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A new modified Krasnoselskii-Mann-type algorithm for an infinite
family of multivalued quasi-nonexpansive mappings in unformly

convexe spaces
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aAmadou Mahtar Mbow University, Senegal

Abstract. The main objective of this paper is to introduce and study a new modified Krasnoselskii-
Mann-type method for approximating a common fixed points of an infinite family of multivalued quasi-
nonexpansive mappings in real Banach spaces. Under suitable assumptions, we prove the strong con-
vergence of this algorithm in uniformly convex real Banach spaces without imposing any compactness
assumption.Application to minimum-norm fixed point problem is provided to support our main re-
sults. Futhermore, numerical example is given to demonstrate the implementability of our algorithm.
Finally, our algorithm generalize and extend of the existing results in the literature and moreover, its
computationaly effort is less per each iteration compared with related works.

1. Introduction

Let E be a Banach space with norm ∥ · ∥ and dual E∗. For any x ∈ E and x∗ ∈ E∗, ⟨x∗, x⟩ is used to
refer to x∗(x). Let φ : [0,+∞)→ [0,∞) be a stricly increasing continuous function such that φ(0) = 0 and
φ(t)→ +∞ as t→∞. Such a function φ is called gauge. Associed to a gauge a duality map Jφ : E → 2E

∗

defined by:

Jφ(x) := {x∗ ∈ E∗ : ⟨x, x∗⟩ = ||x||φ(||x||), ||x∗|| = φ(||x||)}, x ∈ E. (1)

If the gauge is defined by φ(t) = t, then the corresponding duality map is called the normalized duality map
and is denoted by J . Hence the normalized duality map is given by

J(x) := {x∗ ∈ E∗ : ⟨x, x∗⟩ = ||x||2 = ||x∗||2}, ∀x ∈ E.

Notice that

Jφ(x) =
φ(||x||)
||x||

J(x), x ̸= 0.
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Following Browder [4], we say that a Banach space has a weakly continuous duality map if there exists
a gauge φ such that Jφ is a single-valued and is weak-to-weak∗ sequentially continous, i.e., if (xn) ⊂ E,

xn
w−→ x, then Jφ(xn)

w∗

−−→ Jφ(x). It is know that lp (1 < p <∞) has a weakly continuous duality map with
gauge φ(t) = tp−1 (see [6] fore more detais on dualitymaps).

Remark 1.1. Note also that a duality mapping exists in each Banach space.We recall from [2] some of the
examples of this mapping in lp, Lp,W

m,p-spaces, 1 < p <∞.

(i) lp : Jx = ∥x∥2−p
lp

y ∈ lq, x = (x1, x2, · · · , xn, · · · ),
y = (x1|x1|p−2, x2|x2|p−2, · · · , xn|xn|p−2, · · · ),
(ii) Lp : Ju = ∥u∥2−p

Lp
|u|p−2u ∈ Lq,

(iii) Wm,p : Ju = ∥u∥2−p
Wm,p

∑
|α≤m|(−1)|α|Dα

(
|Dαu|p−2Dαu

)
∈W−m,q,

where 1 < q <∞ is such that 1/p+ 1/q = 1.

Recall that a Banach space E satisfies Opial property (see, e.g., [20]) if lim sup
n→+∞

∥xn − x∥ < lim sup
n→+∞

∥xn − y∥

whenever xn
w−→ x, x ̸= y. A Banach space E that has a weakly continuous duality map satisfies Opial’s

property. Let (X, d) be a metric space, K be a nonempty subset of X and T : K → 2K be a multivalued
mapping.An element x ∈ K is called a fixed point of T if x ∈ Tx. For single valued mapping, this reduces to
Tx = x.The fixed point set of T is denoted by F (T ) := {x ∈ D(T ) : x ∈ Tx}. For several years, the study of
fixed point theory for multi-valued nonlinear mappings has attracted, and continues to attract, the interest of
several well known mathematicians (see, for example, Brouwer [3], Kakutani [13], Nash [18, 19], Geanakoplos
[12], Nadla [17], Downing and Kirk [9]). Interest in the study of fixed point theory for multivalued nonlinear
mappings stems, perhaps, mainly from its usefulness in real-world applications such as Game Theory and
Non-Smooth Differential Equations.We describe briefly the connection of fixed point theory for multivalued
mappings with these applications.

1.1. Optimization problems with constraints

Let f : H → R ∪ {+∞} be a proper convex lower semicontinuous function and A : H → 2H be a
set-valued mapping.Consider the following constrained optimization problem:

(P )

 min f(x)

0 ∈ Ax.

It is known that the multivalued map, ∂f the subdifferential of f, is maximal monotone, where for x,w ∈ H,

w ∈ ∂f(x)⇔ f(y)− f(x) ≥ ⟨y − x,w⟩, ∀ y ∈ H

⇔ x ∈ argmin(f − ⟨·, w⟩).

It is easily seen that, for x ∈ H with x is a solution of (P ) if and only if

x ∈ Fix(T1) ∩ Fix(T2),

with T1 := I − ∂f and T2 := I −A, where I where I is the identity map of H. Therefore, x is a solution of
(P ) if and only if x is a solution of common fixed point problem involving two multivalued.A multi-valued
mapping T : D(T ) ⊆ E → CB(E) is called L- Lipschitzian if there exists L > 0 such that

H(Tx, Ty) ≤ L∥x− y∥ ∀x, y ∈ D(T ). (2)

When L ∈ (0, 1) in (2), we say that T is a contraction, and T is called nonexpansive if L = 1.
A multivalued map T is called quasi-nonexpansive if

H(Tx, Tp) ≤ ∥x− p∥
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holds for all x ∈ D(T ) and p ∈ F (T ). It is easy to see that the class of multivalued quasi-nonexpansive
mappings properly includes that of multivalued nonexpansive maps with fixed points Existence theorems
for fixed point of multi-valued contractions and nonexpansive mappings using the Hausdorff metric have
been proved by several authors (see, e.g., Nadler [17], Markin [16], Lim [14]). Later, an interesting and rich
fixed point theory for such maps and more general maps was developed which has applications in control
theory, convex optimization, differential inclusion, and economics (see, Gorniewicz [10] and references cited
therein). Recently, several theorems have been proved on the approximation of fixed points of multivalued
nonexpansive mappings (see for example [1], [21], [23] , [24], and the references therein) and their generaliza-
tions (see e.g., [11], [8]). Sastry and Babu [23] introduced the following iterative scheme. Let T : E → P (E)
be a multivalued mapping and x∗ be a fixed point of T . The sequence of iterates is given for x1 ∈ E by

xn+1 = (1− αn)xn + αnyn ∀n ≥ 0, yn ∈ Txn, (3)

∥yn − x∗∥ = d(Txn, x
∗). (4)

where αn is real sequences in (0,1) satisfying the following conditions:

(i)

∞∑
n=1

αn =∞; (ii) limαn = 0,

(iii) βn ∈ (0, 1).
They also introduced the following sequences: yn = (1− βn)xn + βnzn, zn ∈ Txn,

xn+1 = (1− αn)xn + αnun, un ∈ Tyn,
(5)

 ∥zn − x∗∥ = d(x∗, Txn),

∥un − x∗∥ = d(Tyn, x
∗)

(6)

where {αn}, {βn} are real sequences satisfying the following conditions:

(i) 0 ≤ αn, βn < 1; (ii) lim
n→∞

βn = 0; (iii)

∞∑
n=1

αnβn =∞.

Sastry and Babu called the process defined by (3) a Mann iteration process and the process defined by
(5) where the iteration parameters αn, βn satisfy conditions (i), (ii), and (iii) an Ishikawa iteration pro-
cess. They proved in [23] that the Mann and Ishikawa iteration schemes for a multivalued map T with fixed
point p converge to a fixed point of T under certain conditions.More precisely, they proved the following
result for a multi-valued nonexpansive map with compact domain.

Theorem 1.2. (Sastry and Babu [23]). Let H be real Hilbert space, K a nonempty compact convex subset of
H, and T : K → P (K) a multivalued nonexpansive map with a fixed point p. Assume that (i) 0 ≤ αn, βn < 1;
(ii)βn → 0 and (iii)

∑
αnβn = ∞. Then, the sequence {xn} defined by (5) converges strongly to a fixed

point of T .

Recently, Sow et al. [25], motivated by the fact that Krasnoselskii-Mann algorithm method is remarkably
useful for finding fixed points of single-valued nonexpansive mapping, proved the following theorem.

Theorem 1.3 (Sow et al. [25]). Let E be a uniformly smooth real Banach space having a weakly contin-
uous duality map and K a nonempty, closed and convex cone of E. Let T : K → K be a nonexpansive
mapping with F (T ) ̸= ∅. Let {λn} and {αn} be two sequences in (0, 1). Let {xn} be a sequence defined
iteratively from arbitrary x0 ∈ K by:

xn+1 = αn(λnxn) + (1− αn)Txn. (7)
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Suppose the following conditions hold:

(i) lim
n→∞

αn = 0; (ii)

∞∑
n=0

αn =∞ and

∞∑
n=0

|αn − αn+1| <∞

(iii) lim
n→∞

λn = 1,

∞∑
n=0

(1− λn)αn =∞, and

∞∑
n=0

|λn − λn+1| <∞

Then, the sequence {xn} generated by (7) converges strongly to x∗ ∈ F (T ),

Motivated by the aforementioned results, we introduce a new iterative algorithm for finding a common
fixed points of an infinite family of multivalued quasi-nonexpansive mappings in Banach spaces without
compactness assumptions and rigid conditions like (4) and (6). We prove strong convergence by our scheme
in real Banach space having a weakly continuous duality map. We apply, our main results to minimum-norm
fixed point problem involving an infinite family of multivalued quasi-nonexpansive mappings. Finally, our
method of proof is of independent interest.

2. Preliminaries

We start with the following demiclosedness principle for set-valued nonexpansive mappings.

Definition 2.1. Let E be real Banach space and T : D(T ) ⊂ E → 2E be a multivalued mapping. I − T
is said to be demiclosed at 0 if for any sequence {xn} ⊂ D(T ) such that {xn} converges weakly to p and
d(xn, Txn) converges to zero, then p ∈ Tp.

Lemma 2.2 (Demi-closedness Principle, [4]). Let E be a uniformly convex Banach space satisfying the
Opial condition, K be a nonempty closed and convex subset of E. Let T : K → CB(K) be a multivalued
nonexpansive mapping with convex-values. Then I − T is demi-closed at zero.

Lemma 2.3 ([15]). Let E be a real Banach spaces. Then, the following inequality holds

Φ(∥x+ y∥) ≤ Φ(∥x∥) + ⟨y, Jφ(x+ y)⟩

for all x,y ∈ E.
In particular, for all x,y ∈ E,

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, J(x+ y)⟩.

Lemma 2.4 (Xu, [26]). Assume that {an} is a sequence of nonnegative real numbers such that an+1 ≤
(1− αn)an + σn for all n ≥ 0, where {αn} is a sequence in (0, 1) and {σn} is a sequence in R such that

(a)

∞∑
n=0

αn =∞, (b) lim sup
n→∞

σn

αn
≤ 0 or

∞∑
n=0

|σn| <∞. Then lim
n→∞

an = 0.

Lemma 2.5 (Chang et al. [7]). Let E be a uniformly convex real Banach space. For arbitrary r > 0,
let B(0)r := {x ∈ E : ||x|| ≤ r}, a closed ball with center 0 and radius r > 0. For any given sequence

{u1, u2, ....., un, .....} ⊂ B(0)r and any positive real numbers {λ1, λ2, ...., λn, ....} with
∞∑
k=1

λk = 1, then there

exists a continuous, strictly increasing and convex function

g : [0, 2r]→ R+, g(0) = 0,

such that for any integer i, j with i < j,

∥
∞∑
k=1

λkuk∥2 ≤
∞∑
k=1

λk∥uk∥2 − λiλjg(∥ui − uj∥).
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Lemma 2.6. [22] Let C and D be nonempty subsets of a smooth real Banach space E with D ⊂ C and
QD : C → D a retraction from C into D. Then QD is sunny and nonexpansive if and only if

⟨z −QDz, J(y −QDz)⟩ ≤ 0 (8)

for all z ∈ C and y ∈ D.

It is noted that Lemma 2.6 still holds if the normalized duality map is replaced by the general duality map
Jφ, where φ is gauge function.

3. Main results

In this section, we present and analyze our iterative method for finding a common fixed points of an infinite
family of multivalued quasi-nonexpansive mappings in uniformly convex Banach spaces.
In what follows, we use the following explicit iteration scheme: let K a nonempty, closed and convex cone
of E and Ti : K → CB(K), i ∈ N be a multivalued quasi-nonexpansive mapping.
Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ K by:

yn = αn(λnxn) + (1− αn)xn

xn+1 = βn,0yn +

∞∑
i=1

βn,iz
i
n, zin ∈ Tiyn,

(9)

{βn,i}, {λn} and {αn} be a real sequences in (0, 1) satisfying:

(i) lim
n→∞

αn = 0; (ii) lim
n→∞

λn = 1 and

∞∑
n=0

(1− λn)αn =∞.

(ii)

∞∑
i=0

βn,i = 1, lim
n→∞

inf βn,0βn,i > 0, for all i ∈ N.We describe the differents steps of our algorithm for

approximating fixed of an infinite family of multivalued mappings in real Banach spaces.

3.1. Algorithm

Step 0: Choose {βn,i} and {αn} be a real sequence in (0, 1) satisfying above conditions. Let x0 ∈ K be a
given starting point. Set n = 0.
Step 1: Compute yn = αn(λnxn) + (1− αn)xn. If {yn} is bounded and d(yn, Tiyn) = 0,
STOP.
Step 2: Pick zin in Tiyn,
Step 3: Compute

xn+1 = βn,0yn +

∞∑
i=1

βn,iz
i
n,

Step 4: Set n←− n+ 1, and go to Step 1.
Recall that {yn} is bounded and d(yn, Tiyn) = 0 implies that we are a solution of fixed points problem
involving multivalued mapping. In our convergence theory, will implicitly assume that this does not occur
after finitely many iterations, so that Algorithm 3.1 generates an infinite sequence satisfing d(yn, Tiyn) ̸= 0
for all n ∈ N.

Remark 3.1. Algorithm 3.1 at each iteration requires onely four steps. This distinguishes our scheme from
most other iterative methods for solving fixed points problem involving multivalued mappings, see, for exemple
[1, 23, 24] where more than four steps per iteration is needed.

Remark 3.2. It is well known that if K is a closed and convex cone of a real Hilbert space H, we have
λx ∈ K for all λ ∈ (0, 1) and x ∈ K. Therefore, the sequence {xn} generated by (9) is well defined.
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We now prove the following results.

Theorem 3.3. Let E be a uniformly convex real Banach space E having a weakly continuous duality map
Jφ and K a nonempty, closed and convex cone of E.Let Ti : K → CB(K), i ∈ N∗ be a multivalued

quasi-nonexpansive mapping such that Γ =

∞⋂
i=1

F (Ti) ̸= ∅.Assume that Tip = {p} for all p ∈ Γ and I − Ti

is demiclosed at the origine.Then, the sequence {xn} defined by (9) converges strongly to x∗ ∈ Γ, where
x∗ = QΓ(0).

Proof. First, we show that {xn} and {yn} are bounded.Take p ∈ Γ,using (9), the fact hat Tip = {p} and
Ti is multivalued quasi-nonexpansive, we arrive at

∥xn+1 − p∥ = ∥βn,0yn +

∞∑
i=1

βn,iz
i
n − p∥

≤ βn,0∥yn − p∥+
∞∑
i=1

βn,i∥zin − p∥

≤ βn,0∥yn − p∥+
∞∑
i=1

βn,iH(Tiyn, Tip)

≤ ∥yn − p∥,

which implies that

∥yn − p∥ = ∥αn(λnxn) + (1− αn)xn − p∥
≤ αnλn∥xn − p∥+ (1− αn)∥xn − p∥+ (1− λn)αn∥p∥
≤ αnλn∥xn − p∥+ (1− αn)∥xn − p∥+ (1− λn)αn∥p∥
≤ [1− (1− λn)αn]∥xn − p∥+ (1− λn)αn∥p∥
≤ max {∥xn − p∥, ∥p∥}.

It immediately follows that
∥xn+1 − p∥ ≤ max {∥xn − p∥, ∥p∥}.

By induction, it is easy to see that

∥xn − p∥ ≤ max {∥x0 − p∥, ∥p∥}, n ≥ 1.

Hence {xn} is bounded also are {yn} and {Tiyn}.
Let k ∈ N∗, from Lemma 2.5 and (9), we have

∥xn+1 − p∥2 = ∥βn,0yn +

∞∑
i=1

βn,iz
i
n − p∥2

≤
∞∑
i=1

βn,i∥zin − p∥2 + βn,0∥yn − p∥2 − βn,0βn,kg(∥zkn − yn∥)

≤
∞∑
i=1

βn,iH(Tiyn, Tip)
2 + βn,0∥yn − p∥2 − βn,0βn,kg(∥zkn − yn∥)

≤ ∥yn − p∥2 − βn,0βn,kg(∥zkn − yn∥).

Therefore, by Lemma 2.3, we have

βn,0βn,kg(∥zkn − yn∥) ≤ ∥yn − p∥2 − ∥xn+1 − p∥2

≤ ∥xn − p∥2 − ∥xn+1 − p∥2

+2αn(1− λn)⟨xn, J(p− yn)⟩.
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which implies that,

βn,0βn,kg(∥zkn − yn∥) ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + 2αn(1− λn)⟨xn, J(p− yn)⟩. (10)

Since {xn} and {yn} are bounded, then there exists a constant A > 0 sucht that

(1− λn)⟨xn, J(p− yn)⟩ ≤ A, for all, n ≥ 0.

So, from (10) we have

βn,0βn,kg(∥zkn − yn∥) ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + 2αnA. (11)

To complete the proof, we consider the following two cases.Case 1. Assume there exists an n0 ∈ N for which
∥xn+1 − p∥ ≤ ∥xn − p∥ for all n ≥ n0.
Then, {∥xn − p∥} is convergent. Clearly, we have

∥xn − p∥2 − ∥xn+1 − p∥2 → 0.

It then implies from (11) that

lim
n→∞

βn,0βn,kg(∥zkn − yn∥) = 0. (12)

Since limn→∞ inf βn,0βn,k > 0 and property of g, we have

lim
n→∞

∥zkn − yn∥ = 0. (13)

Hence,

lim
n→∞

d(yn, Tkyn) = 0. (14)

From (9), we have

∥yn − xn∥ = αn∥(λnxn)− xn∥ → 0, as n→∞. (15)

Next, we prove that lim sup
n→+∞

⟨x∗, Jφ(x
∗ − yn)⟩ ≤ 0. Since E is reflexive and {yn}n≥0 is bounded there exists

a subsequence {ynk
} of {yn} such that ynk

converges weakly to a in K and

lim sup
n→+∞

⟨x∗, Jφ(x
∗ − yn)⟩ = lim

k→+∞
⟨x∗, Jφ(x

∗ − ynk
)⟩.

From (14) and I − Tk are demiclosed, we obtain a ∈ Γ.On other hand, the assumption that the duality
mapping Jφ is weakly continuous and the fact that x∗ = QΓ(0), we then have

lim sup
n→+∞

⟨x∗, Jφ(x
∗ − yn)⟩ = lim

k→+∞
⟨x∗, Jφ(x

∗ − ynk
)⟩

= ⟨x∗, Jφ(x
∗ − a)⟩ ≤ 0.

Finally, we show that xn → x∗. In fact, since Φ(t) =
∫ t

0
φ(σ)dσ, ∀t ≥ 0, and φ is a gauge function, then for
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1 ≥ k ≥ 0, Φ(kt) ≤ kΦ(t). From (9) and Lemma 2.3, we get that

Φ(∥xn+1 − x∗∥) = Φ(∥βn,0yn +

∞∑
i=1

βn,iz
i
n − x∗∥)

≤ Φ(βn,0∥yn − x∗∥+
∞∑
i=1

βn,i∥zin − x∗∥)

≤ Φ(βn,0∥yn − x∗∥+
∞∑
i=1

βn,iH(Tiyn, Tix
∗))

≤ Φ(∥yn − x∗∥)
= Φ(∥αn(λnxn) + (1− αn)xn − x∗∥)
≤ Φ(∥αnλn(xn − x∗) + (1− αn)(yn − x∗)∥) + (1− λn)αn⟨x∗, Jφ(x

∗ − yn)⟩
≤ Φ(αnλn∥xn − x∗∥+ ∥(1− αn)(yn − x∗)∥) + (1− λn)αn⟨x∗, Jφ(x

∗ − yn)⟩
≤ Φ(αnλn∥xn − x∗∥+ (1− αn)∥xn − x∗∥) + (1− λn)αn⟨x∗, Jφ(x

∗ − yn)⟩
≤ Φ((1− (1− λn)αn)∥xn − x∗∥) + (1− λn)αn⟨x∗, Jφ(x

∗ − yn)⟩
≤ [1− (1− λn)αn]Φ(∥xn − x∗∥) + (1− λn)αn⟨x∗, Jφ(x

∗ − yn)⟩.

From Lemma 2.4, its follows that xn → x∗.
Case 2. Suppose that Case 1 fails. Set Bn = ∥xn − x∗∥ and τ : N → N be a mapping for all n ≥ n0 (for
some n0 large enough) by τ(n) = max{k ∈ N : k ≤ n, Bk ≤ Bk+1}.We have τ is a non-decreasing sequence
such that τ(n)→∞ as n→∞ and Bτ(n) ≤ Bτ(n)+1 for n ≥ n0. From (10), we have

βτ(n),0βτ(n),ig(∥ziτ(n) − yτ(n)∥) ≤ 2ατ(n)A→ 0 as n→∞.

Furthermore, we have
∥yτ(n) − ziτ(n)∥ → 0 as n→∞.

Hence,

lim
n→∞

d
(
yτ(n), Tiyτ(n)+1

)
= 0. (16)

By same argument as in case 1, we can show that xτ(n) is bounded in K and lim sup
τ(n)→+∞

⟨x∗, Jφ(x
∗−yτ(n))⟩ ≤ 0.

We have for all n ≥ n0,
Φ(∥xτ(n) − x∗∥) ≤ ⟨x∗, Jφ(x

∗ − yτ(n))⟩.

Then, we obtain
lim

n→∞
Φ(∥xτ(n) − x∗∥) = 0.

Therefore,
lim
n→∞

Bτ(n) = lim
n→∞

Bτ(n)+1 = 0.

Furthermore, for all n ≥ n0, we have Bτ(n) ≤ Bτ(n)+1 if n ̸= τ(n) (that is, n > τ(n)); because Bj > Bj+1

for τ(n) + 1 ≤ j ≤ n. As consequence, we have for all n ≥ n0,

0 ≤ Bn ≤ max{Bτ(n), Bτ(n)+1} = Bτ(n)+1.

Hence, lim
n→∞

Bn = 0, that is {xn} converges strongly to x∗.

Remark 3.4. In our theorem, we assume that K is a cone. But, in some cases, for example, if K is the
closed unit ball, we can weaken this assumption to the following: λx ∈ K for all λ ∈ (0, 1) and x ∈ K

We now apply Theorem 3.3 for finding a common fixed points of an infinite family of multivalued nonex-
pansive mappings without demiclosedness assumption.
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Theorem 3.5. Let K be a nonempty, closed convex subset of a uniformly convex real Banach space E
having a weakly continuous duality mapJφ.Let Ti : K → CB(K), i ∈ N∗ be a multivalued nonexpansive

mapping with convex-values such that

∞⋂
i=1

F (Ti) ̸= ∅ and such that Tip = {p} for all p ∈
∞⋂
i=1

F (Ti). Then, the

sequences {xn} defined by (9) converges strongly to x∗ ∈
∞⋂
i=1

F (Ti).

Proof. Since every nonexpansive mappings is quasi-nonexpansive mappings. It suffices to prove I − Ti

is demiclosed at the origine. Using the fact that E satisfies Opial’s property and Lemma 2.2, we have
demiclosedness assumption is satisfied.This completes the proof of Theorem 3.3.

Corollary 3.6. Assume that E = lq, 1 < q < ∞. Let K be a nonempty, closed convex cone of E and

Ti : K → CB(K), i ∈ N∗ be a multivalued quasi-nonexpansive mapping such that

∞⋂
i=1

F (Ti) ̸= ∅ and such

that Tip = {p} for all p ∈
∞⋂
i=1

F (Ti) and I − Ti is demiclosed at the origine.


yn = αn(λnxn) + (1− αn)xn

xn+1 = βn,0yn +

∞∑
i=1

βn,iz
i
n, zin ∈ Tiyn,

(17)

{βn,i}, {λn} and {αn} be a real sequences in (0, 1) satisfying:

(i) lim
n→∞

αn = 0; (ii) lim
n→∞

λn = 1 and

∞∑
n=0

(1− λn)αn =∞.

(ii)

∞∑
i=0

βn,i = 1, lim
n→∞

inf βn,0βn,i > 0, for all i ∈ N.

Then, the sequence {xn} strongly to a common fixed point of Ti.

Proof. Since E = lq, 1 < q <∞ are uniformly convex and has a weakly continuous duality map.The proof
follows from Theorem 3.3.

4. Application

In this section, we apply our main results for finding minimum-norm fixed point of an infinite family of
multivalued quasi-nonexpansive mappings in Hilbert spaces. Let H be a real Hilbert space. Let K be a
nonempty, closed convex cone of H and Ti : K → CB(K), i ∈ N∗ be a multivalued quasi-nonexpansive

mapping such that Γ :=

∞⋂
i=1

F (Ti) ̸= ∅. We consider the following convex minimization problem:

Minimize ∥x∥2

subject to x ∈ Γ.
(18)

Finding an optimal point over the set of fixed points of quasi-nonexpansive mapping is one that occurs
frequently in various areas of mathematical sciences, engineering,time-optimal control, optimization, math-
ematical programming, mechanics.

Remark 4.1. We have x∗ is a solution of (18) if and only if x∗ ∈ Γ and x∗ solves the following variational
inequality problem :

⟨x∗, x∗ − p⟩ ≤ 0, ∀p ∈ Γ.
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We also notice that it is quite usual to seek a particular solution of a given nonlinear problem, in particular,
the minimum-norm solution. For instance, given a closed convex subset K of a Hilbert space H1 and a
bounded linear operator A : H1 → H2, where H2 is another Hilbert space. The K-constrained pseudoinverse
of A, AK

+ is then defined as the minimum-norm solution of the constrained minimization problem:

AK
+(b) = argminx∈K ∥Ax− b∥ (19)

which is equivalent to the fixed point problem

x = PK(x− λA∗(Ax− b)), (20)

where PK is the metric projection from H onto K, A∗ is the adjoint of A, λ > 0 is a constant, and b ∈ H2

is such that P
A(K)

(b) ∈ A(K).From the listed references, there exist a largenumber of problems which need

to find the minimum norm solution, see, e.g., [27, 28].A useful path to circumvent this problem is to use
projection. The main difficult is in computation. Hence, it is an interesting problem of finding the minimum
norm element without using the projection.

Hence, one has the following result

Theorem 4.2. Let B be the closed unit ball of a real Hilbert space H.Let Ti : B → CB(B), i ∈ N∗ be a

multivalued quasi-nonexpansive mapping such that F :=

∞⋂
i=1

F (Ti) ̸= ∅. Assume that Tip = {p} for all p ∈ F

and I − Ti is demiclosed at the origine. Let {xn} and {yn} be a sequences defined iteratively from arbitrary
x0 ∈ B by:

yn = αn(λnxn) + (1− αn)xn

xn+1 = βn,0yn +

∞∑
i=1

βn,iz
i
n, zin ∈ Tiyn,

(21)

{βn,i}, {λn} and {αn} be a real sequences in (0, 1) satisfying:

(i) lim
n→∞

αn = 0; (ii) lim
n→∞

λn = 1 and

∞∑
n=0

(1− λn)αn =∞.

(ii)

∞∑
i=0

βn,i = 1, lim
n→∞

inf βn,0βn,i > 0, for all i ∈ N.

Then, the sequence {xn} defined by (21) converges strongly to a solution of (18).

Proof. The proof follows from Theorem 3.3 and Remark 4.1.

5. NUMERICAL ILLUSTRATION

In this last section, we present a numerical example to illustrate the convergence behavior of our iteration
scheme (9). In our computations, we choose βn,i =

1
3 , i = 0, 2, αn = 1

2
√
n
and λn = 1− 1√

n
.We consider the

family of (Ti) of mappings defined by Tj : [0, γ] ⊆ R3 → R3, Tjx = [0, x
j ] i = 1, 2, where γ is a fixed vector in

R3 and [x, y] denotes the set {αx+(1−α)y : α ∈ [0, 1]}. This is a family of multivalued quasi-nonexpansive
mappings having a common fixed point of 0.Taking the initial point x1 = (2, 3, 4), the result of the numerical
example obtained by using MATLAB is given in figure 1 where it is shown that the sequence of iterates
{xn} strongly converges to common fixed of T1 and T2.

yn =
2n− 1

2n
xn

xn+1 =
2n− 1

6n
xn +

z1n + z2n
3

, z1n ∈
[
0,

2n− 1

2n
xn

]
, z2n ∈

[
0,

2n− 1

4n
xn

]
.

(22)
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Take the initial point x1 = (2, 3, 4) the numerical experiment result using MATLAB is given by Figure
1,which show the iteration process of the sequence xn converges strongly to common fixed point of T2 and
T2.
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