Strict isometric and strict symmetric commuting d-tuples of Banach space operators

Bhagwati P. Duggal ${ }^{\text {a }}$
${ }^{a}$ University of Niš, Faculty of Sciences and Mathematics, P.O. Box 224, 18000 Niš, Serbia

Abstract

Given commuting d-tuples \mathbb{S}_{i} and $\mathbb{T}_{i}, 1 \leq i \leq 2$, of Banach space operators such that the tensor products pair $\left(S_{1} \otimes \mathbb{S}_{2}, \mathbb{T}_{1} \otimes \mathbb{T}_{2}\right)$ is strict m-isometric (resp., $\mathbb{S}_{1}, \mathbb{S}_{2}$ are invertible and $\left(S_{1} \otimes \mathbb{S}_{2}, \mathbb{T}_{1} \otimes \mathbb{T}_{2}\right)$ is strict m-symmetric), there exist integers $m_{i}>0$, and a non-zero scalar c, such that $m=m_{1}+m_{2}-1,\left(\mathbb{S}_{1}, \frac{1}{c} \mathbb{T}_{1}\right)$ is strict m_{1}-isometric and ($\mathbb{S}_{2}, c \mathbb{T}_{2}$) is strict m_{2}-isometric (resp., there exist integers $m_{i}>0$, and a non-zero scalar c, such that $m=m_{1}+m_{2}-1,\left(\mathbb{S}_{1}, \frac{1}{c} \mathbb{T}_{1}\right)$ is strict m_{1}-symmetric and $\left(\mathbb{S}_{2}, c \mathbb{T}_{2}\right)$ is strict m_{2}-symmetric). However, $\left(\mathbb{S}_{i}, \mathbb{T}_{i}\right)$ is strict m_{i}-isometric (resp., strict m_{i}-symmetric) for $1 \leq i \leq 2$ implies only that $\left(\mathbb{S}_{1} \otimes \mathbb{S}_{2}, \mathbb{T}_{1} \otimes \mathbb{T}_{2}\right)$ is m-isometric (resp., $\left(\mathbb{S}_{1} \otimes \mathbb{S}_{2}, \mathbb{T}_{1} \otimes \mathbb{T}_{2}\right)$ is m-symmetric).

1. Introduction

Let $B(\mathcal{X})$ (resp., $B(\mathcal{H})$) denote the algebra of operators, i.e. bounded linear transformations, on an infinite dimensional complex Banach space \mathcal{X} into itself (resp., on an infinite dimensional complex Hilbert space \mathcal{H} into itself) , \mathbb{C} denote the complex plane, $B(\mathcal{X})^{d}$ (resp., $B(\mathcal{H})^{d}$ and \mathbb{C}^{d}) the product of d copies of $B(\mathcal{X})$ (resp., $B(\mathcal{H})$ and \mathbb{C}) for some integer $d \geq 1, \bar{z}$ the conjugate of $z \in \mathbb{C}$ and $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{d}\right) \in \mathbb{C}^{d}$. A d-tuples $\mathbb{A}=\left(A_{1}, \cdots, A_{d}\right) \in B(X)^{d}$ is a commuting d-tuple if $\left[A_{i}, A_{j}\right]=A_{i} A_{j}-A_{j} A_{i}=0$ for all $1 \leq i, j \leq d$. If \mathbf{P} is a polynomial in \mathbb{C}^{d} and \mathbb{A} is a d-tuple of commuting operators in $B(\mathcal{H})^{d}$, then \mathbb{A} is a hereditary root of \mathbf{P} if $\mathbf{P}(\mathbb{A})=0$. Two particular operator classes of hereditary roots which have drawn a lot of attention in the recent past are those of m-isometric and m-symmetric (also called m-selfadjoint) operators, where $A \in B(\mathcal{H})$ is m-isometric, m some positive integer, if $\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} A^{* j} A^{j}=0$ and $A \in B(\mathcal{H})$ is m-symmetric if $\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} A^{*(m-j)} A^{j}=0$. Clearly, m-isometric operators arise as solutions of $P(z)=(\bar{z} z-1)^{m}=0$ and m-symmetric operators arise as solutions of $P(z)=(\bar{z}-z)^{m}=0$. The class of m-isometric operators was introduced by Agler [1] and the class of m-symmetric operators was introduced by Helton [13] (albeit not as operator solutions of the polynomial equation $\left.(\bar{z}-z)^{m}=0\right)$. These classes of operators, and their

[^0]variants (of the left m-invertible and m-symmetric Banach space pairs (A, B) type [6]), have since been studied by a multitude of authors, amongst them Agler and Stankus [2], Bayart [3], Bermudez et al [4], Duggal and Kim [6, 7], Gu [11], Gu and Stankus [12] and Paul and Gu [14].

Generalising the m-isometric property of operators $A \in B(\mathcal{H})$ to commuting d-tuples $\mathbb{A} \in B(\mathcal{H})^{d}$, Gleeson and Richter [10] say that \mathbb{A} is m-isometric if

$$
\begin{equation*}
\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} \sum_{|\beta|=j} \frac{j!}{\beta!} \mathbb{A}^{* \beta} \mathbb{A}^{\beta}=0 \tag{1}
\end{equation*}
$$

where

$$
\beta=\left(\beta_{1}, \cdots, \beta_{d}\right),|\beta|=\sum_{i=1}^{d} \beta_{i}, \beta!=\Pi_{i=1}^{d} \beta_{i}!, \mathbb{A}^{\beta}=\Pi_{i=1}^{d} A_{i}^{\beta_{i}}, \mathbb{A}^{* \beta}=\Pi_{i=1}^{d} A_{i}^{* \beta_{i}} ;
$$

\mathbb{A} is said to be m-symmetric if

$$
\begin{equation*}
\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(A_{1}^{*}+\cdots+A_{d}^{*}\right)^{m-j}\left(A_{1}+\cdots+A_{d}\right)^{j}=0 . \tag{2}
\end{equation*}
$$

These generalisations and certain of their variants, in particular left m-invertible Banach space operator pairs (A, B) :

$$
\Delta_{A, B}^{m}(I)=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} A^{j} B^{j}=0
$$

and m-symmetric pairs (A, B) :

$$
\delta_{A, B}^{m}(I)=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} A^{m-j} B^{j}=0,
$$

have recently been the subject matter of a number of studies, see $[5,6,9,11,14,15]$ for further references.
Recall that a pair (A, B) of Banach space operators is strict m-left invertible if $\triangle_{A, B}^{m}(I)=0$ and $\triangle_{A, B}^{m-1}(I) \neq 0$; similarly, the pair (A, B) is strict m-symmetric if $\delta_{A, B}^{m}(I)=0$ and $\delta_{A, B}^{m-1}(I) \neq 0$. Products $\left(A_{1} A_{2}, B_{1} B_{2}\right)$ of $m_{i^{-}}$ isometric, similarly m_{i} symmetric, pairs $\left(A_{i}, B_{i}\right), 1 \leq i \leq 2$, such that A_{1} commutes with A_{2}, and B_{1} commutes with B_{2}, are ($m_{1}+m_{2}-1$)-isometric, respectively $\left(m_{1}+m_{2}-1\right)$-symmetric $[4,6,9,11]$. The converse fails, even for strict m-isometric (and strict m-symmetric) operator pairs $\left(A_{1} A_{2}, B_{1} B_{2}\right)$. A case where there is an answer in the positive is that of the tensor product pairs $\left(A_{1} \otimes A_{2}, B_{1} \otimes B_{2}\right):(\mathrm{i})\left(A_{1} \otimes A_{2}, B_{1} \otimes B_{2}\right)$ is m-isometric if and only if there exist integers $m_{i}>0$, and a non-zero scalar c, such that $m=m_{1}+m_{2}-1,\left(A_{1}, \frac{1}{c} B_{1}\right)$ is m_{1}-isometric and $\left(A_{2}, c B_{2}\right)$ is m_{2}-isometric [14, Theorem 1.1]; (ii) if A_{i} are left invertible and B_{i} are right invertible, $1 \leq i \leq 2$, then $\left(A_{1} \otimes A_{2}, B_{1} \otimes B_{2}\right)$ is m-symmetric if and only if there exist integers $m_{i}>0$ and a non-zero scalar c such that $m=m_{1}+m_{2}-1,\left(A_{1}, \frac{1}{c} B_{1}\right)$ is m_{1}-symmetric and $\left(A_{2}, c B_{2}\right)$ is m_{2}-symmetric [14, Theorem 5.2].

In this paper, we start by (equivalently) defining m-isometric and m-symmetric pairs (\mathbb{A}, \mathbb{B}) of commuting d-tuples of Banach space operators in terms of the elementary operators of left and right multiplication (see [7], where this is done for single linear operators). Alongwith introducing other relevant notations and terminology, this is done in Section 2. Section 3 considers the relationship between the m-isometric properties of $\left(\mathbb{A}_{i}, \mathbb{B}_{i}\right)$ (similarly, m-symmetric properties of $\left.\left(\mathbb{A}_{i}, \mathbb{B}_{i}\right)\right), 1 \leq i \leq 2$, and their product $\left(\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}\right)$. A necessary and sufficient condition for product pairs $\left(\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}\right)$ to be strict m-isometric (similarly, strict m-symmetric) is proved and its relationship with the strictness of m-isometric pairs $\left(\mathbb{A}_{i}, \mathbb{B}_{i}\right)$ is explained. Section 4, the penultimate section, proves that the results of Paul and Gu [14] extend to tensor products of commuting d-tuples. (We remark here that the conditional statement of Theorem 1.1 of [14] holds in
one direction, thus opening of the bracket (strict) in statement (a) of the theorem implies the opening of the brackets (strict) in statement (b) of the theorem, but fails the other way: see [8] for an example.) The advantage of our defining m-isometric (and, similarly, m-symmetric) pairs (\mathbb{A}, \mathbb{B}) using the left/right multiplication operators over definition (1) (resp., (2)) lies in the fact that it provides us with a means to exploit familiar arguments used to prove 1-tuple (i.e., single linear operator) version of these results. Here it is seen that the invertibility of $S_{i}, 1 \leq i \leq 2$, is a sufficient condition, a condition guaranteed by the left invertibility of S_{i} and the right invertibility of $T_{i}(1 \leq i \leq 2)$, in [14, Theorem 5.2].

2. Definitions and introductory properties

For $A, B \in B(\mathcal{X})$, let L_{A} and $R_{B} \in B(B(\mathcal{X}))$ denote respectively the operators

$$
L_{A}(X)=A X \text { and } R_{B}(X)=X B
$$

of left multiplication by A and right multiplication by B. Given commuting d-tuples $\mathbb{A}=\left(A_{1}, \cdots, A_{d}\right)$ and $\mathbb{B}=\left(B_{1}, \cdots, B_{d}\right) \in B(X)^{d}$, let $\mathbb{L}_{\mathbb{A}}^{\alpha}$ and $\mathbb{R}_{\mathbb{B}^{\prime}}^{\alpha}$

$$
\alpha=\left(\alpha_{1}, \cdots, \alpha_{d}\right),|\alpha|=\sum_{i=1}^{d} \alpha_{i}, \alpha_{i} \geq 0 \text { for all } 1 \leq i \leq d
$$

be defined by

$$
\mathbb{L}_{\mathbb{A}}^{\alpha}=\Pi_{i=1}^{d} L_{A_{i}}^{\alpha_{i}}, \mathbb{R}_{\mathbb{B}}^{\alpha}=\Pi_{i=1}^{d} R_{B_{i}}^{\alpha_{i}}
$$

For an operator $X \in B(\mathcal{X})$, let convolution "*" and multiplication " \times " denote, respectively, the operations

$$
\left(\mathbb{L}_{\mathbb{A}} * \mathbb{R}_{\mathbb{B}}\right)^{j}(X)=\left(\sum_{|\alpha|=j} \frac{j!}{\alpha!} \mathbb{L}_{\mathbb{A}}^{\alpha} \mathbb{R}_{\mathbb{B}}^{\alpha}\right)(X)=\left(\sum_{i=1}^{d} L_{A_{i}} R_{B_{i}}\right)^{j}(X)
$$

$$
\text { (all integers } \mathrm{j} \geq 0, \alpha!=\alpha_{1}!\cdots \alpha_{\mathrm{d}}!\text {) and }
$$

$$
\left(\mathbb{L}_{\mathbb{A}} \times \mathbb{R}_{\mathbb{B}}\right)(X)=\left(\sum_{i=1}^{d} L_{A_{i}}\right)\left(\sum_{i=1}^{d} R_{B_{i}}\right)(X)
$$

Define the operator $\left\lfloor\sum_{i=1}^{d} A_{i} X B_{i}\right\rfloor^{n}$ by

$$
\left\lfloor\sum_{i=1}^{d} A_{i} X B_{i}\right\rfloor^{n}=\sum_{i=1}^{d} A_{i}\left[\sum_{i=1}^{d} A_{i} X B_{i}\right\rfloor^{n-1} B_{i} \text { for all positive integers } n
$$

(Thus, $\lfloor A\rfloor^{n}=A\lfloor A\rfloor^{n-1} I=I\lfloor A\rfloor^{n-1} A=\cdots=A^{n},\lfloor A B\rfloor^{n}=A\lfloor A B\rfloor^{n-1} B=\cdots=A^{n} B^{n}$ and $\left\lfloor\sum_{i=1}^{d} A_{i} B_{i}\right\rfloor^{n}=$ $\left.\sum_{i=1}^{d} A_{i}\left[\sum_{i=1}^{d} A_{i} B_{i}\right\rfloor^{n-1} B_{i}.\right)$

We say that the d-tuples \mathbb{A} and \mathbb{B} commute, $[\mathbb{A}, \mathbb{B}]=0$, if

$$
\left[A_{i}, B_{j}\right]=A_{i} B_{j}-B_{j} A_{i}=0 \text { for all } 1 \leq i, j \leq d
$$

Evidently,

$$
\left[\mathbb{L}_{\mathbb{A}}, \mathbb{R}_{\mathbb{B}}\right]=0
$$

and if $[\mathbb{A}, \mathbb{B}]=0$, then

$$
\left[\mathbb{L}_{\mathbb{A}}, \mathbb{L}_{\mathbb{B}}\right]=\left[\mathbb{R}_{\mathbb{A}}, \mathbb{R}_{\mathbb{B}}\right]=0
$$

A pair (\mathbb{A}, \mathbb{B}) of commuting d-tuples \mathbb{A} and \mathbb{B} is said to be m-isometric, $(\mathbb{A}, \mathbb{B}) \in m$-isometric, for some positive integer m, if

$$
\begin{aligned}
\Delta_{\mathbb{A}, \mathbb{B}}^{m}(I) & =\left(I-\mathbb{L}_{\mathbb{A}} * \mathbb{R}_{\mathbb{B}}\right)^{m}(I) \\
& =\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(\mathbb{L}_{\mathbb{A}} * \mathbb{R}_{\mathbb{B}}\right)^{j}(I) \\
& =\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(\sum_{i=1}^{d} L_{A_{i}} R_{B_{i}}\right)^{j}(I) \\
& \left.=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} \sum_{i=1}^{d} A_{i} B_{i}\right]^{j} \\
& =\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(\sum_{|\alpha|=j} \frac{j!}{\alpha!} \mathbb{A}^{\alpha} \mathbb{B}^{\alpha}\right) \\
& =0 ;
\end{aligned}
$$

(\mathbb{A}, \mathbb{B}) is n-symmetric, for some positive integer n, if

$$
\begin{aligned}
\delta_{\mathbb{A}, \mathbb{B}}^{n}(X) & =\left(\mathbb{L}_{\mathbb{A}}-\mathbb{R}_{\mathbb{B}}\right)^{n}(I) \\
& =\left(\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} \mathbb{L}_{\mathbb{A}}^{n-j} \times \mathbb{R}_{\mathbb{B}}^{j}\right)(I) \\
& =\left(\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}\left(\sum_{i=1}^{d} L_{A_{i}}\right)^{n-j}\left(\sum_{i=1}^{d} R_{B_{i}}\right)^{j}\right)(I) \\
& =\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}\left(\sum_{i=1}^{d} A_{i}\right)^{n-j}\left(\sum_{i=1}^{d} B_{i}\right)^{j} \\
& =0 .
\end{aligned}
$$

Commuting tuples of m-isometric, similarly n-symmetric operators, share a large number of properties with their single operator counterparts: for example, $\Delta_{\mathbb{A}, \mathbb{B}}^{m}(I)=0$ implies $\Delta_{\mathbb{A}, \mathbb{B}}^{t}(I)=0$, similarly $\delta_{\mathbb{A}, \mathbb{B}}^{m}(I)=0$ implies $\delta_{\mathrm{A}, \mathrm{B}}^{t}(I)=0$, for integers $t \geq m$ However, there are instances where a property holds for the single operator version but fails for the d-tuple version: for example, whereas

$$
\Delta_{A, B}^{m}(I)=0 \Longleftrightarrow \Delta_{A^{-1}, B^{-1}}^{m}(I)=0 \text { for all invertible } A \text { and } B
$$

(similarly, for m-symmetric (A, B)), this property fails for d-tuples. Consider, for example, 2-tuples $\mathbb{A}=\mathbb{B}=$ $\left(\frac{1}{2} I, \frac{1}{2} I\right)$ and $\mathbb{A}^{-1}=\mathbb{B}^{-1}=(2 I, 2 I)$, when it is seen that (\mathbb{A}, \mathbb{B}) is 1 -isometric but $\left(\mathbb{A}^{-1}, \mathbb{B}^{-1}\right)$ is not 1-isometric.

If $(\mathbb{A}, \mathbb{B}) \in(X, m)$-isometric, then

$$
\begin{aligned}
& \Delta_{\mathbb{A}, \mathbb{B}}^{m}(X)=0 \Longleftrightarrow\left(I-\mathbb{L}_{\mathbb{A}} * R_{\mathbb{B}}\right)\left(\Delta_{\mathbb{A}, \mathbb{B}}^{m-1}(X)\right)=0 \\
\Longleftrightarrow & \left(\mathbb{L}_{\mathbb{A}} * \mathbb{R}_{\mathbb{B}}\right) \Delta_{\mathbb{A}, \mathbb{B}}^{m-1}(X)=\Delta_{\mathbb{A}, \mathbb{B}}^{m-1}(X) \\
\Longrightarrow & \cdots \Longrightarrow\left(\mathbb{L}_{\mathbb{A}} * \mathbb{R}_{\mathbb{B}}\right)^{t} \Delta_{\mathbb{A}, \mathbb{B}}^{m-1}(X)=\Delta_{\mathbb{A}, \mathbb{B}}^{m-1}(X)
\end{aligned}
$$

and if $(\mathbb{A}, \mathbb{B}) \in(X, n)$-symmetric, then

$$
\begin{aligned}
& \delta_{\mathbb{A}, \mathbb{B}}^{n}(X)=0 \Longleftrightarrow\left(\mathbb{L}_{\mathbb{A}}-\mathbb{R}_{\mathbb{B}}\right)\left(\delta_{\mathbb{A}, \mathbb{B}}^{n-1}(X)=0\right. \\
\Longleftrightarrow & \mathbb{L}_{\mathbb{A}} \delta_{\mathbb{A}, \mathfrak{B}}^{n-1}(X)=\mathbb{R}_{\mathbb{B}}\left(\delta_{\mathbb{A}, \mathfrak{B}}^{n-1}(X)\right) \\
\Longrightarrow & \cdots \Longrightarrow \mathbb{L}_{\mathbb{A}}^{t} \delta_{\mathbb{A}, \mathbb{B}}^{n-1}(X)=\mathbb{R}_{\mathbb{B}}^{t} \delta_{\mathbb{A}, \mathbb{B}}^{n-1}(X) .
\end{aligned}
$$

for all integers $t \geq 0$. Here

$$
\begin{aligned}
\mathbb{L}_{\mathbb{A}}\left(\delta_{\mathbb{A}, \mathbb{B}}^{n-1}(X)\right) & =\mathbb{L}_{\mathbb{A}}\left(\sum_{j=0}^{n-1}(-1)^{j}\binom{n-1}{j} \mathbb{L}_{\mathbb{A}}^{n-1-j} \times \mathbb{R}_{\mathbb{B}}^{j}\right)(X) \\
& =\left(\sum_{j=0}^{n-1}(-1)^{j}\binom{n-1}{j} \mathbb{L}_{\mathbb{A}}^{n-j} \times \mathbb{R}_{\mathbb{B}}^{j}\right)(X)
\end{aligned}
$$

and

$$
\mathbb{R}_{\mathbb{B}}\left(\delta_{\mathbb{A}, \mathbb{B}}^{n-1}(X)\right)=\left(\sum_{j=0}^{n-1}(-1)^{j}\binom{n-1}{j} \mathbb{L}_{\mathbb{A}}^{n-1-j} \times \mathbb{R}_{\mathbb{B}}^{j+1}\right)(X) .
$$

3. Results: strictness of products

Let $\mathbb{A} . \mathbb{B} \in B(X)^{d}$ be commuting d-tuples, and let $\mathcal{E}_{\mathrm{A}, \mathrm{B}}$ denote the operator

$$
\mathcal{E}_{\mathrm{A}, \mathbb{B}}(X)=\left(\mathbb{L}_{\mathbb{A}} * \mathbb{R}_{\mathbb{B}}\right)(X), X \in B(X) .
$$

By definition, (\mathbb{A}, \mathbb{B}) is strict m-isometric if $\Delta_{\mathbb{A}, \mathbb{B}}^{m}(I)=0$ and $\Delta_{\mathbb{A}, \mathbb{B}}^{m-1}(I) \neq 0$; similarly, (\mathbb{A}, \mathbb{B}) is strict m-symmetric if $\delta_{\mathbb{A}, \mathrm{B}}^{m}(I)=0$ and $\delta_{\mathbb{A}, \mathbb{B}}^{m-1}(I) \neq 0$. In the following, we give a necessary and sufficient condition for the products pair $\left(\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}\right), \mathbb{A}_{i}$ and \mathbb{B}_{i} commuting d-tuples, to be strict m-isometric (resp., strict m-symmetric), and explore its relationship with the strict m-isometric (resp., m_{i}-symmetric) property of $\left(\mathbb{A}_{i}, \mathbb{B}_{i}\right) ; i=1,2$. We start with a technical lemma.

Lemma 3.1. (i). If (\mathbb{A}, \mathbb{B}) is strict m-isometric, then the sequence $\left\{\mathcal{E}_{\mathbb{A}, \mathbb{B}}^{t \pm r} \Delta_{\mathbb{A}, \mathbb{B}}^{r}(I)\right\}_{r=0}^{m-1}$ is linearly independent for all $t \geq m-1$.
(ii). If (\mathbb{A}, \mathbb{B}) is strict m-symmetric and $\mathbb{L}_{\mathbb{A}}^{m-1} \delta_{\mathbb{A}, \mathbb{B}}^{m-1}(I) \neq 0$, then the sequences $\left\{\mathbb{L}_{\mathbb{A}}^{r} \delta_{\mathbb{A}, \mathbb{B}}^{r}(I)\right\}_{r=0}^{m-1}$ and $\left\{\mathbb{R}_{\mathbb{B}}^{r} \delta_{\mathbb{A}, \mathbb{B}}^{r}(I)\right\}_{r=0}^{m-1}$ are linearly independent.

Proof. The proof in both the cases is by contradiction.
(i). Assume that there exist scalars $a_{i}, 0 \leq i \leq m-1$, not all zero such that $\sum_{r=0}^{m-1} a_{r} \mathcal{E}_{\mathbb{A}, \mathbb{B}}^{t \pm r} \Delta_{\mathbb{A}, \mathbb{B}}^{r}(I)=0$. Then, since $\Delta_{\mathrm{A}, \mathrm{B}}^{m}(I)=0$ and $\mathcal{E}_{\mathrm{A}, \mathrm{B}}$ commutes with $\Delta_{\mathrm{A}, \mathrm{B}}$,

$$
\begin{aligned}
& \Delta_{\mathrm{A}, \mathrm{~B}}^{m-1}\left(\sum_{r=0}^{m-1} a_{r} \mathcal{E}_{\mathrm{A}, \mathrm{~B}}^{t \pm r} \Delta_{\mathrm{A}, \mathbb{B}}^{r}(I)\right)=0 \\
\Longrightarrow & a_{0} \mathcal{E}_{\mathrm{A}, \mathbb{B}}^{t} \Delta_{\mathrm{A}, \mathrm{~B}}^{m-1}(I)=0 \\
\Longrightarrow & a_{0}=0
\end{aligned}
$$

since

$$
\Delta_{\mathbb{A}, \mathbb{B}}^{m}(I)=0 \Longleftrightarrow \Delta_{\mathbb{A}, \mathbb{B}}^{m-1}(I)=\mathcal{E}_{\mathbb{A}, \mathbb{B}} \Delta_{\mathrm{A}, \mathbb{B}}^{m-1}(I)
$$

implies

$$
\mathcal{E}_{\mathbb{A}, \mathbb{B}}^{t} \Delta_{\mathbb{A B}}^{m-1}(I)=\Delta_{\mathrm{A}, \mathbb{B}}^{m-1}(I) \neq 0 .
$$

Again,

$$
\begin{aligned}
& \Delta_{\mathbb{A}, \mathbb{B}}^{m-2}\left(\sum_{r=1}^{m-1} a_{r} \mathcal{E}_{\mathbb{A}, \mathbb{B}}^{t \pm r} \Delta_{\mathbb{A}, \mathbb{B}}^{r}(I)\right)=0 \\
\Longrightarrow & a_{1} \mathcal{E}_{\mathbb{A}, \mathbb{B}}^{t 1} \Delta_{\mathrm{A}, \mathbb{B}}^{m-1}(I)=0 \\
\Longrightarrow & a_{1}=0,
\end{aligned}
$$

and hence repeating the argument

$$
\begin{aligned}
& \Delta_{\mathrm{A}, \mathrm{~B}}\left(\sum_{r=m-2}^{m-1} A_{r} \mathcal{E}_{\mathrm{A}, \mathbb{B}}^{t \pm r} \Delta_{\mathrm{A}, \mathrm{~B}}^{r}(I)\right)=0 \\
\Longrightarrow & a_{m-2} \mathcal{E}_{\mathrm{A}, \mathrm{~B}}^{ \pm(m-2)} \Delta_{\mathrm{A}, \mathbb{B}}^{m-1}(I)=0 \\
\Longrightarrow & a_{m-2}=0 \Longrightarrow a_{m-1} \Delta_{\mathbf{A}, \mathbb{B}}^{m-1}(I)=0 \Longleftrightarrow a_{m-1}=0 .
\end{aligned}
$$

This is a contradiction.
(ii). We prove the linear independence of the sequence $\left\{\mathbb{L}_{\mathbb{A}}^{r} \delta_{\mathbb{A}, \mathbb{B}}^{r}(\mathbb{I})\right\}_{r=0}^{m-1}$; since

$$
\delta_{\mathrm{A}, \mathbb{B}}^{m}(I)=0 \Longleftrightarrow \mathbb{L}_{\mathbb{A}} \delta_{\mathrm{A}, \mathbb{B}}^{m-1}(I)=\mathbb{R}_{\mathbb{B}} \delta_{\mathrm{A}, \mathrm{~B}}^{m-1}(I),
$$

the proof for the linear independence of the second sequence follows from that of the first. Suppose there exist scalars a_{i}, not all zero, such that $\sum_{r=0}^{m-1} a_{r} \mathbb{L}_{\mathbb{A}}^{r} \delta_{\mathbb{A}, \mathbb{B}}^{r}(I)=0$. Then, since $\delta_{\mathbb{A}, \mathbb{B}}^{m}(I)=0, \mathbb{L}_{\mathbb{A}}$ commutes with $\delta_{\mathbb{A}, \mathbb{B}}$ and $\mathbb{L}_{\mathrm{A}}^{m-1} \delta_{\mathrm{A}, \mathrm{B}}^{m-1}(I) \neq 0$,

$$
\begin{array}{cl}
& \delta_{\mathbb{A}, \mathbb{B}}^{m-1}\left(\sum_{r=0}^{m-1} a_{r} \mathbb{L}_{\mathbb{A}}^{r} \delta_{\mathbb{A}, \mathbb{B}}^{r}(I)\right)=0 \\
\Longrightarrow & a_{0} \delta_{\mathbb{A}, \mathbb{B}}^{m-1}(I)=0 \Longleftrightarrow a_{0}=0, \\
& \delta_{\mathbb{A}, \mathbb{B}}^{m-2}\left(\sum_{r=1}^{m-1} a_{r} \mathbb{L}_{\mathbb{A}}^{r} \delta_{\mathbb{A}, \mathbb{B}}^{r}(I)\right)=0 \\
\Longrightarrow & a_{1} \mathbb{L}_{\mathbb{A}} \delta_{\mathbb{A}, \mathbb{B}}^{m-1}(I)=0 \Longleftrightarrow a_{1}=0,
\end{array}
$$

and hence repeating the argument

$$
\begin{aligned}
& \delta_{\mathrm{A}, \mathbb{B}}\left(\sum_{r=m-2}^{m-1} a_{r} \mathbb{L}_{\mathbb{A}}^{r} \delta_{\mathbb{A}, \mathbb{B}}^{r}(I)\right)=0 \\
\Longrightarrow & a_{m-2} \mathbb{L}_{\mathbb{A}}^{m-2} \delta_{\mathbb{A}, \mathbb{B}}^{m-1}(I)=0 \Longleftrightarrow a_{m-2}=0 \\
\Longrightarrow & a_{m-1} \mathbb{L}_{\mathbb{A}}^{m-1} \delta_{\mathbb{A}, \mathbb{B}}^{m-1}(I)=0 \\
\Longleftrightarrow & a_{m-1}=0 .
\end{aligned}
$$

This is a contradiction.
Remark 3.2. Since $\delta_{\mathbb{A}, \mathbb{B}}^{m-1}(I) \neq 0$ for a strict m-symmetric commuting d-tuple (\mathbb{A}, \mathbb{B}), the left invertibility of \mathbb{A} (and hence \mathbb{L}_{A}) is a sufficient condition for $\mathbb{L}_{\mathbb{A}}^{m-1} \delta_{\mathbb{A}, \mathbb{B}}^{m-1}(I) \neq 0$.

Let $\mathcal{X} \bar{\otimes} \mathcal{X}$ denote the completion, endowed with a reasonable cross norm, of the algebraic tensor product of \mathcal{X} with itself. Let $S \otimes T$ denote the tensor product of $S \in B(\mathcal{X})$ with $T \in B(\mathcal{X})$. The tensor product of the d-tuples $\mathbb{A}=\left(A_{1}, \cdots, A_{d}\right)$ and $\mathbb{B}=\left(B_{1}, \cdots, B_{d}\right)$ is the d^{2}-tuple

$$
\mathbb{A} \otimes \mathbb{B}=\left(A_{1} \otimes B_{1}, \cdots, A_{1} \otimes B_{d}, A_{2} \otimes B_{1}, \cdots, A_{2} \otimes B_{d}, \cdots, A_{d} \otimes B_{1}, \cdots, A_{d} \otimes B_{d}\right)
$$

Let $\mathbb{I}=I \otimes I$. (Recall that the operator $\mathcal{E}_{A, B}$ is defined by $\left.\mathcal{E}_{A, B}(X)=\left(\mathbb{L}_{\mathbb{A}} * \mathbb{R}_{\mathbb{B}}\right)(X).\right)$
Theorem 3.3. Given commuting d-tuples $\mathbb{A}_{i}, \mathbb{B}_{i} \in B(\mathcal{X})^{d}$, any two of the following conditions implies the third.
(i) $\left(\mathbb{A}_{1} \otimes \mathbb{A}_{2}, \mathbb{B}_{1} \otimes \mathbb{B}_{2}\right)$ is m-isometric; $m=m_{1}+m_{2}-1$.
(ii) $\left(\mathbb{A}_{1}, \mathbb{B}_{1}\right)$ is m_{1}-isometric.
(iii) $\left(\mathbb{A}_{2}, \mathbb{B}_{2}\right)$ is m_{2}-isometric.

Proof. It is well known, see [7], that (ii) and (iii) imply (i). We prove (i) and (ii) imply (iii); the proof of (i) and (iii) imply (ii) is similar.

Start by observing that if we let

$$
\mathbb{S}_{1}=\mathbb{A}_{1} \otimes I, \mathbb{S}_{2}=I \otimes \mathbb{A}_{2}, \mathbb{T}_{1}=\mathbb{B}_{1} \otimes I \text { and } \mathbb{T}_{2}=I \otimes \mathbb{B}_{2}
$$

then

$$
\left[\mathbb{S}_{1}, \mathbb{S}_{2}\right]=\left[\mathbb{T}_{1}, \mathbb{T}_{2}\right]=0=\left[\mathbb{S}_{1}, \mathbb{T}_{2}\right]=\left[\mathbb{S}_{2}, \mathbb{T}_{1}\right]
$$

$$
\left(\mathbb{A}_{i}, \mathbb{B}_{i}\right) \text { is } m_{i}-\text { isometric } \Longleftrightarrow\left(\mathbb{S}_{i}, \mathbb{T}_{i}\right) \text { is } m_{i}-\text { isometric, } i=1,2,
$$

$$
\left(\mathbb{A}_{1} \otimes \mathbb{A}_{2}, \mathbb{B}_{1} \otimes \mathbb{B}_{2}\right) \text { is } m \text { - isometric } \Longleftrightarrow\left(\mathbb{S}_{1} \mathbb{S}_{2}, \mathbb{T}_{1} \mathbb{T}_{2}\right) \in m \text { - isometric }
$$

and
$(i) \wedge(i i) \Longrightarrow(i i i)$ if and only if $\left(\mathbb{S}_{1} \mathbb{S}_{2}, \mathbb{T}_{1} \mathbb{T}_{2}\right)$ is m - isometric and $\left(\mathbb{S}_{1}, \mathbb{T}_{1}\right)$ is m_{1} - isometric imply $\left(\mathbb{S}_{2}, \mathbb{T}_{2}\right)$ is m_{2} - isometric.

Let $t \leq m_{1}$ be the least positive integer such that $\left(\mathbb{S}_{1}, \mathbb{T}_{1}\right) \in t$-isometric. (Thus, $\left(\mathbb{S}_{1}, \mathbb{T}_{1}\right)$ is strict t-isometric.) Then

$$
\left.\left.\left.\begin{array}{rl}
& \Delta_{\mathbb{S}_{1} \mathbb{S}_{2}, \mathbb{T}_{1} \mathbb{T}_{2}}(\mathbb{I})=\left(I-\mathcal{E}_{\mathbb{S}_{1} \mathbb{S}_{2}, \mathbb{T}_{1} \mathbb{T}_{2}}\right)^{m}(\mathbb{I}) \\
= & \left(\mathcal{S}_{\mathbb{S}_{1}, \mathbb{T}_{1}} \Delta \mathbf{S}_{2}, \mathbb{T}_{2}\right.
\end{array}\right) \Delta_{\mathbb{S}_{1}, \mathbb{T}_{1}}\right)^{m}\right)(\mathbb{I}) .
$$

Since the operators $\mathcal{E}_{\mathbb{S}_{1}, \mathbb{T}_{1}}$ and $\Delta \mathfrak{S}_{2}, \mathbb{T}_{2}$ commute, as also do the operators $\Delta \mathbb{S}_{1}, \mathbb{T}_{1}$ and $\Delta \boldsymbol{S}_{2}, \mathbb{T}_{2}$,

$$
\begin{aligned}
& \mathcal{E}_{\mathrm{S}_{1}, \mathbb{T}_{1}}^{m-j}\left(\Delta_{\mathrm{S}_{1}, \mathbb{T}_{1}}^{j}\right)(\mathbb{I}) \\
= & \left(\sum_{k=0}^{j}(-1)^{k}\binom{j}{k} \mathcal{E}_{\mathrm{S}_{1}, \mathbb{T}_{1}}^{m-j+k}\right)(\mathbb{I}) \\
= & \sum_{k=0}^{j}(-1)^{k}\binom{j}{k}\left\llcorner\sum_{i=1}^{d} L_{A_{1 i} \otimes I} R_{B_{1 i} \otimes I}\right]^{m-j+k}(\mathbb{I}) \\
= & \sum_{k=0}^{j}(-1)^{k}\binom{j}{k}\left\llcorner\sum_{i=1}^{d} A_{1 i} B_{1 i} \otimes I\right]^{m-j+k} \\
& \left.\left(\sum_{i=1}^{d} A_{1 i} B_{1 i} \otimes I\right]^{n}=\sum_{i=1}^{d}\left(A_{1 i} \otimes I\right) L \sum_{i=1}^{d} A_{1 i} B_{1 i} \otimes I\right]^{n-1}\left(B_{1 i} \otimes I\right), \\
= & \left.\sum_{k=0}^{j}(-1)^{k}\binom{j}{k} L \sum_{i=1}^{d} A_{1 i} B_{1 i}\right]^{m-j+k} \otimes I \\
= & X_{j} \otimes I(\text { say }) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \Delta_{\mathbb{S}_{2}, \mathbb{T}_{2}}^{m-j}\left(\mathcal{E}_{\mathrm{S}_{1}, \mathbb{T}_{1}}^{m-j}\left(\Delta_{\mathbb{S}_{1}, \mathbb{T}_{1}}^{j} \mathbb{I}\right)\right) \\
= & \left.\sum_{p=0}^{m-j}(-1)^{p}\binom{m-j}{p}\left(I \otimes L \sum_{i=1}^{d} A_{2 i} B_{2 i}\right\rfloor\right)^{p}\left(X_{j} \otimes I\right) \\
= & \left.\sum_{p=0}^{m-j}(-1)^{p}\binom{m-j}{p}\left(X_{j} \otimes L \sum_{i=1}^{d} A_{2 i} B_{2 i}\right]^{p}\right) \\
= & X_{j} \otimes Y_{j} \text { say, }
\end{aligned}
$$

and

$$
\Delta_{S_{1} S_{2}, \mathbb{T}_{1} \mathbb{T}_{2}}^{m}(\mathbb{I})=\sum_{j=0}^{m}\binom{m}{j}\left(X_{j} \otimes Y_{j}\right)
$$

The sequence $\left\{X_{j}\right\}_{j=0}^{t-1}$ being linearly independent, we must have $Y_{j}=0$ for all $0 \leq j \leq t-1$. Since $j \leq t-1$ implies $m-j=m_{1}+m_{2}-1-t+1 \geq m_{2}$, we have

$$
\begin{aligned}
& I \otimes \sum_{p=0}^{m_{2}}(-1)^{p}\binom{m_{2}}{p}\left\llcorner\sum_{i=1}^{d} A_{2 i} B_{2 i}\right]^{p}=0 \\
\Longleftrightarrow & \left.\sum_{p=0}^{m_{2}}(-1)^{p}\binom{m_{2}}{p} \mathrm{~L} \sum_{i=1}^{d} A_{2 i} B_{2 i}\right]^{p} \\
= & \Delta_{\mathbb{A}_{2}, \mathbb{B}_{2}}^{m_{2}}(I)=0 .
\end{aligned}
$$

This completes the proof.
An anlogue of Theorem 3.3 holds for products of m-symmetric operators.
Theorem 3.4. Given commuting d-tuples $\mathbb{A}_{i}, \mathbb{B}_{i} \in B(X)^{d}$ such that \mathbb{A}_{i} is left invertible for $1 \leq i \leq 2$, any two of the following conditions implies the third.
(i). $\left(\mathbb{A}_{1} \otimes \mathbb{A}_{2}, \mathbb{B}_{1} \otimes \mathbb{B}_{2}\right)$ is m-symmetric; $m=m_{1}+m_{2}-1$.
(ii). $\left(\mathbb{A}_{1}, \mathbb{B}_{1}\right)$ is m_{1}-symmetric.
(iii). $\left(\mathbb{A}_{2}, \mathbb{B}_{2}\right)$ is m_{2}-symmetric.

Proof. That (ii) and (iii) imply (i), without any hypothesis on the left invertibility of \mathbb{A}_{1} and \mathbb{A}_{2}, is well known [7]. We prove (i) and (ii) imply (iii); the proof of (i) and (iii) imply (ii) is similar and left to the reader.

Assume $t \leq m_{1}$ is the least positive integer such that $\delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{t-1}(I) \neq 0$. (Thus, $\mathbb{A}_{1}, \mathbb{B}_{1}$ is strict t-symmetric.) Then

$$
\begin{aligned}
\delta_{\mathbb{A}_{1} \otimes \mathbb{A}_{2}, \mathbb{B}_{1} \otimes \mathbb{B}_{2}}^{m}(\mathbb{I}) & =\left(\mathbb{L}_{\mathbf{A}_{1} \otimes \mathbb{A}_{2}}-\mathbb{R}_{\mathbb{B}_{1} \otimes \mathbb{B}_{2}}\right)^{m}(\mathbb{I}) \\
& =\left(\mathbb{L}_{\mathbf{A}_{1}} \otimes \mathbb{L}_{\mathbb{A}_{2}}-\mathbb{R}_{\mathbb{B}_{1}} \otimes \mathbb{R}_{\mathbb{B}_{2}}\right)^{m}(\mathbb{I}) \\
& =\left(\left(\mathbb{L}_{\mathbb{A}_{1}} \otimes \mathbb{L}_{\mathbb{A}_{2}}-\mathbb{R}_{\mathbb{B}_{1}} \otimes \mathbb{L}_{\mathbb{A}_{2}}\right)+\left(\mathbb{R}_{\mathbb{B}_{1}} \otimes \mathbb{L}_{\mathbb{A}_{2}}-\mathbb{R}_{\mathbb{B}_{1}} \otimes \mathbb{R}_{\mathbb{B}_{2}}\right)\right)^{m}(\mathbb{I}) \\
& =\left(\sum_{j=0}\binom{m}{j}\left(\delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{m-j} \otimes \mathbb{L}_{\mathbb{A}_{2}}^{m-j}\right) \times\left(\mathbb{R}_{\mathbb{B}_{1}}^{j} \otimes \delta_{\mathbb{A}_{2}, \mathbb{B}_{2}}^{j}\right)\right)(\mathbb{I}) \\
& =\sum_{j=0}^{m}\binom{m}{j}\left(\mathbb{R}_{\mathbb{B}_{1}}^{j} \delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{m-j}(I)\right) \otimes\left(\mathbb{L}_{\mathbb{A}_{2}}^{m-j} \delta_{\mathbb{A}_{2}, \mathbb{B}_{2}}^{j}(I)\right) .
\end{aligned}
$$

Since $\left(\mathbb{A}_{1}, \mathbb{B}_{1}\right)$ is strict t-symmetric and $\mathbb{L}_{\mathbb{A}_{1}} \delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{t-1}(I)=\mathbb{R}_{\mathbb{B}_{1}} \delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{t-1}(I) \neq 0$, the argument of the proof of Lemma 3.1 implies the linear independence of the sequence $\left\{\mathbb{R}_{\mathbb{B}_{1}}^{j} \delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{m-j}(I)\right\}_{m-j=0}^{t-1}$. Hence $\mathbb{L}_{\mathbb{A}_{2}}^{m-j} \delta_{\mathbb{A}_{2}, \mathbb{B}_{2}}^{j}(I)=0$ for all $m-j \leq t-1$, equivalently, $j \geq m-t+1 \geq m_{1}+m_{2}-1-m_{1}+1=m_{2}$. But then, since $\mathbb{L}_{\mathrm{A}_{2}}$ is left invertible, $\delta_{\mathbb{A}_{2}, \mathbb{B}_{2}}^{j}(I)=0$ for all $j \geq m_{2}$.

Strictness in conditions (i) - (iii) of Theorem 3.3 requires more: thus whereas $\left(\mathbb{A}_{1} \otimes \mathbb{A}_{2}, \mathbb{B}_{1} \otimes \mathbb{B}_{2}\right)$ is strictly m isometric implies $\left(\mathbb{A}_{i}, \mathbb{B}_{i}\right)$ is strictly m_{i}-isometric for both $i=1$ and $i=2,\left(\mathbb{A}_{i}, \mathbb{B}_{i}\right)$ is strictly m_{i}-isometric for both $i=1$ and $i=2$ does not in general imply $\left(\mathbb{A}_{1} \otimes \mathbb{A}_{2}, \mathbb{B}_{1} \otimes \mathbb{B}_{2}\right)$ is strictly m isometric.

Theorem 3.5. Given commuting d-tuples $\mathbb{A}_{i}, \mathbb{B}_{i} \in B(\mathcal{X})^{d}, 1 \leq i \leq 2$, such that $\left[\mathbb{A}_{1}, \mathbb{A}_{2}\right]=\left[\mathbb{B}_{1}, \mathbb{B}_{2}\right]=0$, if $\left(\mathbb{A}_{i}, \mathbb{B}_{i}\right)$ is m_{i}-isometric and $\left(\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}\right)$ is m isometric, $m=m_{1}+m_{2}-1$, then:
(i) $\left(\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}\right)$ is strictl m-isometric if and only if

$$
\begin{equation*}
\Delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{m_{1}-1}\left(\Delta_{\mathbb{A}_{2}, \mathbb{B}_{2}}^{m_{2}-1}(I)\right)=\Delta_{\mathbb{A}_{2}, \mathbb{B}_{2}}^{m_{2}-1}\left(\Delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{m_{1}-1}(I)\right) \neq 0 \tag{3}
\end{equation*}
$$

(ii) $\left(\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}\right)$ is strict m-isometric implies $\left(\mathbb{A}_{i}, \mathbb{B}_{i}\right)$ is strict m_{i}-isometric for $1 \leq i \leq 2$;
(iii) $\left(\mathbb{A}_{i}, \mathbb{B}_{i}\right)$ is strict m_{i}-isometric for $1 \leq i \leq 2$ does not imply $\left(\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}\right)$ is strict m-isometric

Proof. The hypothesis $\left[\mathbb{A}_{1}, \mathbb{A}_{2}\right]=\left[\mathbb{B}_{1}, \mathbb{B}_{2}\right]=0$ implies

$$
\left[\Delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}, \Delta_{\mathbb{A}_{2}, \mathbb{B}_{2}}\right]=0=\left[\mathcal{E}_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{m_{2}-1}, \Delta_{\mathbb{A}_{2}, \mathbb{B}_{2}}\right] .
$$

Since

$$
\begin{aligned}
& \mathcal{E}_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{m_{2}-1} \Delta_{\mathbf{A}_{1}, \mathbb{B}_{1}}^{m_{1}}\left(\Delta_{\mathbf{A}_{2}, \mathbb{B}_{2}}^{m_{2}}(I)\right) \\
= & \Delta_{\mathbb{A}_{2}, \mathbb{B}_{2}}^{m_{2}}\left(\mathcal{E}_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{m_{2}-1} \Delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{m_{1}}(I)\right) \\
= & \Delta_{\mathbb{A}_{2}, \mathbb{B}_{2}}^{m_{2}-1}\left(\Delta_{\mathbf{A}_{1}, \mathbb{B}_{1}}^{m_{1}-1}(I),\right.
\end{aligned}
$$

whenever $\Delta_{\mathbf{A}_{1}, \mathbb{B}_{1}}^{m_{1}}(I)=0$ (equivalently, $\left.\mathcal{E}_{\mathbb{A}_{1}, \mathbb{B}_{1}} \Delta_{\mathbf{A}_{1}, \mathbb{B}_{1}}^{m_{1}-1}(I)=\Delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{m_{1}-1}(I)\right)$, if $\left(\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}\right)$ is m-isometric and either of $\left(\mathbb{A}_{i}, \mathbb{B}_{i}\right), 1 \leq i \leq 2$, is not strict m_{i}-isometric then (3) is contradicted. Hence (i) implies ($i i$).

To prove (i), assume $\left(\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}\right)$ is strict m-isometric. Then $\Delta_{\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}}^{m}(I)=0$ and $\Delta_{\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}}^{m-1}(I) \neq 0$. We have

$$
\begin{aligned}
0 & \neq \Delta_{\mathbf{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}}^{m}(I) \\
& =\sum_{j=0}^{m-1}\binom{m-1}{j} \Delta_{\mathbb{A}_{2}, \mathbb{B}_{2}}^{m-1-j}\left(\mathcal{E}_{\mathbf{A}_{1}, \mathbb{B}_{1}}^{m-1-j} \Delta_{\mathbf{A}_{1}, \mathbb{B}_{1}}^{j}(I)\right)
\end{aligned}
$$

(see the proof ofTheorem 3.3)

$$
=\sum_{j=0}^{m_{1}-1}\binom{m-1}{j} \Delta_{\mathbf{A}_{2}, \mathbb{B}_{2}}^{m-1-j}\left(\mathcal{E}_{\mathbf{A}_{1}, \mathbb{B}_{1}}^{m-1-j} \Delta_{\mathbf{A}_{1}, \mathbb{B}_{1}}^{j}(I)\right)
$$

(since $\Delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{m_{1}}(I)=0$ for $j \geq m_{1}$)
$=\binom{m-1}{m_{1}-1} \Delta_{\mathbf{A}_{2}, \mathbb{B}_{2}}^{m_{2}-1}\left(\Delta_{\mathbf{A}_{1}, \mathbb{B}_{1}}^{m_{1}-1}(I)\right)$,
since $\Delta_{\mathbf{A}_{2}, \mathbb{B}_{2}}^{m-1-j}(I)=0$ for all $m-1-j \geq m_{2}$, equivalently, $m_{1}-2 \geq j$, and $\mathcal{E}_{\mathbf{A}_{1}, \mathbb{B}_{1}}^{m-1-\left(m_{1}-1\right)}\left(\Delta_{\mathbf{A}_{1_{1}}, \mathbb{B}_{1}}^{m_{1}-1}(I)\right)=\Delta_{\mathbf{A}_{1}, \mathbb{B}_{1}}^{m_{1}-1}(I)$.

To complete the proof, we give an example proving (iii). Let $I_{2}=I \oplus I$, and let $A, B \in B(X)$ be such that (A, B) is strict m-isometric. Define operators $\mathbb{A}_{i}, \mathbb{B}_{i} \in B(\mathcal{X} \oplus \mathcal{X})^{d}, 1 \leq i \leq 2$, by

$$
\begin{aligned}
& \mathbb{A}_{1}=\left(A_{11}, \cdots, A_{1 d}\right)=\frac{1}{\sqrt{d}}(A \oplus I, \cdots, A \oplus I), \\
& \mathbb{A}_{2}=\left(A_{21}, \cdots, A_{2 d}\right)=\frac{1}{\sqrt{d}}(I \oplus A, \cdots, I \oplus A), \\
& \mathbb{B}_{1}=\left(B_{11}, \cdots, B_{1 d}\right)=\frac{1}{\sqrt{d}}(B \oplus I, \cdots, B \oplus I), \\
& \mathbb{B}_{2}=\left(B_{21}, \cdots, B_{2 d}\right)=\frac{1}{\sqrt{d}}(I \oplus B, \cdots, I \oplus B),
\end{aligned}
$$

Then

$$
\begin{aligned}
\Delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{m}\left(I_{2}\right)= & \sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(\mathbb{L}_{\mathbf{A}_{1}} * \mathbb{R}_{\mathbb{B}_{1}}\right)^{m-j}\left(I_{2}\right) \\
= & \sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left\llcorner\sum_{i=1}^{d} \frac{1}{d}(A B \oplus I)\right\rfloor^{m-j} \\
& \left(\left\lfloor\sum_{i=1}^{d}(A B \oplus I)\right\rfloor^{t}=\sum_{i=1}^{d}(A \oplus I)\left\lfloor\sum_{i=1}^{d}(A B \oplus I)\right\rfloor^{t-1}(B \oplus I) \text { for integers } t \geq 1\right) \\
= & \sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\lfloor(A B \oplus I)\rfloor^{m-j} \\
= & \sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(A^{m-j} B^{m-j} \oplus I\right) \\
= & 0,
\end{aligned}
$$

and

$$
\Delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{m-1}\left(I_{2}\right) \neq 0
$$

Similarly, $\Delta_{\mathbb{A}_{2}, \mathbb{B}_{2}}^{m}\left(I_{2}\right)=0$ and $\Delta_{A_{2}, \mathbb{B}_{2}}^{m-1}\left(I_{2}\right) \neq 0$.
Consider now $\Delta_{\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}}^{m}\left(I_{2}\right)$. Since \mathbb{A}_{i} and \mathbb{B}_{i} are commuting d-tuples such that $\left[\mathbb{A}_{1}, \mathbb{A}_{2}\right]=\left[\mathbb{B}_{1}, \mathbb{B}_{2}\right]=0$, $\left(\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}\right)$ is $(2 m-1)$-isometric. Again, since

$$
\mathbb{A}_{1} \mathbb{A}_{2}=\frac{1}{d}(A \oplus A, \cdots, A \oplus A) \in B(\mathcal{X} \oplus \mathcal{X})^{d^{2}}
$$

and

$$
\mathbb{B}_{1} \mathbb{B}_{2}=\frac{1}{d}(B \oplus B, \cdots, B \oplus B) \in B(\mathcal{X} \oplus \mathcal{X})^{d^{2}}
$$

$$
\begin{aligned}
& \Delta_{\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}}^{m}\left(I_{2}\right) \\
= & \sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(\mathbb{L}_{\mathbb{A}_{1} \mathbb{A}_{2}} * \mathbb{R}_{\mathbb{B}_{1} \mathbb{B}_{2}}\right)^{m-j}\left(I_{2}\right) \\
= & \left.\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} L \sum_{i=1}^{d^{2}} \frac{1}{d^{2}}(A B \oplus A B)\right\rfloor^{m-j} \\
& \left.\left(L \sum_{i=1}^{d^{2}}(A B \oplus A B)\right\rfloor^{t}=\sum_{i=1}^{d^{2}}(A \oplus A) L \sum_{i=1}^{d^{2}}(A B \oplus A B)\right\rfloor^{t-1}(B \oplus B) \\
& \text { for all integers } t \geq 1) \\
= & \sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\lfloor(A B \oplus A B)\rfloor^{m-j} \\
= & \sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(A^{m-j} B^{m-j} \oplus A^{m-j} B^{m-j}\right) \\
= & 0,
\end{aligned}
$$

i.e., $\left(\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}\right)$ is m-isometric. Thus $\left(\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}\right)$ is not strict $(2 m-1)$-isometric for all $m \geq 2$.

Remark 3.6. Choosing $A, B \in B(\mathcal{X})$, and $\mathbb{A}_{i}, \mathbb{B}_{i} \in B(\mathcal{X} \oplus \mathcal{X})^{d}$, to be the operators of the example proving part (iii), define operators \mathbb{S}_{i} and $\mathbb{T}_{i} \in B((\mathcal{X} \oplus \mathcal{X}) \bar{\otimes}(\mathcal{X} \oplus \mathcal{X}))^{d}$ by $\mathbb{S}_{i}=\mathbb{A}_{i} \otimes I_{2}$ and $\mathbb{T}_{i}=\mathbb{B}_{i} \otimes I_{2} ; 1 \leq i \leq 2$ and $I_{2}=I \oplus I$. Then $\left(\mathbb{S}_{i}, \mathbb{T}_{i}\right)$ and $\left(\mathbb{S}_{1} \otimes \mathbb{S}_{2}, \mathbb{T}_{1} \otimes \mathbb{T}_{2}\right), 1 \leq i \leq 2$, are all strict m-isometric. Recall from Remark 2.6 of [8] that $\left(A_{i}, B_{i}\right), 1 \leq i \leq 2$, strict m_{i}-isometric and $\left[A_{1}, A_{2}\right]=\left[B_{1}, B_{2}\right]=0$ does not in general imply $\left(A_{1} A_{2}, B_{1} B_{2}\right)$ is strict ($m_{1}+m_{2}-1$)-isometric.

Just as for m-isometric operators, strictness for m-symmetric operators requires more.
Theorem 3.7. Given commuting d-tuples $\mathbb{A}_{i}, \mathbb{B}_{i} \in B(\mathcal{X})^{d}$ such that $\left[\mathbb{A}_{1}, \mathbb{A}_{2}\right]=\left[\mathbb{B}_{1}, \mathbb{B}_{2}\right]=0$, and \mathbb{A}_{i} is left invertible for $1 \leq i \leq 2$, if $\left(\mathbb{A}_{i}, \mathbb{B}_{i}\right)$ is m_{i}-symmetric, $1 \leq i \leq 2$, and $\left(\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}\right)$ is m-symmetric, $m=m_{1}+m_{2}-1$, then:
(i) $\left(\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}\right)$ is strict m-symmetric if and only if

$$
\begin{align*}
& \mathbb{L}_{\mathbb{A}_{1}}^{m_{2}-1} \times \delta_{\mathbb{A}_{2}, \mathbb{B}_{2}}^{m_{2}-1}\left(\mathbb{R}_{\mathbb{A}_{2}}^{m_{1}-1} \times \delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{m_{1}}(I)\right) \tag{4}\\
= & \mathbb{R}_{\mathbb{A}_{2}}^{m_{1}-1} \times \delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{m_{1}-1}\left(\mathbb{L}_{\mathbb{A}_{1}}^{m_{2}-1} \times \delta_{\mathbb{A}_{2}, \mathbb{B}_{2}}^{m_{2}-1}(I)\right) \neq 0 ; \tag{5}
\end{align*}
$$

(ii) $\left(\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}\right)$ is strict m-symmetric implies $\left(\mathbb{A}_{i}, \mathbb{B}_{i}\right)$ is strict m_{i}-symmetric for $1 \leq i \leq 2$;
(iii) $\left(\mathbb{A}_{i}, \mathbb{B}_{i}\right)$ is strict m_{i}-symmetric for $1 \leq i \leq 2$ does not imply $\left(\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}\right)$ is strict m-symmetric.

Proof. (i) and (ii). Evidently, if either of $\left(\mathbb{A}_{i}, \mathbb{B}_{i}\right)$ is not strict m_{i}-symmetric, then (4) and (5) equal 0 and (i) is violated. Hence (i) implies (ii). We prove (i), and then modify the example in the proof of Theorem 3.5 to prove (iii).
$\left(\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}\right)$ is strict m-symmetric if and only if $\delta_{\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}}^{m}(I)=0$ and

$$
\begin{aligned}
0 & \neq \delta_{\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}}^{m-1}(I)=\left(\mathbb{L}_{\mathbf{A}_{1} \mathbb{A}_{2}}-\mathbb{R}_{\mathbb{B}_{1} \mathbb{B}_{2}}\right)^{m-1}(I) \\
& =\sum_{j=0}^{m-1}\binom{m-1}{j}\left(L_{\mathbf{A}_{1}}^{m-1-j} \times \delta_{\mathbb{A}_{2}, \mathbb{B}_{2}}^{m-1-j}\right)\left(\mathbb{R}_{\mathbb{A}_{2}}^{j} \times \delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{j}\right)(I) \\
& =\sum_{j=0}^{m-1}\binom{m-1}{j}\left(\mathbb{R}_{\mathbb{A}_{2}}^{j} \times \delta_{\mathbf{A}_{1}, \mathbb{B}_{1}}^{j}\right)\left(L_{\mathbf{A}_{1}}^{m-1-j} \times \delta_{\mathbb{A}_{2}, \mathbb{B}_{2}}^{m-1-j}\right)(I)
\end{aligned}
$$

by the commutativity hypotheses on $\mathbb{A}_{i}, \mathbb{B}_{i}$ and the commutativity of the left and the right multiplication operators. Since

$$
\mathbb{R}_{\mathbb{A}_{2}}^{j} \times \delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{j}(I)=\left(\sum_{i=1}^{d} R_{A_{2 i}}\right)^{j}\left(\delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{j}(I)\right)=0
$$

for all $j \geq m_{1}$,

$$
0 \neq \sum_{j=0}^{m_{1}-1}\binom{m-1}{j}\left(\mathbb{R}_{\mathbb{A}_{2}}^{j} \times \delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{j}\right)\left(L_{\mathbf{A}_{1}}^{m-1-j} \times \delta_{\mathbf{A}_{2}, \mathbb{B}_{2}}^{m-1-j}\right)(I) .
$$

But then, since $\delta_{\mathbf{A}_{2}, \mathbb{B}_{2}}^{m-1-j}(I)=0$ for $m-1-j=m_{1}+m_{2}-2-j \geq m_{2}$,

$$
0 \neq\binom{ m-1}{m_{1}-1}\left(\mathbb{R}_{\mathbb{A}_{2}}^{m_{1}-1} \times \delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{m_{1}-1}\right)\left(L_{\mathbb{A}_{1}}^{m_{2}-1} \times \delta_{\mathbb{A}_{2}, \mathbb{B}_{2}}^{m_{2}-1}\right)(I) .
$$

(iii). Define operators \mathbb{A}_{i} and $\mathbb{B}_{i}, 1 \leq i \leq 2$, as in the proof of Theorem 3.5(iii) but with \sqrt{d} replaced by d. Choose the operators A, B this time to be such that A is left invertible and (A, B) is strict m-symmetric. Let, as before, $I_{2}=I \oplus I$. Then, since

$$
\begin{aligned}
\delta_{\mathbb{A}_{1}, \mathbb{B}_{1}}^{m}\left(I_{2}\right) & =\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(\sum_{i=1}^{d} L_{A_{1 i}}\right)^{m-j}\left(\sum_{i=1}^{d} R_{B_{1 i}}\right)^{j}\right)\left(I_{2}\right) \\
& =\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(L_{A \oplus I}^{m-j} R_{B \oplus I}^{j}\right)\right)\left(I_{2}\right) \\
& =\left(\sum_{j=0}^{m_{1}-1}(-1)^{j}\binom{m}{j}\left(L_{A}^{m-j} R_{B}^{j} \oplus I\right)\right)\left(I_{2}\right) \\
& =\delta_{A, B}^{m}(I) \oplus 0=0,
\end{aligned}
$$

i.e., $\left(\mathbb{A}_{1}, \mathbb{B}_{1}\right)$ is m-symmetric. Similarly, $\left(\mathbb{A}_{2}, \mathbb{B}_{2}\right)$ is m-symmetric. This, in view of the fact that $\left[\mathbb{A}_{1}, \mathbb{A}_{2}\right]=$ $\left[\mathbb{B}_{1}, \mathbb{B}_{2}\right]=0$, implies $\left(\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}\right)$ is $(2 m-1)$-symmetric. However,

$$
\begin{aligned}
\delta_{\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}}^{m}\left(I_{2}\right) & =\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(\frac{1}{d^{2}} \sum_{i=1}^{d^{2}} L_{A \oplus A}\right)^{m-j}\left(\frac{1}{d^{2}} \sum_{i=1}^{d^{2}} R_{\mathbb{B} \oplus \mathbb{B}}\right)^{j}\right)\left(I_{2}\right) \\
& =\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(L_{A}^{m-j} R_{B}^{j} \oplus L_{A}^{m-j} R_{B}^{j}\right)\right)\left(I_{2}\right) \\
& =0 .
\end{aligned}
$$

Hence $\left(\mathbb{A}_{1} \mathbb{A}_{2}, \mathbb{B}_{1} \mathbb{B}_{2}\right)$ is not strict $(2 m-1)$-symmetric for all $m>1$.

4. Results: the inverse problem

By definition, $\left(S_{1} \otimes S_{2}, T_{1} \otimes T_{2}\right)$ is m-isometric if and only if

$$
\begin{aligned}
\Delta_{S_{1} \otimes S_{2}, T_{1} \otimes T_{2}}^{m}(I \otimes I) & =\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(L_{S_{1} \otimes S_{2}} R_{T_{1} \otimes T_{2}}\right)^{j}\right)(I \otimes I) \\
& =\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left\lfloor S_{1} T_{1}\right\rfloor^{j} \otimes\left\lfloor S_{2} T_{2}\right\rfloor^{j} \\
& =0
\end{aligned}
$$

and it is strict m-isometric if and only if it is m-isometric and

$$
\Delta_{S_{1} \otimes S_{2}, T_{1} \otimes T_{2}}^{m-1}(I \otimes I)=\sum_{j=0}^{m-1}(-1)^{j}\binom{m-1}{j}\left\lfloor S_{1} T_{1}\right\rfloor^{j} \otimes\left\lfloor S_{2} T_{2}\right\rfloor^{j} \neq 0 .
$$

(Recall that, given operators $\left.S_{i}, T_{i} \in B(X), 1 \leq i \leq d, L \sum_{i=1}^{d} S_{i} T_{i}\right]^{t}=S_{1}\left\lfloor\sum_{i=1}^{d} S_{i} T_{i}\right]^{t-1} T_{1}+\cdots+S_{d}\left[\sum_{i=1}^{d} S_{i} T_{i}\right]^{t-1} T_{d}$.) Paul and Gu [14, Theorem 1.1] prove that "if ($S_{1} \otimes S_{2}, T_{1} \otimes T_{2}$) is m-isometric, then there exist integers $m_{i}>0$, and a non-zero scalar c, such that $m=m_{1}+m_{2}-1,\left(S_{1}, \frac{1}{c} T_{1}\right)$ is m_{1}-isometric and $\left(S_{2}, c T_{2}\right)$ is m_{2}-isometric". Translating this into the terminology above, one has the following.

Proposition 4.1. Given operators $S_{i}, T_{i} \in B(X), 1 \leq i \leq 2$, if

$$
\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left\lfloor S_{1} T_{1}\right\rfloor^{j} \otimes\left\lfloor S_{2} T_{2}\right\rfloor^{j}=0
$$

then there exist integers $m_{i}>0$, and a non-zero scalar c, such that $m=m_{1}+m_{2}-1$,

$$
\sum_{j=0}^{m_{1}}(-1)^{j}\binom{m_{1}}{j}\left\lfloor S_{1}\left(\frac{1}{c} T_{1}\right)\right\rfloor^{j}=0=\sum_{j=0}^{m_{2}}(-1)^{j}\binom{m_{2}}{j}\left\lfloor S_{2}\left(c T_{2}\right)\right\rfloor^{j} .
$$

The following theorem is an analogue of $[14$, Theorem 1.1] for commuting d-tuples of operators. Our proof, which depends on an application of Proposition 4.1 , is achieved by reducing the problem to that for single linear operators.

Theorem 4.2. If $\Phi_{i}, \mathbb{T}_{i} \in B(X)^{d}, 1 \leq i \leq 2$, are commuting d-tuples such that $\left(\mathbb{S}_{1} \otimes \mathbb{S}_{2}, \mathbb{T}_{1} \otimes \mathbb{T}_{2}\right)$ is strict m-isometric, then there exist integers $m_{i}>0$, and a non-zero scalar c, such that $m=m_{1}+m_{2}-1,\left(\mathbb{S}_{1}, \frac{1}{c} \mathbb{T}_{1}\right)$ is strict m_{1}-isometric and $\left(\mathrm{S}_{2}, c \mathbb{T}_{2}\right)$ is strict m_{2}-isometric.

Proof. If $\left(\mathbb{S}_{1} \otimes \mathbb{S}_{2}, \mathbb{T}_{1} \otimes \mathbb{T}_{2}\right)$ is strict m-isometric, then, since

$$
S_{1} \otimes S_{2}=\left(S_{11} \otimes S_{21}, \cdots, S_{11} \otimes S_{2 d}, S_{12} \otimes S_{21}, \cdots, S_{12} \otimes S_{2 d}, \cdots, S_{1 d} \otimes S_{21}, \cdots, S_{1 d} \otimes S_{2 d}\right)
$$

and

$$
\mathbb{T}_{1} \otimes \mathbb{T}_{2}=\left(T_{11} \otimes T_{21}, \cdots, T_{11} \otimes T_{2 d}, T_{12} \otimes T_{21}, \cdots, T_{12} \otimes T_{2 d}, \cdots, T_{1 d} \otimes T_{21}, \cdots, T_{1 d} \otimes T_{2 d}\right),
$$

$$
\begin{aligned}
0 & =\Delta_{S_{1} \otimes S_{2}, \mathbb{T}_{1} \otimes \mathbb{T}_{2}}(\mathbb{I}) \\
& =\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(\mathbb{L}_{S_{1} \otimes S_{2}} * \mathbb{R}_{\mathbb{T}_{1} \otimes \mathbb{T}_{2}}\right)^{j}\right)(\mathbb{I} \\
& =\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} L \sum_{i, k=1}^{d}\left(S_{1 i} \otimes S_{2 k}\right)\left(T_{1 i} \otimes T_{2 k}\right) J^{j} .
\end{aligned}
$$

This, since

$$
\begin{aligned}
& \left\lfloor\sum_{i, k=1}^{d}\left(S_{1 i} \otimes S_{2 k}\right)\left(T_{1 i} \otimes T_{2 k}\right)\right\rfloor=\left\lfloor\sum_{i, k=1}^{d} S_{1 i} T_{1 i} \otimes S_{2 i} T_{2 k}\right\rfloor \\
= & \left\lfloor\sum_{i=1}^{d} S_{1 i} T_{1 i}\right\rfloor \otimes\left\lfloor\sum_{k=1}^{d} S_{2 k} T_{2 k}\right\rfloor,
\end{aligned}
$$

implies

$$
\begin{aligned}
0 & =\Delta_{\mathrm{S}_{1} \otimes \mathrm{~S}, \mathbb{T}_{1} \otimes \mathbb{T}_{2}}^{m}(\mathbb{I}) \\
& =\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left\lfloor\sum_{i=1}^{d} S_{1 i} T_{1 i}\right]^{j} \otimes\left[\sum_{k=1}^{d} S_{2 k} T_{2 k}\right\rfloor^{j}
\end{aligned}
$$

and

$$
\begin{aligned}
0 \neq \quad & \Delta_{\mathrm{S}_{1} \otimes \mathrm{~S}_{2}, \mathbb{T}_{1} \otimes \mathbb{T}_{2}}^{m-1}(\mathbb{I}) \\
= & \sum_{j=0}^{m-1}(-1)^{j}\binom{m-1}{j}\left\lfloor\sum_{i=1}^{d} S_{1 i} T_{1 i} j^{j} \otimes\left\lfloor\sum_{k=1}^{d} S_{2 k} T_{2 k}\right\rfloor^{j} .\right.
\end{aligned}
$$

Applying Proposition 4.1 we have the existence of a non-zero scalar c and positive integers $m_{i}, m=m_{1}+m_{2}-1$, such that

$$
\left.\sum_{j=0}^{m_{1}}(-1)^{j}\binom{m_{1}}{j}\left\lfloor\sum_{i=1}^{d} S_{1 i}\left(\frac{1}{c} T_{1 i}\right)\right\rfloor^{j}=0=\sum_{j=0}^{m_{2}}(-1)^{j}\binom{m_{2}}{j} \mathrm{~L} \sum_{i=1}^{d} S_{2 i}\left(c T_{2 i}\right)\right\rfloor^{j}
$$

The strictness of the m-isometric property of the tensor products pair ($S_{1} \otimes S_{2}, T_{1} \otimes T_{2}$) implies

$$
\sum_{j=0}^{m_{1}-1}(-1)^{j}\binom{m_{1}-1}{j}\left\lfloor\sum_{i=1}^{d} S_{1 i}\left(\frac{1}{c} T_{1 i}\right)\right\rfloor^{j} \neq 0 \neq \sum_{j=0}^{m_{2}-1}(-1)^{j}\binom{m_{2}-1}{j}\left\lfloor\sum_{i=1}^{d} S_{2 i}\left(c T_{2 i}\right)\right\rfloor^{j}
$$

i.e., $\left(\mathbb{S}_{1}, \frac{1}{c} \mathbb{T}_{1}\right)$ is strict m_{1}-isometric and $\left(\mathbb{S}_{2}, c \mathbb{T}_{2}\right)$ is strict m_{2}-isometric.

Observe from the proof above that the strictness property of the m-isometric operator pair $\left(S_{1} \otimes S_{2}, \mathbb{T}_{1} \otimes \mathbb{T}_{2}\right)$ plays no role in the determination of the scalar c or positive integers m_{i} such $\left(\mathbb{S}_{1}, \frac{1}{c} \mathbb{T}_{1}\right)$ is m_{1}-isometric and $\left(S_{2}, c \mathbb{T}_{2}\right)$ is m_{2}-isometric: strictness plays a role only in the determining of the strictness of the m_{1}-isometric property of $\left(\mathbb{S}_{1}, \frac{1}{c} \mathbb{T}_{1}\right)$ and the strictness of the m_{2}-isometric property of $\left(\mathbb{S}_{2}, c \mathbb{T}_{2}\right)$. The reverse implication, i.e., the implication that $\left(\mathbb{S}, \frac{1}{c} \mathbb{T}\right)$ is strict m_{1}-isometric and $\left(\mathbb{S}_{2}, c \mathbb{T}_{2}\right)$ is strict m_{2}-isometric, fails: this follows from Theorem 3.5 (see also [8]).

If an operator $T \in B(\mathcal{H})$ is m-symmetric, then $\sigma_{a}(T)$, the approximate point spectrum of T, is a subset of \mathbb{R}. Hence T is left invertible if and only if it is invertible. Consider operators $S_{i}, T_{i} \in B(\mathcal{X}), 1 \leq i \leq 2$, such that S_{i} is invertible and $\delta_{S_{1} \otimes S_{2}, T_{1} \otimes T_{2}}^{m}(I \otimes I)=0$. Then

$$
\begin{aligned}
& \delta_{S_{1} \otimes S_{2}, T_{1} \otimes T_{2}}^{m}(I \otimes I)=\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} L_{S_{1} \otimes S_{2}}^{m-j} R_{T_{1} \otimes T_{2}}^{j}\right)(I \otimes I)=0 \\
\Longleftrightarrow & \left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} L_{S_{1} \otimes S_{2}}^{-j} R_{T_{1} \otimes T_{2}}^{j}\right)(I \otimes I)=0 \\
\Longleftrightarrow & \Delta_{S_{1}^{-1} \otimes S_{2}^{-1}, T_{1} \otimes T_{2}}^{m}(I \otimes I)=0 .
\end{aligned}
$$

Assuming, further, $\left(S_{1} \otimes S_{2}, T_{1} \otimes T_{2}\right)$ to be strict m-symmetric, it follows that $\left(S_{1} \otimes S_{2}, T_{1} \otimes T_{2}\right)$ is strict $m-$ symmetric $\Longleftrightarrow\left(S_{1}^{-1} \otimes S_{2}^{-1}, T_{1} \otimes T_{2}\right)$ is strict m - isometric.

Hence there exists a non-zero scalar c and positive integers $m_{i}, m=m_{1}+m_{2}-1$, such that

$$
\left(S_{1}^{-1}, \frac{1}{c} T_{1}\right) \text { is strict } m_{1}-\text { isometric and }\left(S_{2}^{-1}, c T_{2}\right) \text { is strict } m_{2}-\text { isometric. }
$$

Since

$$
\begin{aligned}
\Delta_{S_{i}^{-1}, \alpha T_{i}}^{m_{i}}(I)=0 & \Longleftrightarrow\left(\sum_{j=0}^{m_{i}}(-1)^{j}\binom{m_{i}}{j} L_{S_{i}}^{-j}\left(\alpha R_{T_{i}}\right)^{j}\right)(I)=0 \\
& \Longleftrightarrow\left(\sum_{j=0}^{m_{i}}(-1)^{j}\binom{m_{i}}{j} L_{S_{i}}^{m_{i}-j}\left(\alpha R_{T_{i}}\right)^{j}\right)(I)=0 \\
& \Longleftrightarrow \delta_{S_{i}, \alpha T_{i}}^{m_{i}}(I)=0
\end{aligned}
$$

and, similarly,

$$
\Delta_{S_{i}^{-1}, \alpha T_{i}}^{m_{i}-1}(I) \neq 0 \Longleftrightarrow \delta_{S_{i}, \alpha T_{i}}^{m_{i}-1}(I) \neq 0
$$

we have the following Banach space analogue of [14, Theorem 1.2].
Proposition 4.3. If $S_{1}, S_{2} \in B(\mathcal{X})$ are invertible and $\left(S_{1} \otimes S_{2}, T_{1} \otimes T_{2}\right)$ is m-symmetric, for some operators $T_{1}, T_{2} \in$ $B(X)$, then there exists a non-zero scalar c and positive integers $m_{i}, m=m_{1}+m_{2}-1$, such that $\left(S_{1}, \frac{1}{c} T_{1}\right)$ is m_{1}-symmetric and $\left(S_{2}, c T_{2}\right)$ is m_{2}-symmetric.

Looking upon $\delta_{S_{1} \otimes S_{2}, T_{1} \otimes T_{2}}^{m}(I \otimes I)$ as the sum

$$
\begin{aligned}
\delta_{S_{1} \otimes S_{2}, T_{1} \otimes T_{2}}^{m}(I \otimes I) & =\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} L_{S_{1} \otimes S_{2}}^{m-j} R_{T_{1} \otimes T_{2}}^{j}\right)(I \otimes I) \\
& =\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} S_{1}^{m-j} T_{1}^{j} \otimes S_{2}^{m-j} T_{2}^{j} \\
& =\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(\left\lfloor S_{1}\right\rfloor^{m_{i}-j} \times\left\lfloor T_{1}\right\rfloor^{j}\right) \otimes\left(\left\lfloor S_{2}\right\rfloor^{m-j} \times\left\lfloor T_{2}\right\rfloor^{j}\right),
\end{aligned}
$$

Proposition 4.3 says the following.
Proposition 4.4. If $S_{1}, S_{2} \in B(\mathcal{X})$ are invertible operators such that

$$
\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(\left\lfloor S_{1}\right\rfloor^{m-j} \times\left\lfloor T_{1}\right\rfloor^{j}\right) \otimes\left(\left\lfloor S_{2}\right\rfloor^{m-j} \times\left\lfloor T_{2}\right\rfloor^{j}\right)=0
$$

and

$$
\sum_{j=0}^{m-1}(-1)^{j}\binom{m-1}{j}\left(\left\lfloor S_{1}\right\rfloor^{m-1-j} \times\left\lfloor T_{1}\right\rfloor^{j}\right) \otimes\left(\left\lfloor S_{2}\right\rfloor^{m-1-j} \times\left\lfloor T_{2}\right\rfloor^{j}\right) \neq 0
$$

then there exists a non-zero scalar c and positive integers $m_{i}(1 \leq i \leq 2), m=m_{1}+m_{2}-1$, such that

$$
\begin{aligned}
& \sum_{j=0}^{m_{1}}(-1)^{j}\binom{m_{1}}{j}\left(\left\lfloor S_{1}\right\rfloor^{m_{1}-j} \times\left\lfloor\frac{1}{c} T_{1}\right\rfloor^{j}\right) \\
= & 0 \\
= & \sum_{j=0}^{m_{2}}(-1)^{j}\binom{m_{2}}{j}\left(\left\lfloor S_{2}\right\rfloor^{m_{2}-j} \times\left\lfloor c T_{2}\right\rfloor^{j}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{j=0}^{m_{1}-1}(-1)^{j}\binom{m_{1}-1}{j}\left(\left\lfloor S_{1}\right\rfloor^{m_{1}-1-j} \times\left\lfloor\frac{1}{c} T_{1}\right\rfloor^{j}\right) \\
\neq & 0 \\
\neq & \sum_{j=0}^{m_{2}-1}(-1)^{j}\binom{m_{2}-1}{j}\left(\left\lfloor S_{2}\right\rfloor^{m_{2}-1-j} \times\left\lfloor c T_{2}\right\rfloor^{j}\right) .
\end{aligned}
$$

Corresponding to Theorem 4.2, we have the following result for tensor products of commuting d-tuples satisfying a strict m-symmetric property.

Theorem 4.5. If $\mathbb{S}_{i}, \mathbb{T}_{i} \in B(\mathcal{X})^{d}, 1 \leq i \leq 2$, are commuting d-tuples, \mathbb{S}_{1} and \mathbb{S}_{2} are invertible, and $\left(\mathbb{S}_{1} \otimes \mathbb{S}_{2}, \mathbb{T}_{1} \otimes \mathbb{T}_{2}\right)$ is strict m symmetric, then there exists a non-zero scalar c and positive integers $m_{i}, m=m_{1}+m_{2}-1$, such that $\left(\mathbb{S}_{1}, \frac{1}{c} \mathbb{T}_{1}\right)$ is strict m_{1}-symmetric and $\left(\mathbb{S}_{2}, c \mathbb{T}_{2}\right)$ is strict m_{2}-symmetric.

Proof. If $\left(\mathbb{S}_{1} \otimes \mathbb{S}_{2}, \mathbb{T}_{1} \otimes \mathbb{T}_{2}\right)$ is strict m-symmetric, then

$$
\begin{aligned}
& \delta_{\mathrm{S}_{1} \otimes \mathrm{~S}_{2}, \mathbb{T}_{1} \otimes \mathbb{T}_{2}}^{m}(I \otimes I) \\
&=\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} \mathbb{L}_{\mathrm{S}_{1} \otimes \mathrm{~S}_{2}}^{m-j} \times \mathbb{R}_{\mathbb{T}_{1} \otimes \mathbb{T}_{2}}^{j}\right)(I \otimes I) \\
&= \sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(\sum_{i, k=1}^{d} S_{1 i} \otimes S_{2 k}\right)^{m-j}\left(\sum_{i, k=1}^{d} T_{1 i} \otimes T_{2 k}\right)^{j} \\
&=\left.\left.\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(\left\lfloor\sum_{i=1}^{d} S_{1 i}\right]^{m-j} \sum_{i=1}^{d} T_{1 i} J^{j}\right) \otimes\left(L \sum_{i=1}^{d} S_{2 i}\right]^{m-j} \sum_{i=1}^{d} T_{2 i}\right]^{j}\right) \\
&= 0, \\
& \text { and } \\
&=\left.\left.\sum_{j=0}^{m-1}(-1)^{j}\binom{m-1}{j}\left(L \sum_{i=1}^{d} S_{1 i}\right]^{m-1-j} L \sum_{i=1}^{d} T_{1 i} J^{j}\right) \otimes\left(L \sum_{i=1}^{d} S_{2 i}\right]^{m-1-j} L \sum_{i=1}^{d} T_{2 i} J^{j}\right) \\
& \neq 0 .
\end{aligned}
$$

The operators S_{1} and S_{2} being invertible, $\sum_{i=1}^{d} S_{1 i}$ and $\sum_{i=1}^{d} S_{2 i}$ are invertible, Proposition 4.4 applies and we conclude the existence of a non-zero scalar c and positive integers $m_{i}, m=m_{1}+m_{2}-1$, such that

$$
\begin{aligned}
& \left.\sum_{j=0}^{m_{1}}(-1)^{j}\binom{m_{1}}{j}\left(L \sum_{i=1}^{d} S_{1 i}\right]^{m_{1}-j} L \sum_{i=1}^{d} \frac{1}{c} T_{1 i} j^{j}\right)=\delta_{\mathbb{S}_{1}, \frac{1}{c} \mathbb{T}_{1}}^{m_{1}}(\mathbb{I})=0, \\
& \left.\left.\sum_{j=0}^{m_{2}}(-1)^{j}\binom{m_{2}}{j}\left(L \sum_{i=1}^{d} S_{2 i}\right]^{m_{2}-j} L \sum_{i=1}^{d} c T_{2 i}\right]^{j}\right)=\delta_{\mathbb{S}_{2}, c \mathbb{T}_{2}}^{m_{2}}(\mathbb{I})=0
\end{aligned}
$$

and

$$
\delta_{\mathbb{S}_{1}, \frac{1}{c} \mathbb{T}_{1}}^{m_{1}-1}(\mathbb{I}) \neq 0, \delta_{\mathbf{S}_{2}, c \mathbb{T}_{2}}^{m_{2}-1}(\mathbb{I}) \neq 0 .
$$

This completes the proof.

Remark 4.6. Paul and $\mathrm{Gu}\left[14\right.$, Theorem 5.2] state that "if the operators S_{i} are left invertible and the operators T_{i} are right invertible, $1 \leq i \leq 2$, then $\left(S_{1} \otimes S_{2}, T_{1} \otimes T_{2}\right)$ is m-symmetric if and only if there exist a non-zero scalar c and positive integers $m_{i}, m=m_{1}+m_{2}-1$, such that $\left(S_{1}, \frac{1}{c} T_{1}\right)$ is strict m_{1}-symmetric and $\left(S_{2}, c T_{2}\right)$ is strict m_{2}-symmetric". The hypothesis S_{i} are left invertible and T_{i}^{c} are right invertible is a bit of an overkill, as we show below. As seen in the proof of Theorem 4.5, the invertibility of S_{1} and S_{2} - a fact guraranteed by the left invertibility of S_{i} and the right invertibility of T_{i} - is sufficient. If $S_{i}, 1 \leq i \leq 2$, is left invertible, then there exist operators E_{i} such that $\left(E_{1} \otimes E_{2}\right)\left(S_{1} \otimes S_{2}\right)=(I \otimes I)(=\mathbb{I})$ and

$$
\begin{aligned}
& 0=\delta_{S_{1} \otimes S_{2}, T_{1} \otimes T_{2}}^{m} \\
= & \sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(S_{1} \otimes S_{2}\right)^{m-j}\left(T_{1} \otimes T_{2}\right)^{j} \\
= & \sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(E_{1} \otimes E_{2}\right)^{j}\left(T_{1} \otimes T_{2}\right)^{j} \\
= & \Delta_{E_{1} \otimes E_{2}, T_{1} \otimes T_{2}}^{m}(\mathbb{I}) .
\end{aligned}
$$

For conveneience, set $E_{1} \otimes E_{2}=A$ and $T_{1} \otimes T_{2}=B$. Then $\triangle_{A, B}^{m}(\mathbb{I})=0$. It is easily seen, use induction, that $(a-1)^{m}=a^{m}-\sum_{j=0}^{m-1}\binom{m}{j}(a-1)^{j}$; hence

$$
\left(L_{A} R_{B}-\mathbb{I}\right)^{m}=\left(L_{A} R_{B}\right)^{m}-\sum_{j=0}^{m-1}\binom{m}{j}\left(L_{A} R_{B}-\mathbb{I}\right)^{j}
$$

and upon letting $\left(L_{A} R_{B}-\mathbb{I}\right)=\nabla_{A, B}$ that

$$
\begin{aligned}
& \nabla_{A, B}^{m}(\mathbb{I})=0 \Longleftrightarrow\left(L_{A} R_{B}\right)^{m}(\mathbb{I})-\sum_{j=0}^{m-1}\binom{m}{j} \nabla_{A, B}^{j}(\mathbb{I})=0 \\
\Longrightarrow & \left(L_{A} R_{B}\right)^{m+1}(\mathbb{I})=\sum_{j=0}^{m-1}\binom{m}{j}\left(L_{A} R_{B}\right) \nabla_{A, B}^{j}(\mathbb{I}) \\
= & \sum_{j=0}^{m-1}\binom{m}{j} \nabla_{A, B}^{j+1}(\mathbb{I})+\sum_{j=0}^{m-1}\binom{m}{j} \nabla_{A, B}^{j}(\mathbb{I}) \\
= & \binom{m}{m-1} \nabla_{A, B}^{m}(\mathbb{I})+\sum_{j=0}^{m-1}\binom{m+1}{j} \nabla_{A, B}^{j}(\mathbb{I}) \\
= & \sum_{j=0}^{m-1}\binom{m+1}{j} \nabla_{A, B}^{j}(\mathbb{I}) .
\end{aligned}
$$

An induction argument now proves

$$
\begin{aligned}
& \left(L_{A} R_{B}\right)^{n}(\mathbb{I})=\sum_{j=0}^{m-1}\binom{n}{j} \nabla_{A, B}^{j}(\mathbb{I}) \\
= & \binom{n}{m-1} \nabla_{A, B}^{m-1}(\mathbb{I})+\sum_{j=0}^{m-2}\binom{n}{j} \nabla_{A, B}^{j}(\mathbb{I})
\end{aligned}
$$

for all integers $n \geq m$. Observe that $\Delta_{A, B}^{m}(\mathbb{I})=0$ implies A is right invertible and B is left invertible; since
already $B=T_{1} \otimes T_{2}$ is right invertible, B is invertible, and then

$$
\begin{aligned}
\delta_{A, B}^{m}(\mathbb{I})=0 & \Longleftrightarrow \sum_{j=0}^{m}(-1)^{j}\binom{m}{j} L_{A}^{m-j} R_{B}^{j}(\mathbb{I})=0 \\
& \Longleftrightarrow \sum_{j=0}^{m}(-1)^{j}\binom{m}{j} L_{A}^{m-j} R_{B}^{-m+j}(\mathbb{I})=0 \\
& \Longleftrightarrow \Delta_{A, B^{-1}}^{m}(\mathbb{I})=0 \Longrightarrow A \text { is right invertible } \Longrightarrow A \text { is invertible. }
\end{aligned}
$$

The invertibility of A and B implies that of $L_{A} R_{B}$. We have

$$
\frac{1}{\binom{n}{m-1}}\left(\mathbb{I}-\sum_{j=0}^{m-2}\binom{n}{j}\left(L_{A} R_{B}\right)^{-n} \nabla_{A, B}^{j}(\mathbb{I})\right)=\nabla_{A, B}^{m-1}(\mathbb{I})
$$

Since $\binom{n}{m-1}$ is of the order of n^{m-1} and $\binom{n}{m-2}$ is of the order of n^{m-2}, letting $n \longrightarrow \infty$ this implies

$$
\nabla_{A, B}^{m-1}(\mathbb{I})=0 \Longleftrightarrow \Delta_{A, B}^{m-1}(\mathbb{I})=0 .
$$

Repeating the argument, we eventually have

$$
\Delta_{A, B}(\mathbb{I})=0 \Longleftrightarrow\left(S_{1}^{-1} \otimes S_{2}^{-1}\right)\left(T_{1} \otimes T_{2}\right)=\mathbb{I} \Longleftrightarrow S_{1} \otimes S_{2}=T_{1} \otimes T_{2}
$$

hence there exists a scalar c such that $S_{1}=c T_{1}$ and $S_{2}=\frac{1}{c} T_{2}$. In particular, if S_{i}, T_{i} are Hilbert space operators such that $S_{i}=T_{i}^{*}$, then $T_{1} \otimes T_{2}$ is self-adjoint.

References

[1] J. Agler, An abstract approach to model theory. Survey of some Recent Results in Operator Theory: J.B. Conway and B.B. Morrel Editors, Pitman, NJ, USA, Volume II (1988), 1-24.
[2] J. Agler and M. Stankus, m-Isometric transformations of Hilbert space I, Integr. Equat. Oper. Theory 21(1995), 383-420.
[3] F. Bayart, m-isometries on Banach Spaces, Math. Nachr. 284(2011), 2141-2147.
[4] T. Bermúdez, A. Martinón and J.N. Noda, Products of m-isometries, Lin. Alg. Appl. 408(2013) 80-86.
[5] M. Cho and O.A.M. Sid ahmed, (A, m)-Symmetric commuting tuples of operators on a Hilbert space, Math. Inequalities Applications 22(3)(2019), 931-947.
[6] B.P. Duggal and I.H. Kim, Structure of elementary operators defining m-left invertible, m-selfadjoint and related classes of operators, J. Math. Anal. Appl. 495(2020), 124718.
[7] B.P. Duggal and I.H. Kim, Isometric, symmetric and isosymmetric commuting d-tuples of Banach space operators, Results in Mathematics (2023) 78:85, 25pp. (DOI:10.1007/s00025-023-01855-0)
[8] B.P. Duggal and I.H. Kim, m-Isometric tensor products Concrete Operators 10 (2023):2022142. https://doi.org/10.1515/conop.2202142.
[9] B.P. Duggal and V. Müller, Tensor product of left n-invertible operators, Studia Math. 215(2)(2013), 113-125.
[10] J. Gleeson and S. Richter, m-Isometric commuting tuples of operators on a Hilbert space, Integral Equat. Oper. Th. 56(2) (2006), 181-96.
[11] C. Gu, Structure of left n-invertible operators and their applications, Studia Math. 226(2015), 189-211.
[12] C. Gu and M. Stankus, m-isometries and n-symmetries: products and sums with a nilpotent, Linear Alg. Appl. 469(2015), 49-64.
[13] J.W. Helton, Infinite dimensional Jordan operators and Sturm-Liouville conjugate point theory, Trans. Amer. Math. Soc. 170(1972), 305-331.
[14] S, Paul and C. Gu, Tensor splitting properties of n-inverse pairs of operators, Studia Math. 238(2017), 17-36
[15] O.A.M. Sid Ahmed, M. Cho and J.E. Lee, On (m, C)-isometric commuting tuples of operators on a Hilbert space, Results in Mathematics (2018) 73:51. (Doi:10.1007/s00025-018-0810-0)

[^0]: 2020 Mathematics Subject Classification. Primary 47A05, 47A55; Secondary 47A11, 47B47.
 Keywords. Banach space, commuting d-tuples,left/right multiplication operator, m-left invertible, m-isometric and m-selfadjoint operators, product of operators, tensor product.

 Received: 17 September 2023; Accepted: 10 February 2024
 Communicated by Dragan S. Djordjević
 Email address: bpduggal@yahoo.co.uk (Bhagwati P. Duggal)

