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Abstract. The mixed identity for normed modules shows that the real and the complex duals of a complex
Banach space coincide, offers a partial extension of the von Neumann double commutant theorem to
reflexive Banach spaces, explains the Arens multiplication on the second dual of a Banach algebra, and has
a high old time playing around among the integration spaces

1. Sets and Mappings

Recall the Cartesian Product of sets

N ×M ≡ {(n,m) : m ∈M,n ∈ N} (1.1)

which converts functions of two variables to functions of one variable:

T(n,m) = T((n,m)) . (1.2)

Here already there is a mixed identity

Map(N ×M,P) �Map(M,Map(N,P)), (1.3)

for (n,m) ∈ N ×M
T((n,m)) = T(m)(n) , (1.4)

and also a functorial identity :

Map(N ×M,P) �Map(N,P) ×Map(M,P) . (1.5)
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2. Abelian groups

When M and N are abelian groups, or more generally left or right A modules, the cartesian product
N ×M gives rise to the direct sum

N ⊕M �
(
N O
O M

)
. (2.1)

with linear structure given by setting

α

(
n 0
0 m

)
+ α′

(
n′ 0
0 m′

)
=

(
αn + α′n′ 0

0 αm + αm′

)
. (2.2)

The functorial identity extends to the direct sum, but not the mixed identity; for that we need instead
the tensor product:

N ⊗M ≡ {n ⊗m : (n,m) ∈ N ×M} , (2.3)

which is a certain quotient of the free abelian group or module generated by the cartesian product N ×M,
specifically that generated by all expressions of the forms

(αn + α′n′,m) − α(n,m) − α′(n′,m) (2.4)

or
(n, αm + α′m′) − α(n,m) − α′(n,m′) ; (2.5)

thus if n ⊗m is the coset generated by (n,m) ∈ N ×M then there is equality

(αn + α′n′) ⊗m = αn ⊗m + α′n′ ⊗m , (2.6)

and also
n ⊗ (αm + α′m′) = αn ⊗m + α′n ⊗m′ . (2.7)

Here we find it convenient to muddle the meaning of “linear”, which refers to real or complex vector spaces,
with “additive”, which applies to abelian groups. Thus bilinear mappings

T : N ×M→ P (2.8)

from the cartesian product to an abelian group convert to linear, or additive mappings

T : N ⊗M→ P . (2.9)

Now the mixed identity takes the form

T(n ⊗m) = T(m)(n) . (2.10)

3. Ring modules

Suppose now that A is a ring, with identity 1, and that M and N are respectively (unital) left and right
A modules, then the tensor product

N ⊗A M (3.1)

is obtained by quotienting out from the linear product the subgroup of all cosets of the form

na ⊗m − n ⊗ am . (3.2)

Thus when A = Z is the integers then we are looking at abelian groups, while if A = K ∈ {R,C} is either the
real or the complex numbers we are looking at vector spaces. Now the “mixed identity” is the isomorphism

Hom(N ⊗A M,P) � HomA(M,Hom(N,P)) (3.3)
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of abelian groups. More generally if A and B are unital rings and if M, N and P are respectively a left (A, B)
bimodule, a (left B, right A) bimodule and a left B module, then

HomB(N ⊗A M,P) � HomA(M,HomB(N,P)) . (3.4)

When B = Z is either the integers or the usual scalars we are back in the “linear” case.
Generally if a ring A is commutative then the distinction between left and right modules collapses:

every left A module can be treated as a (left A, right A) bimodule. This of course applies to abelian groups,
and to real or complex vector spaces.

4. Normed spaces and algebras

For normed left (or right) A modules M and N there is a range of norms on the direct sum N ⊕M

∥n ⊕m∥∞ ≤ ∥n ⊕m∥p ≤ ∥n ⊕m∥1 (4.1)

with 1 ≤ p ≤ ∞, and embeddings
N ⊕1 M ⊆ N ⊕p M ⊆ N ⊕∞ M (4.2)

and then
BLA(N ⊕p M,P) � BLA(N,P) ⊕q BL(M,P) (4.3)

with
1/p + 1/q = 1 .

When M and N are normed spaces and A a normed algebra then N ⊗A M is again a normed space, and
the linear space

N ⊗A M (4.4)

can be given various interesting crossnorms, for which

∥n ⊗m∥ = ∥m∥ ∥n∥. (4.5)

For the analogue of the mixed identity we select the “projective” or greatest crossnorm, for which for
arbitrary w ∈ N ⊗M,

∥w∥ = inf


∑
j∈J

∥n j∥ ∥m j∥ : w =
∑
j∈J

n j ⊗m j .

 (4.6)

When A is a real or a complex normed algebra, we impose the induced quotient norm on the normed space
N ⊗A M. If we need to consider Banach spaces, we pass to the usual completion. The mixed identity now
takes the form, for arbitrary P,

BL(N ⊗A M,P) � BLA(M,BL(N,P)) . (4.7)

5. Duality

For a normed algebra A, the obvious “dual” of a normed left A module M would seem to be

BLA(M,A) (5.1)

and indeed Bonsall and Goldie [2] and Nachbin [14] have flirted wih this; it seems that it is necessary for
this to work that the algebra A in some sense “represents its own linear functionals”. If however we write

M∗ = BLK(M,K) (5.2)
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for the usual normed space dual of a real or complex normed space M, then the mixed identity tells us

(N ⊗A M)∗ � BLA(M,N∗) . (5.3)

Since
N = A =⇒ N ⊗A M �M � BLA(N,M) (5.4)

it follows
M∗ � BLA(M,A∗) ; (5.5)

thus the true module dual coincides with the normed linear space dual. For example the assunption

A � A∗ (5.6)

is certainly sufficient, as Bonsall/Goldie and Nachbin believed, for BLA(M,A) to behave as a satisfactory
dual for M .

The most immediate fallout is that the real and the complex duals of a complex normed space coincide,
which historically took some years to emerge. It also clear that the real and “quaternion” duals coincide
for normed modules over the normed algebra of quaternions. In another direction, the real dual of a finite
dimensional normed space also coincides with its Pontrjagin dual, its character group of continuous group
homomorphims into the circle S ⊆ C.

This duality offers a partial extension to reflexive Banach spaces of the von Neumann double commutant
theorem, which says, for a Hilbert space X, that a *subalgebra A ⊆ B(X) is a dual space if and only if it is a
commutant:

A = comm(B) ⊆ B(X) =⇒ (X∗ ⊗B X)∗ � BLB(X,X) = A . (5.7)

Our mixed identity also explains the Arens product, which makes the second dual of a Banach algebra
again an algebra:

A∗∗ � BLA(A∗,A∗) . (5.8)

Indeed there are in general two possibly distinct such products; we get the second by treating the dual A∗

as a right A module.
Generally if a subalgebra A ⊆ B(X) includes all the finite rank operators then its commutant reduces to

the scalars:
X∗ ⊙ X ⊆ A ⊆ B(X) =⇒ X∗ ⊗A X � C � BLA(X,X) . (5.9)

When A is a C* algebra, then left A modules can be interpreted as bimodules: for if m→ m∗ : M→M is an
involution then we can define, for m ∈M and a ∈ A,

ma = (a∗m∗)∗. (5.10)

This works with m∗ ≡ m, but we might sometimes hope for more interesting involutions. For a Hilbert A
module [10],[11],[12], the norm is generated by an A-valued inner product.

6. Integration spaces

The integration spaces Lp(Ω) over a measure space Ω are, under pointwise multiplication, normed
modules over the Banach algebra A = L∞(Ω):

Lp(Ω) · Lq(Ω) = Lr(Ω) , (6.1)

where, if 1 ≤ p, q < ∞ (Holder’s inequality)

1/p + 1/q = 1/r. (6.2)

We now [6] have
A = L∞(Ω) =⇒ Lp(Ω) ⊗A Lq(Ω) � Lp(Ω) · Lq(Ω) , (6.3)
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and hence the mixed identity tells us, in particular, that L∞ acts on each Lp as a “maximal abelian” algebra
of operators.

When in particular Ω carries the discrete counting measure we write ℓp in place of Lp. We can now
extend this discrete version to the Schatten ideals on a Hilbert, or more general Banach space; for example
ℓ1 gives the trace class or “nuclear” operators, and ℓ2 the Hilbert Schmidt. Now ℓ∞ can be the full algebra
of bounded operators, or the compact operators (with the scalars thrown in).

When Ω = G is derived from a locally compact abelian group G with Haar measure the convolution
algebra L1(G) need not have an identity, but does have an “approximate identity”. Here we take [5] its
“multiplier algebra” M(G): we observe

A =M(G) =⇒ Lp(G) ⊗A Lq(G) � Lp(G) ∗ Lq(G) = Lr(G)], (6.4)

where now
1/p + 1/q = 1 + 1/r. (6.5)

7. Clarification

Back in 1967 the first author submitted a version of the present paper to Proceedings LMS, which was
returned to him for rewriting; in the words of the anonymous referee, ”Harte’s account is muddled and
unclear”. While he was addressing this problem, the paper [16] of Rieffel appeared, which rather set him
back on his heels. The first author is profoundly grateful to the second for encouraging him to pick up again
the threads of this work. As the first author is himself becoming generally more ”muddled and unclear”,
this has been something of a race against time.

The authors are also seriously grateful to Michael Mackey for scanning the fragile document [6], and
also [15], into the form of a pdf .
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