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The narrow recurrence of continuous-time Markov chains
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Abstract. Let (Ω,F ,P) be a probability space and X be a Polish space equipped with its Borel σ-algebraB.
We consider a transition function probability {Pt, t ∈ R+} of a continuous Markov chain on (Ω,F ,P) with
values in X. This transition function defines a semi group acting on Pr(X), the set of all probability measures
on X, which is also a Polish space endowed with the narrow topology. In this paper, we introduce and study
the notion of the narrow recurrence of transition functions of continuous Markov chains and provide some
properties, which can be considered as an initiation of applications of properties of topological dynamics
on stochastic process theory and random dynamical systems.

1. Introduction

Let X be a complex Banach space. In the following, by an operator, we mean a linear and continuous
map acting on X.
A very central notion in topological dynamics that has a long story is that of recurrence, which goes back
to Poincaré [14], and it refers to the existence of points in the space for which parts of their orbits under
a continuous map return to themselves, in other words, a vector x ∈ X is called a recurrent vector for an
operator T acting on X if there exists a strictly increasing sequence (nk) of positive integers such that

Tnk x −→ x.

The purpose of this note is the study of the notion of recurrence, together with its variations, in the context
of topological dynamics. Some examples and characterizations of recurrence for special classes of operators
have appeared in [6, 7, 12] and a systematic study of this notion goes back to the works of Furstenberg [10],
and Gottschalk and Hedlund [11].

Instead of the norm topology, by taking density in the weak topology, we can consider the notions of
weak hypercyclicity, weak recurrence and weak orbits in general.
The study of weak orbits was began in 1996 by J. Van Neerven in [18]. Importation contribution to weak
hypercyclicity is due to J. Bès, K. Chan and R. Sanders [3, 4, 13, 17]. Moreover, The notion of weak recurrence
was studied in [1] by M. Amouch et al.
In [19], We have studied the weak recurrence also known as narrow recurrence of a new class of operators
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called Markov kernels, along with their characteristics, with the goal of exploiting this concept to study the
distributional stability Markov chains with discrete time on general state spaces.

In the present paper, we apply the properties of the recurrence on transition functions of continuous
Markov chains, and consequently investigate the stability in distribution of continuous-time Markov chains.
More precisely, the contribution of the paper is two-fold. First, studying the recurrence in the context of
topological dynamics of a new class of semi group, which are transition functions of continuous Markov
chains, and examining their characteristics. Second, exploiting the concept of the recurrence to study the
stability in distribution of continuous Markov chains on general state spaces.

The paper is organized as follows. In section 1, we will give a summary of some notions and results
concerning Markov chains that we will need in next paragraphs. In Section 2, we introduce the notion
of narrow recurrence of transition functions and provide some interesting examples. We explain that the
narrow recurrence of Markov kernels makes it possible to study the stability in distribution of continuous
Markov chains. In Section 3, we give some properties that characterizes the narrow recurrence of transition
functions. In particular, we characterize the narrow recurrence of transition functions in terms of the con-
vergence of measures of sets. We also give a result which establishes the relationship between the narrow
recurrence of two transition functions.

Throughout in what follows, (Ω,F ,P) will denote a probability space, X will denote a Polish space
equipped with a complete metric d, Bwill denote the σ-algebra of Borel sets of X, Pr(X) denote the set of all
probability measures on X, and Cb(X) denote the space of all bounded continuous functions from X to R.

2. The basic set-up

In this part, we will give a summary of some notions and results that we will need in the next paragraph.
For a comprehensive exposition on this subject see [8] and [9].

Definition 2.1. A Markov kernel on X × B is a mapping P : X × B → [0, 1] satisfying the following conditions:

(i) for each x ∈ X, the mapping P(x, .) : A 7→ P(x,A) is a probability measure on B,

(ii) for each A ∈ B, the mapping P(.,A) : x 7→ P(x,A) is a measurable function from (X,B) to ([0, 1],B[0,1]).

Definition 2.2. A family (Pt)t≥0 of Markov kernels on (X,B) is called a transition function if: For all x ∈ X and all
A ∈ B, P0(x,A) = δx(A)

Pt+s(x,A) =
∫

X Pt(x, dy)Ps(y,A), ∀s, t ≥ 0.

Remark 2.3. The equality

Pt+s(x,A) =
∫

X
Pt(x, dy)Ps(y,A), ∀s, t ≥ 0, ∀A ∈ B.

is called the Chapman-Kolmogorov equation.

Definition 2.4. A process stochastic {Xt: t ≥ 0} on (Ω,F ,P) with values in X is called a Markov chain with
continuous time if there exists a transition function (Pt)t≥0 such that, for all t0, t1, ..., tn ∈ R+, with t0 ≤ t1 ≤ t2 . . . tn,
we have:

P(Xtn+1 ∈ A/(Xt0 ,Xt1 , ...,Xtn )) = Ptn+1 (Xtn ,A) P-a.s. ∀A ∈ B.

The distribution of X0 is called the initial distribution.

The following result ensures that any transition function can be considered as a semigroup acting on
the left on Pr(X) and on the right on Cb(X).
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Proposition 2.5. 1. Any transition function (Pt)t≥0 on (X,B) defines a semigroup of linear operators Pt, t ≥ 0
on the space Cb(X), by the formula:

Ptφ(x) =
∫

X
Pt(x, dy)φ(y), t ≥ 0, x ∈ X, φ ∈ Cb(X).

2. Any transition function (Pt)t∈R+ on (X,B) acts on measures by the relationship:

µPt(A) =
∫

X
µ(dx)Pt(x,A), µ ∈ Pr(X), A ∈ B, t ≥ 0.

Furthermore, for any probability measure µ ∈ Pr(X), we have µPt+s = µPtPs.

The following result is due to Prohorov, see [15], is the key result of this paper.

Theorem 2.6. We may define a topology on Pr(X), called the narrow topology, which is the smallest topology on
Pr(X), such that ν 7−→

∫
X f dν is continuous for every f of Cb(X). Furthermore, the space Pr(X) is a Polish equipped

with this topology.

3. The narrow recurrence of transition functions

In this section, we introduce the notion of narrow recurrence for transition functions and provide some
interesting examples.

Definition 3.1. Let (Pt)t≥0 be a transition function on (X,B). The orbit of probability measure µ ∈ Pr(X) under
(Pt)t≥0 is defined as follows:

Orb(Pt, µ): = {µPt : t ∈ R+}.

Remark 3.2. Let (Pt)t≥0 be a transition function on (X,B), and µ be a probability measure on X. Let {Xt: t ≥ 0} be a
continuous-time Markov chain on (Ω,F ,P) with transition function (Pt)t≥0, and initial distribution µ.
Then, for each t ≥ 0, the random variable Xt is distributed according to µPt; that is, the law of Xt is µPt.
Hence, the orbit of µ under (Pt)t≥0 represents the laws of random variables Xt, t > 0.
Consequently, studying these orbits is equivalent to studying, in distribution, the trajectories of the Markov chain
{Xt: t ≥ 0}.

Definition 3.3. A probability measure µ is said to be a Narrow recurrent measure for (Pt)t≥0 if there exists a strictly
increasing sequence (tnk ) of positive real numbers such that

µPtnk

N
−→

n−→+∞
µ.

We denotes by (Pt) the set of all weakly recurrent measures for (Pt)t≥0

Remark 3.4. Let (Pt)t≥0 be a transition function on (X,B), and µ be a probability measure on X. Let {Xt: t ≥ 0} be a
continuous-time Markov chain on (Ω,F ,P) with transition function (Pt)t≥0, and initial distribution µ.
Suppose that µ is a narrow recurrent probability measure of (Pt)t≥0. Then there exists a sub-sequence (Xtnk

) of
{Xt: t ≥ 0} which converges in distribution to a random variable ζ, distributed according to µ. Consequently, we can
extract a sub-process of {Xt: t ≥ 0} which converges in distribution to µ.

Example 3.5. Let {Tt}t∈R+ be a semi group acting on X. For each x ∈ X and A ∈ B, we get

Pt(x,A) = 1A ◦ Tt(x)

Then (Pt)t∈R+ defines a transition function on (X,B).
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Let µ a probability measure on X. For any integer t ≥ 0, we get

µPt(A) =
∫

X
µ(dx)Pt(x,A) = µ(T−1

t (A)),

If µ is invariant under Tt; that is Ttµ = µ, for all t ∈ R+, then

µPt = µ

Hence
µPtnk

N
−→

n−→+∞
µ.

Thus µ is a Narrow recurrent probability measure of P. furthermore,

Inv(Tt) ⊂ (Pt)

where, Inv(Tt) denote the set of all invariant probability measures under {Tt}t∈R+ .

Remark 3.6. Let (Pt)t≥0 be a transition function on (X,B), and µ a probability measure on X. Suppose that (Pt)t≥0
admits an invariant probability measure µ; that is µPt = µ, for all t ≥ 0. Then µ is a Narrow recurrent probability
measure of (Pt)t≥0. Moreover,

Inv(Pt) ⊂ (Pt),

where Inv(Pt) is the set of all invariant probability measures under (Pt)t≥0.

4. Characterization of the narrow recurrence of transition functions

In this section, we provide some properties that characterize the narrow recurrence of transition func-
tions, which are extensions of the narrow recurrence characterizations for Markov chains proven in [19], to
continuous-time Markov chains.
The following result is based on the Portmanteau theorem, see [5], provides useful conditions equivalent
to the narrow recurrence of transition functions. In particular, it characterizes the narrow recurrence of
transition functions in terms of the convergence of measures of sets.

Theorem 4.1. Let (Pt)t≥0 be a transition function on (X,B), and µ be a probability measure on X. The following
statement are equivalent :

1. µ ∈ (Pt)
2. There exists a strictly increasing sequence (tnk ) of positive real numbers such that∫

X
f (x) µPtnk

(dx) −→
k−→+∞

∫
X

f (x)µ(dx),

for all f bounded real valued uniformly continuous function.
3. There exists a strictly increasing sequence (tnk ) of positive real numbers such that

lim
k
µPtnk

(F) ⩽ µ(F), for every closed set F.

4. There exists a strictly increasing sequence (tnk ) of positive real numbers such that

lim
k
µPtnk

(U) ⩾ µ(U), for every open set U.
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5. There exists a strictly increasing sequence (tnk ) of positive real numbers such that

lim
k
µPtnk

(A) = µ(A),

for every Borel set A whose boundary has µ-measure 0.

Proof. (1) =⇒ (2): Suppose that µ ∈ (Pt), then there exists a strictly increasing sequence (tnk ) of positive real
numbers such that ∫

X
f (x) µPtnk

(dx) −→
k−→+∞

∫
X

f (x)µ(dx), ∀ f ∈ Cb(X),

particularly, ∫
X

f (x) µPtnk
(dx) −→

k−→+∞

∫
X

f (x)µ(dx),

for all f bounded real valued uniformly continuous function.
(2) =⇒ (3): Suppose that there exists a strictly increasing sequence (tnk ) of positive real numbers such

that ∫
X

f (x) µPtnk
(dx) −→

k−→+∞

∫
X

f (x)µ(dx),

for all f bounded real valued uniformly continuous function. Let F be any closed set and Fp = {x ∈
X: d(x,F) < 1

p }, for all p ∈ N∗. Then F and FC
p , where FC

p denotes the complement of Fp, are disjoint closed
sets such that in f

(x,y)∈F×FC
p

d(x, y) ⩾ 1
p . Now, we put

fp(x) =
d(x,FC

p )

d(x,FC
p ) + d(x,F)

, for any p ∈N∗.

It is clear that 0 ⩽ fp ⩽ 1, fp(x) = 1 for all x ∈ F, fp(x) = 0 for all x ∈ FC
p , and fp is a bounded uniformly

continuous function. Further, the sequence (Fp)p∈N∗ is decreasing and F =
⋂

p∈N∗ Fp. Thus

lim
k
µPtnk

(F) ⩽ lim
k

∫
X

fpd(µPtnk
) ⩽ µ(Fp).

Letting p→∞, we obtain lim
k
µPtnk

(F) ⩽ µ(F).

(3)⇔ (4): A simple complementation argument proves this equivalence.
(4) =⇒ (5): Suppose that there exists a strictly increasing sequence (tnk ) of positive real numbers such that

lim
k
µPtnk

(U) ⩾ µ(U) for every open set U.

Let A ∈ Bwhose boundary has µ-measure 0. Then

lim
k
µPtnk

(A) ⩽ lim
k
µPtnk

(Ā) ⩽ µ(Ā),

lim
k

Ptnk
(A) ⩾ lim

k
µPtnk

(Å) ⩾ µ(Å).

Since µ(Ā − Å) = 0, it follows that limk µPtnk
(A) exists and equals µ(A).

(5) =⇒ (1): Suppose that there exists a strictly increasing sequence (tnk ) of positive real numbers such that

lim
k
µPtnk

(A) = µ(A),
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for every Borel set A whose boundary has µ-measure 0.
Let f ∈ Cb(X), a and b be two numbers such that a < f (x) < b, for all x ∈ X. Given any ε > 0, we can find
numbers h1, h2, ..., hm, such that a = h0 < h1 < ... < hm = b, hi − hi−1 < ε2 and µ({x ∈ X : f (x) = hi}) = 0, for all
i = 1, 2, ...,m, see [2]. For all i = 1, 2, ...,m,we put

Ai = {x ∈ X : hi−1 ⩽ f (x) < hi},

then A1,A2, ...,Am are disjoint Borel sets with X =
⋃m

i=1 Ai.Moreover

(Āi − Åi) ⊂ {x ∈ X : f (x) = hi−1} ∪ {x ∈ X : f (x) = hi},

then µ(Āi − Åi) = 0, hence limk µPtnk
(Ai) = µ(Ai), for all i = 1, 2, . . . ,m.

Now, we put 1 = Σm
i=1hi−11Ai , then

|

∫
X

f d(Ptnk
) −
∫

X
f dµ| ⩽

∫
X
| f − 1|d(µPtnk

) + |
∫

X
f d(µPtnk

) −
∫

X
1dµ| +

∫
X
| f − 1|dµ.

On the other hand it is clear that | f (x) − 1(x)| < ε2 for all x ∈ X, thus

|

∫
X

f d(µPtnk
) −
∫

X
f dµ| ⩽ ε + Σm

i=1|µPtnk
(Ai) − µ(Ai)|hi−1.|

Hence,

lim
k
|

∫
X

f d(µPtnk
) −
∫

X
f dµ| ⩽ ε.

As an application of theorem (4.1) and the remark (3.4) we deduce the following important corollary:

Corollary 4.2. Let (Pt)t≥0 be a transition function on (X,B), and µ be a probability measure on X. Let {Xt: t ≥ 0} be
a continuous-time Markov chain on (Ω,F ,P) with transition function (Pt)t≥0, and initial distribution µ. Suppose
that µ is a narrow recurrent probability measure of (Pt)t≥0, then there exists a subsequence (Xtnk

)k∈N of {Xt: t ≥ 0} and
a random variable ξ, with values in X, distributed according to µ, such that the following five statements are valid :

1. (Xtnk
) converges in distribution to ξ.

2. E( f (Xtnk
)) −→ E( f (ξ)) for all bounded, uniformly continuous function f .

3. lim supk P(Xtnk
∈ F) ⩽ P(ξ ∈ F), for all closed F.

4. lim infk P(Xtnk
∈ U) ⩾ P(ξ ∈ U), for all open U.

5. P(Xtnk
∈ A) −→ P(ξ ∈ A) for any Borel set A whose boundary has µ-measure 0.

The following theorem gives, under conditions, the relation between the narrow recurrence of two
transition functions.

Theorem 4.3. Let (Pt)t≥0 and (Qt)t≥0 be two transition functions on (X,B). Let (Xt)t≥0 and (Yt)t≥0 be two continuous-
time Markov chains on (Ω,F ,P) with transition functions (Pt)t≥0 and (Qt)t≥0 respectively and same initial distribution
µ. Suppose that d(Xt,Yt) converges to 0 in probability, then

µ ∈ (Pt) if only if µ ∈ (Qt).

Proof. Suppose that µ ∈ (Pt). Then there exists a sub-sequence (Xtnk
)k of (Xt)t≥0 which converges in distri-

bution to a random variable ζ, distributed according to µ.
Let F be a closed set and ε > 0. we consider the closed set,

Fε = {x ∈ X : d(x,F) ⩽ ε}.
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Then,
P(Ytnk

∈ F) ⩽ P(d(Xtnk
,Ytnk

) ⩾ ε) + P(Xtnk
∈ Fε).

Then, by the corollary 4.2,

lim supk P(Ytnk
∈ F) ⩽ lim supk P(Xtnk

∈ Fε) ⩽ P(ζ ∈ Fε).

Letting ε→ 0, we obtain
lim supk P(Ytnk

∈ F) ⩽ P(ζ ∈ F).

Thus (Ytnk
) converges in distribution to ϕ, and hence

µQtnk

N
−→

k−→+∞
µ.
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