(L,M))
−Pc(pn+1, pn+1)

≾ Pc(L, pn+1) +Pc(pn+1,F(L,M))
= Pc(pn+1,F(L,M)) +Pc(L, pn+1)
= Pc(F(pn, qn),F(L,M)) +Pc(L, pn+1)
≾ R1 ∆1(pn, qn,L,M) + R2 ∆2(pn, qn,L,M)
+Pc(L, pn+1), (29)

where

∆1(pn, qn,L,M) = ω
(
Pc(F(L,M),L)

1 +Pc(F(pn, qn), pn)
1 +Pc(pn,L)

)
= ω

(
Pc(F(L,M),L)

1 +Pc(pn+1, pn)
1 +Pc(pn,L)

)
, (30)

passing to the limit as n→ +∞ in equation (30) and using equation (27), we obtain

∆1(pn, qn,L,M)→ ω
(
Pc(F(L,M),L)

)
, (31)

and

∆2(pn, qn,L,M) = max
{
ω(Pc(pn,L)), ω(Pc(qn,M)), ω(Pc(F(pn, qn), pn)),

ω(Pc(F(L,M),L)), ω(Pc(F(pn, qn),L)),

ω(Pc(F(qn, pn),M))
}

= max
{
ω(Pc(pn,L)), ω(Pc(qn,M)), ω(Pc(pn+1, pn)),

ω(Pc(F(L,M),L)), ω(Pc(pn+1,L)),

ω(Pc(qn+1,M))
}
, (32)



G. S. Saluja / FAAC 15 (2) (2023), 1–15 9

passing to the limit as n → +∞ in equation (32), using equations (27), (28) and the property of ω, that is,
ω(0) = 0, we obtain

∆2(pn, qn,L,M)→ ω
(
Pc(F(L,M),L)

)
. (33)

Now from equations (29), (31) and (33), we obtain

W1 = Pc(L,F(L,M))

≾ R1 ω
(
Pc(F(L,M),L)

)
+ R2 ω

(
Pc(F(L,M),L)

)
+Pc(L, pn+1). (34)

Passing to the limit as n→ +∞ in equation (34) and using equation (27), we obtain

W1 = Pc(L,F(L,M))

≾ R1 ω
(
Pc(F(L,M),L)

)
+ R2 ω

(
Pc(F(L,M),L)

)
= (R1 + R2)ω

(
Pc(F(L,M),L)

)
,

which implies that

|W1| = |Pc(L,F(L,M))|

≤ (R1 + R2) |ω
(
Pc(L,F(L,M))

)
|

= (R1 + R2) |ω
(
W1

)
|. (35)

Similarly, one can obtain

|W2| = |Pc(M,F(M,L))|

≤ (R1 + R2) |ω
(
Pc(M,F(M,L))

)
|

= (R1 + R2) |ω
(
W2

)
|. (36)

Hence from equations (35) and (36), we obtain

|W1| + |W2| ≤ (R1 + R2)
(
|ω
(
W1

)
| + |ω

(
W2

)
|

)
,

using the fact that ω(t) < t for all t > 0, we obtain

|W1| + |W2| ≤ (R1 + R2) (|W1| + |W2|)
< |W1| + |W2|,

which is a contradiction, since R1 +R2 < 1. Hence, we conclude that |W1|+ |W2| = 0, that is, |Pc(L,F(L,M))|+
|Pc(M,F(M,L))| = 0 and hence Pc(L,F(L,M)) = 0 and Pc(M,F(M,L)) = 0. Thus, F(L,M) = L and F(M,L) =M.
This shows that (L,M) is a coupled fixed point of F.

Now, we show the uniqueness. Suppose that (L1,M1) is another coupled fixed point of F such that
(L,M) , (L1,M1), then from equations (3)-(5) and using equations (27), (28) and (CPM2), we have

Pc(L,L1) = Pc(F(L,M),F(L1,M1))
≾ R1 ∆1(L,M,L1,M1) + R2 ∆2(L,M,L1,M1), (37)

where

∆1(L,M,L1,M1) = ω
(
Pc(F(L1,M1),L1)

1 +Pc(F(L,M),L)
1 +Pc(L,L1)

)
= ω

(
Pc(L1,L1)

1 +Pc(L,L)
1 +Pc(L,L1)

)
,
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using equation (27) and the property of ω, that is, ω(0) = 0, we obtain

∆1(L,M,L1,M1)→ 0, (38)

and

∆2(L,M,L1,M1) = max
{
ω(Pc(L,L1)), ω(Pc(M,M1)), ω(Pc(F(L,M),L)),

ω(Pc(F(L1,M1),L1)), ω(Pc(F(L,M),L1)),

ω(Pc(F(M,L),M1))
}

= max
{
ω(Pc(L,L1)), ω(Pc(M,M1)), ω(Pc(L,L)),

ω(Pc(L1,L1)), ω(Pc(L,L1)), ω(Pc(M,M1))
}
,

using equation (27) and the property of ω, that is, ω(0) = 0, we obtain

∆2(L,M,L1,M1)→ max
{
ω(Pc(L,L1)), ω(Pc(M,M1)), 0

}
. (39)

From equations (37)-(39), we obtain

Pc(L,L1) = Pc(F(L,M),F(L1,M1))

≾ R2 max
{
ω(Pc(L,L1)), ω(Pc(M,M1)), 0

}
,

which implies that

|Pc(L,L1)| = |Pc(F(L,M),F(L1,M1))|

≤ R2

∣∣∣∣max
{
ω(Pc(L,L1)), ω(Pc(M,M1)), 0

}∣∣∣∣. (40)

Similarly, one can obtain

|Pc(M,M1)| = |Pc(F(M,L),F(M1,L1))|

≤ R2

∣∣∣∣max
{
ω(Pc(L,L1)), ω(Pc(M,M1)), 0

}∣∣∣∣. (41)

Set

F = Pc(L,L1), G = Pc(M,M1), H = |F| + |G|. (42)

Now, we consider the following possible cases.

Case 10. If max
{
ω(F), ω(G), 0

}
= ω(F), then from equations (40)-(42), we obtain

H = |Pc(L,L1)| + |Pc(M,M1)|
≤ 2R2 |ω(F)|. (43)

Case 20. If max
{
ω(F), ω(G), 0

}
= ω(G), then from equations (40)-(42), we obtain

H = |Pc(L,L1)| + |Pc(M,M1)|
≤ 2R2 |ω(G)|. (44)

From equations (43) and (44), we obtain

2H ≤ 2R2 (|ω(F)| + |ω(G)|),

using the fact that ω(t) < t for all t > 0, then we obtain

2H ≤ 2R2 (|F| + |G|),
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or

H ≤ R2 (|F| + |G|) = R2 H
≤ (R1 + R2) H < H,

which is a contradiction, since R1+R2 < 1. Hence, we conclude that H = 0, that is, |Pc(L,L1)|+ |Pc(M,M1)| = 0
or Pc(L,L1) = 0 and Pc(M,M1) = 0 and hence L = L1 and M =M1.

Case 30. If max
{
ω(F), ω(G), 0

}
= 0, then from equations (40)-(42), we obtain

H = |Pc(L,L1)| + |Pc(M,M1)|
≤ R2 (0 + 0) = 0.

Hence we conclude that H = 0, that is, |Pc(L,L1)| + |Pc(M,M1)| = 0 or Pc(L,L1) = 0 and Pc(M,M1) = 0 and
hence L = L1 and M =M1.

Thus in both the above cases, we obtain L = L1 and M =M1. This shows that the coupled fixed point of
F is unique. This completes the proof.

4. Consequences of Theorem 3.1

By taking R1 = k and R2 = 0 in Theorem 3.1, then we obtain the following result.

Corollary 4.1. Let (X,Pc) be a complete complex partial metric space. Suppose that the mapping F : X × X → X
satisfying the following contractive condition for all p, q, r, s ∈ X:

Pc(F(p, q),F(r, s)) ≾ kω
(
Pc(F(r, s), r)

1 +Pc(F(p, q), p)
1 +Pc(p, r)

)
,

where k ∈ [0, 1) is a constant and ω ∈ Ω. Then F has a unique coupled fixed point.

By taking R1 = 0 and R2 = h in Theorem 3.1, then we obtain the following result.

Corollary 4.2. Let (X,Pc) be a complete complex partial metric space. Suppose that the mapping F : X × X → X
satisfying the following contractive condition for all p, q, r, s ∈ X:

Pc(F(p, q),F(r, s)) ≾ h max
{
ω(Pc(p, r)), ω(Pc(q, s)), ω(Pc(F(p, q), p)),

ω(Pc(F(r, s), r)), ω(Pc(F(p, q), r)),

ω(Pc(F(q, p), s))
}
,

where h ∈ [0, 1) is a constant and ω ∈ Ω. Then F has a unique coupled fixed point.

Corollary 4.3. Let (X,Pc) be a complete complex partial metric space. Suppose that the mapping F : X × X → X
satisfying all the conditions of Theorem 3.1, except that the condition (3) is replaced by the following contractive
condition:

Pc(F(p, q),F(r, s)) ≾ a1 ω(Pc(p, r)) + a2 ω(Pc(q, s)) + a3 ω(Pc(F(p, q), p))
+a4 ω(Pc(F(r, s), r)) + a5 ω(Pc(F(p, q), r))
+a6 ω(Pc(F(q, p), s))

+a7 ω
(
Pc(F(r, s), r)

1 +Pc(F(p, q), p)
1 +Pc(p, r)

)
,

for all p, q, r, s ∈ X, where ω ∈ Ω and some nonnegative constants ai (i = 1, 2, . . . , 7) with a1 + a2 + · · ·+ a7 < 1. Then
F has a unique coupled fixed point.
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Corollary 4.4. Let (X,Pc) be a complete complex partial metric space. Suppose that the mapping F : X × X → X
satisfying all the conditions of Theorem 3.1, except that the condition (3) is replaced by the following contractive
condition:

Pc(F(p, q),F(r, s)) ≾ a1 ω(Pc(p, r)) + a2 ω(Pc(q, s)) + a3 ω(Pc(F(p, q), p))
+a4 ω(Pc(F(r, s), r)) + a5 ω(Pc(F(p, q), r))
+a6 ω(Pc(F(q, p), s)),

for all p, q, r, s ∈ X, where ω ∈ Ω and some nonnegative constants ai (i = 1, 2, . . . , 6) with a1 + a2 + · · ·+ a6 < 1. Then
F has a unique coupled fixed point.

Proof. Follows from Corollary 4.2 by taking

a1 ω(Pc(p, r)) + a2 ω(Pc(q, s)) + a3 ω(Pc(F(p, q), p)) + a4 ω(Pc(F(r, s), r))

+a5 ω(Pc(F(p, q), r)) + a6 ω(Pc(F(q, p), s))

≾ γ max
{
ω(Pc(p, r)), ω(Pc(q, s)), ω(Pc(F(p, q), p)), ω(Pc(F(r, s), r)),

ω(Pc(F(p, q), r)), ω(Pc(F(q, p), s))
}
,

where γ = a1 + a2 + a3 + a4 + a5 + a6 < 1.

By taking a3 = a4 = · · · = a6 = 0, ω(t) = kt for all t > 0, where 0 < k < 1 and ka1 → l, ka2 → m, where
0 < l,m < 1 in Corollary 4.4, then we obtain the following result.

Corollary 4.5. Let (X,Pc) be a complete complex partial metric space. Suppose that the mapping F : X × X → X
satisfying the following contractive condition for all p, q, r, s ∈ X:

Pc(F(p, q),F(r, s)) ≤ lPc(p, r) +mPc(q, s),

where l,m are nonnegative constants such that l +m < 1. Then F has a unique coupled fixed point.

By taking a1 = a2 = a5 = a6 = 0, ω(t) = kt for all t > 0, where 0 < k < 1 and ka3 → l, ka4 → m, where
0 < l,m < 1 in Corollary 4.4, then we obtain the following result.

Corollary 4.6. Let (X,Pc) be a complete complex partial metric space. Suppose that the mapping F : X × X → X
satisfying the following contractive condition for all p, q, r, s ∈ X:

Pc(F(p, q),F(r, s)) ≤ lPc(F(p, q), p) +mPc(F(r, s), r),

where l,m are nonnegative constants such that l +m < 1. Then F has a unique coupled fixed point.

Theorem 4.7. Let (X,Pc) be a complete complex partial metric space and the mapping F : X × X → X satisfy all
the conditions of Theorem 3.1, except that condition (3) is replaced by the following contractive condition for all
p, q, r, s ∈ X:

Pc(F(p, q),F(r, s)) ≾ R1 ∆1(p, q, r, s) + R2 ∆ω(p, q, r, s),

where

∆1(p, q, r, s) = ω
(
Pc(F(r, s), r)

1 +Pc(F(p, q), p)
1 +Pc(p, r)

)
,

∆ω(p, q, r, s) = ω
(

max
{
Pc(p, r),Pc(q, s),Pc(F(p, q), p),Pc(F(r, s), r),

Pc(F(p, q), r),Pc(F(q, p), s)
})
,

R1,R2 are nonnegative constants with R1 + R2 < 1 and ω ∈ Ω is nondecreasing. Then the same conclusions hold as
in Theorem 3.1.
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Proof. It follows from Theorem 3.1 by observing that if ω is nondecreasing, we have

∆2(p, q, r, s) = ω
(

max
{
Pc(p, r),Pc(q, s),Pc(F(p, q), p),Pc(F(r, s), r),

Pc(F(p, q), r),Pc(F(q, p), s)
})
.

Remark 4.8. (1) Theorem 3.1 extends the results of Aydi [4] from partial metric space to the setting of complex partial
metric space.

(2) Theorem 3.1 also extends the results of Sabetghadam et al. [21] from cone metric space to the setting of complex
partial metric space.

(3) Corollary 4.5 and Corollary 4.6 extend Theorem 2.1 and Theorem 2.4 respectively of Aydi [4] from partial
metric space to the setting of complex partial metric space.

Now, we give an example to validate the result.

Example 4.9. Let X = [0,+∞) endowed with the usual complex partial metric Pc defined by Pc : X×X → [0,+∞)
with Pc(p, q) = max{p, q}(1 + i). The complex partial metric space (X,Pc) is complete because (X,Pt

c) is complete.
Indeed, for any p, q ∈ X,

P
t
c(p, q) = 2Pc(p, q) − Pc(p, p) − Pc(q, q)

= 2 max{p, q}(1 + i) − (p + ip) − (q + iq)
= |p − q| + i|p − q| = |p − q|(1 + i). (45)

Thus, (X,Pt
c) is the Euclidean complex metric space which is complete. Consider the mapping F : X×X → X defined

by F(p, q) = p+q
12 . Now, for any p, q, r, s ∈ X, we have

(1)

Pc(F(p, q),F(r, s)) =
1

12
max{p + q, r + s}(1 + i)

≤
1

12
[max{p, r}(1 + i) +max{q, s}(1 + i)]

=
1

12
[Pc(p, r) +Pc(q, s)],

which is the contractive condition of Corollary 4.5 for l = 1/6 < 1 (if l = m). Therefore, by Corollary 4.5, F has a
unique coupled fixed point, which is (0, 0).

(2)

Pc(F(p, q),F(r, s)) =
1

12
max{p + q, r + s}(1 + i)

≤
1

12
[max{p + q, p}(1 + i) +max{r + s, s}(1 + i)]

=
1

12
[Pc(F(p, q), p) +Pc(F(r, s), r)],

which is the contractive condition of Corollary 4.6 for l = 1/6 < 1 (if l = m). Therefore, by Corollary 4.6, F has a
unique coupled fixed point, which is (0, 0).
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Note that if the mapping F : X × X → X is given by F(p, q) = p+q
2 , then F satisfies contractive condition of

Corollary 4.5, 4.6 for l = 1 (if l = m),

Pc(F(p, q),F(r, s)) =
1
2

max{p + q, r + s}(1 + i)

≤
1
2

[max{p, r}(1 + i) +max{q, s}(1 + i)]

=
1
2

[Pc(p, r) +Pc(q, s)].

In this case (0, 0) and (1, 1) are both coupled fixed points of F, and hence, the coupled fixed point of F is not unique.
This shows that the condition l < 1 in Corollary 4.5, 4.6 and hence l + m < 1 cannot be omitted in the statement of
the aforesaid results.

5. Conclusion

In this article, we prove some unique coupled fixed point theorems in the setting of complex partial
metric spaces based on control function and provide some repercussions of the main result. Also we give an
example to support the result. The results obtained in this article extend and generalize several previously
published results from the existing literature.
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