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Strict isometric and strict symmetric commuting d-tuples of Banach
space operators
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Abstract. Given commuting d-tuples Si and Ti, 1 ≤ i ≤ 2, of Banach space operators such that the tensor
products pair (S1 ⊗ S2,T1 ⊗T2) is strict m-isometric (resp., S1, S2 are invertible and (S1 ⊗ S2,T1 ⊗T2) is strict
m-symmetric), there exist integers mi > 0, and a non-zero scalar c, such that m = m1 + m2 − 1, (S1, 1

cT1) is
strict m1-isometric and (S2, cT2) is strict m2-isometric (resp., there exist integers mi > 0, and a non-zero scalar
c, such that m = m1 +m2 − 1, (S1, 1

cT1) is strict m1-symmetric and (S2, cT2) is strict m2-symmetric). However,
(Si,Ti) is strict mi-isometric (resp., strict mi-symmetric) for 1 ≤ i ≤ 2 implies only that (S1 ⊗ S2,T1 ⊗ T2) is
m-isometric (resp., (S1 ⊗ S2,T1 ⊗ T2) is m-symmetric).

1. Introduction

Let B(X) (resp., B(H)) denote the algebra of operators, i.e. bounded linear transformations, on an infinite
dimensional complex Banach space X into itself (resp., on an infinite dimensional complex Hilbert space
H into itself) , C denote the complex plane, B(X)d (resp., B(H)d and Cd) the product of d copies of B(X)
(resp., B(H) and C) for some integer d ≥ 1, z the conjugate of z ∈ C and z = (z1, z2, ..., zd) ∈ Cd. A d-tuples
A = (A1, · · · ,Ad) ∈ B(X)d is a commuting d-tuple if [Ai,A j] = AiA j − A jAi = 0 for all 1 ≤ i, j ≤ d. If P is
a polynomial in Cd and A is a d-tuple of commuting operators in B(H)d, then A is a hereditary root of
P if P(A) = 0. Two particular operator classes of hereditary roots which have drawn a lot of attention
in the recent past are those of m-isometric and m-symmetric (also called m-selfadjoint) operators, where

A ∈ B(H) is m-isometric, m some positive integer, if
∑m

j=0(−1) j

(
m
j

)
A∗ jA j = 0 and A ∈ B(H) is m-symmetric

if
∑m

j=0(−1) j

(
m
j

)
A∗(m− j)A j = 0. Clearly, m-isometric operators arise as solutions of P(z) = (zz − 1)m = 0

and m-symmetric operators arise as solutions of P(z) = (z − z)m = 0. The class of m-isometric operators
was introduced by Agler [1] and the class of m-symmetric operators was introduced by Helton [13] (albeit
not as operator solutions of the polynomial equation (z − z)m = 0). These classes of operators, and their
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variants (of the left m-invertible and m-symmetric Banach space pairs (A,B) type [6]), have since been studied
by a multitude of authors, amongst them Agler and Stankus [2], Bayart [3], Bermudez et al [4], Duggal and
Kim [6, 7], Gu [11], Gu and Stankus [12] and Paul and Gu [14].

Generalising the m-isometric property of operators A ∈ B(H) to commuting d-tuplesA ∈ B(H)d, Gleeson
and Richter [10] say thatA is m-isometric if

m∑
j=0

(−1) j
(

m
j

)∑
|β|= j

j!
β!
A∗βAβ = 0, (1)

where

β = (β1, · · · , βd), |β| =
d∑

i=1

βi, β! = Πd
i=1βi!,Aβ = Πd

i=1Aβi

i ,A
∗β = Πd

i=1A∗βi

i ;

A is said to be m-symmetric if

m∑
j=0

(−1) j
(

m
j

)
(A∗1 + · · · + A∗d)m− j(A1 + · · · + Ad) j = 0. (2)

These generalisations and certain of their variants, in particular left m-invertible Banach space operator
pairs (A,B):

△
m
A,B(I) =

m∑
j=0

(−1) j
(

m
j

)
A jB j = 0

and m-symmetric pairs (A,B):

δm
A,B(I) =

m∑
j=0

(−1) j
(

m
j

)
Am− jB j = 0,

have recently been the subject matter of a number of studies, see [5, 6, 9, 11, 14, 15] for further references.

Recall that a pair (A,B) of Banach space operators is strict m-left invertible if △m
A,B(I) = 0 and △m−1

A,B (I) , 0;
similarly, the pair (A,B) is strict m-symmetric if δm

A,B(I) = 0 and δm−1
A,B (I) , 0. Products (A1A2,B1B2) of mi-

isometric, similarly misymmetric, pairs (Ai,Bi), 1 ≤ i ≤ 2, such that A1 commutes with A2, and B1 commutes
with B2, are (m1 + m2 − 1)-isometric, respectively (m1 + m2 − 1)-symmetric [4, 6, 9, 11]. The converse fails,
even for strict m-isometric (and strict m-symmetric) operator pairs (A1A2,B1B2). A case where there is an
answer in the positive is that of the tensor product pairs (A1⊗A2,B1⊗B2): (i) (A1⊗A2,B1⊗B2) is m-isometric
if and only if there exist integers mi > 0, and a non-zero scalar c, such that m = m1 + m2 − 1, (A1, 1

c B1)
is m1-isometric and (A2, cB2) is m2-isometric [14, Theorem 1.1]; (ii) if Ai are left invertible and Bi are right
invertible, 1 ≤ i ≤ 2, then (A1 ⊗ A2,B1 ⊗ B2) is m-symmetric if and only if there exist integers mi > 0 and a
non-zero scalar c such that m = m1 + m2 − 1, (A1, 1

c B1) is m1-symmetric and (A2, cB2) is m2-symmetric [14,
Theorem 5.2].

In this paper, we start by (equivalently) defining m-isometric and m-symmetric pairs (A,B) of commuting
d-tuples of Banach space operators in terms of the elementary operators of left and right multiplication (see
[7], where this is done for single linear operators). Alongwith introducing other relevant notations and
terminology, this is done in Section 2. Section 3 considers the relationship between the m-isometric properties
of (Ai,Bi) (similarly, m-symmetric properties of (Ai,Bi)), 1 ≤ i ≤ 2, and their product (A1A2,B1B2). A
necessary and sufficient condition for product pairs (A1A2,B1B2) to be strict m-isometric (similarly, strict
m-symmetric) is proved and its relationship with the strictness of m-isometric pairs (Ai,Bi) is explained.
Section 4, the penultimate section, proves that the results of Paul and Gu [14] extend to tensor products
of commuting d-tuples. (We remark here that the conditional statement of Theorem 1.1 of [14] holds in
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one direction, thus opening of the bracket (strict) in statement (a) of the theorem implies the opening
of the brackets (strict) in statement (b) of the theorem, but fails the other way: see [8] for an example.)
The advantage of our defining m-isometric (and, similarly, m-symmetric) pairs (A,B) using the left/right
multiplication operators over definition (1) (resp., (2)) lies in the fact that it provides us with a means to
exploit familiar arguments used to prove 1-tuple (i.e., single linear operator) version of these results. Here
it is seen that the invertibility of Si, 1 ≤ i ≤ 2, is a sufficient condition, a condition guaranteed by the left
invertibility of Si and the right invertibility of Ti (1 ≤ i ≤ 2), in [14, Theorem 5.2].

2. Definitions and introductory properties

For A,B ∈ B(X), let LA and RB ∈ B(B(X)) denote respectively the operators

LA(X) = AX and RB(X) = XB

of left multiplication by A and right multiplication by B. Given commuting d-tuples A = (A1, · · · ,Ad) and
B = (B1, · · · ,Bd) ∈ B(X)d, let Lα

A
and Rα

B
,

α = (α1, · · · , αd), |α| =
d∑

i=1

αi, αi ≥ 0 for all 1 ≤ i ≤ d,

be defined by
LαA = Π

d
i=1Lαi

Ai
, RαB = Π

d
i=1Rαi

Bi
.

For an operator X ∈ B(X), let convolution “*” and multiplication “×” denote, respectively, the operations

(LA ∗RB) j(X) =

∑
|α|= j

j!
α!
LαAR

α
B

 (X) =

 d∑
i=1

LAi RBi


j

(X)

(all integers j ≥ 0, α! = α1! · · ·αd!) and

(LA ×RB) (X) =

 d∑
i=1

LAi


 d∑

i=1

RBi

 (X).

Define the operator ⌊
∑d

i=1 AiXBi⌋
n by

⌊

d∑
i=1

AiXBi⌋
n =

d∑
i=1

Ai⌊

d∑
i=1

AiXBi⌋
n−1Bi for all positive integers n.

(Thus, ⌊A⌋n = A⌊A⌋n−1I = I⌊A⌋n−1A = · · · = An, ⌊AB⌋n = A⌊AB⌋n−1B = · · · = AnBn and ⌊
∑d

i=1 AiBi⌋
n =∑d

i=1 Ai⌊
∑d

i=1 AiBi⌋
n−1Bi.)

We say that the d-tuplesA and B commute, [A,B] = 0, if

[Ai,B j] = AiB j − B jAi = 0 for all 1 ≤ i, j ≤ d.

Evidently,
[LA,RB] = 0

and if [A,B] = 0, then
[LA,LB] = [RA,RB] = 0.
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A pair (A,B) of commuting d-tuples A and B is said to be m-isometric, (A,B) ∈ m-isometric, for some
positive integer m, if

△
m
A,B(I) = (I − LA ∗RB)m(I)

=

m∑
j=0

(−1) j
(

m
j

)
(LA ∗RB) j (I)

=

m∑
j=0

(−1) j
(

m
j

)  d∑
i=1

LAi RBi


j

(I)

=

m∑
j=0

(−1) j
(

m
j

)
⌊

d∑
i=1

AiBi⌋
j

=

m∑
j=0

(−1) j
(

m
j

) ∑
|α|= j

j!
α!
AαBα


= 0;

(A,B) is n-symmetric, for some positive integer n, if

δn
A,B(X) = (LA −RB)n(I)

=

 n∑
j=0

(−1) j
(

n
j

)
L

n− j
A
×R

j
B

 (I)

=

 n∑
j=0

(−1) j
(

n
j

)  d∑
i=1

LAi


n− j  d∑

i=1

RBi


j (I)

=

n∑
j=0

(−1) j
(

n
j

)  d∑
i=1

Ai


n− j  d∑

i=1

Bi


j

= 0.

Commuting tuples of m-isometric, similarly n-symmetric operators, share a large number of properties
with their single operator counterparts: for example, △m

A,B(I) = 0 implies △t
A,B(I) = 0, similarly δm

A,B(I) = 0
implies δt

A,B(I) = 0, for integers t ≥ m However, there are instances where a property holds for the single
operator version but fails for the d-tuple version: for example, whereas

△
m
A,B(I) = 0⇐⇒ △m

A−1,B−1 (I) = 0 for all invertible A and B

(similarly, for m-symmetric (A,B)), this property fails for d-tuples. Consider, for example, 2-tuplesA = B =
( 1

2 I, 1
2 I) andA−1 = B−1 = (2I, 2I), when it is seen that (A,B) is 1-isometric but (A−1,B−1) is not 1-isometric.

If (A,B) ∈ (X,m)-isometric, then

△
m
A,B(X) = 0⇐⇒ (I − LA ∗ RB)

(
△

m−1
A,B(X)

)
= 0

⇐⇒ (LA ∗RB)△m−1
A,B(X) = △m−1

A,B(X)

=⇒ · · · =⇒ (LA ∗RB)t
△

m−1
A,B(X) = △m−1

A,B(X)

and if (A,B) ∈ (X,n)-symmetric, then

δn
A,B(X) = 0⇐⇒ (LA −RB)(δn−1

A,B(X) = 0

⇐⇒ LAδ
n−1
A,B(X) = RB(δn−1

A,B(X))

=⇒ · · · =⇒ Lt
Aδ

n−1
A,B(X) = Rt

Bδ
n−1
A,B(X).
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for all integers t ≥ 0. Here

LA(δn−1
A,B(X)) = LA

n−1∑
j=0

(−1) j
(

n − 1
j

)
L

n−1− j
A

×R
j
B

 (X)

=

n−1∑
j=0

(−1) j
(

n − 1
j

)
L

n− j
A
×R

j
B

 (X)

and

RB(δn−1
A,B(X)) =

n−1∑
j=0

(−1) j
(

n − 1
j

)
L

n−1− j
A

×R
j+1
B

 (X).

3. Results: strictness of products

LetA.B ∈ B(X)d be commuting d-tuples, and let EA,B denote the operator

EA,B(X) = (LA ∗RB)(X), X ∈ B(X).

By definition, (A,B) is strict m-isometric if△m
A,B(I) = 0 and△m−1

A,B(I) , 0; similarly, (A,B) is strict m-symmetric
if δm
A,B(I) = 0 and δm−1

A,B(I) , 0. In the following, we give a necessary and sufficient condition for the products
pair (A1A2,B1B2), Ai and Bi commuting d-tuples, to be strict m-isometric (resp., strict m-symmetric), and
explore its relationship with the strict m-isometric (resp., mi-symmetric) property of (Ai,Bi); i = 1, 2. We
start with a technical lemma.

Lemma 3.1. (i). If (A,B) is strict m-isometric, then the sequence {Et±r
A,B△

r
A,B(I)}m−1

r=0 is linearly independent for all
t ≥ m − 1.

(ii). If (A,B) is strict m-symmetric and Lm−1
A
δm−1
A,B(I) , 0, then the sequences {Lr

A
δr
A,B(I)}m−1

r=0 and {Rr
B
δr
A,B(I)}m−1

r=0
are linearly independent.

Proof. The proof in both the cases is by contradiction.
(i). Assume that there exist scalars ai, 0 ≤ i ≤ m − 1, not all zero such that

∑m−1
r=0 arE

t±r
A,B△

r
A,B(I) = 0. Then,

since △m
A,B(I) = 0 and EA,B commutes with △A,B,

△
m−1
A,B

m−1∑
r=0

arE
t±r
A,B△

r
A,B(I)

 = 0

=⇒ a0E
t
A,B△

m−1
A,B(I) = 0

=⇒ a0 = 0,

since
△

m
A,B(I) = 0⇐⇒ △m−1

A,B(I) = EA,B△m−1
A,B(I)

implies
E

t
A,B△

m−1
AB (I) = △m−1

A,B(I) , 0.

Again,

△
m−2
A,B

m−1∑
r=1

arE
t±r
A,B△

r
A,B(I)

 = 0

=⇒ a1E
t±1
A,B△

m−1
A,B(I) = 0

=⇒ a1 = 0,



Bhagwati P. Duggal / FAAC 16 (1) (2024), 69–86 74

and hence repeating the argument

△A,B

 m−1∑
r=m−2

ArE
t±r
A,B△

r
A,B(I)

 = 0

=⇒ am−2E
t±(m−2)
A,B △

m−1
A,B(I) = 0

=⇒ am−2 = 0 =⇒ am−1△
m−1
A,B(I) = 0⇐⇒ am−1 = 0.

This is a contradiction.

(ii). We prove the linear independence of the sequence {Lr
A
δr
A,B(I)}m−1

r=0 ; since

δm
A,B(I) = 0⇐⇒ LAδm−1

A,B(I) = RBδm−1
A,B(I),

the proof for the linear independence of the second sequence follows from that of the first. Suppose there
exist scalars ai, not all zero, such that

∑m−1
r=0 arLr

A
δr
A,B(I) = 0. Then, since δm

A,B(I) = 0, LA commutes with δA,B
and Lm−1

A
δm−1
A,B(I) , 0,

δm−1
A,B

m−1∑
r=0

arL
r
Aδ

r
A,B(I)

 = 0

=⇒ a0δ
m−1
A,B(I) = 0⇐⇒ a0 = 0,

δm−2
A,B

m−1∑
r=1

arL
r
Aδ

r
A,B(I)

 = 0

=⇒ a1LAδ
m−1
A,B(I) = 0⇐⇒ a1 = 0,

and hence repeating the argument

δA,B

 m−1∑
r=m−2

arL
r
Aδ

r
A,B(I)

 = 0

=⇒ am−2L
m−2
A δ

m−1
A,B(I) = 0⇐⇒ am−2 = 0

=⇒ am−1L
m−1
A δ

m−1
A,B(I) = 0

⇐⇒ am−1 = 0.

This is a contradiction.

Remark 3.2. Since δm−1
A,B(I) , 0 for a strict m-symmetric commuting d-tuple (A,B), the left invertibility ofA

(and hence LA) is a sufficient condition for Lm−1
A
δm−1
A,B(I) , 0.

Let X⊗X denote the completion, endowed with a reasonable cross norm, of the algebraic tensor product
of X with itself. Let S ⊗ T denote the tensor product of S ∈ B(X) with T ∈ B(X). The tensor product of the
d-tuplesA = (A1, · · · ,Ad) and B = (B1, · · · ,Bd) is the d2-tuple

A ⊗ B = (A1 ⊗ B1, · · · ,A1 ⊗ Bd,A2 ⊗ B1, · · · ,A2 ⊗ Bd, · · · ,Ad ⊗ B1, · · · ,Ad ⊗ Bd).

Let I = I ⊗ I. (Recall that the operator EA,B is defined by EA,B(X) = (LA ∗RB)(X).)

Theorem 3.3. Given commuting d-tuplesAi,Bi ∈ B(X)d, any two of the following conditions implies the third.

(i) (A1 ⊗A2,B1 ⊗ B2) is m-isometric; m = m1 +m2 − 1.
(ii) (A1,B1) is m1-isometric.
(iii) (A2,B2) is m2-isometric.
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Proof. It is well known, see [7], that (ii) and (iii) imply (i). We prove (i) and (ii) imply (iii); the proof of (i)
and (iii) imply (ii) is similar.

Start by observing that if we let

S1 = A1 ⊗ I, S2 = I ⊗A2,T1 = B1 ⊗ I and T2 = I ⊗ B2,

then

[S1, S2] = [T1,T2] = 0 = [S1,T2] = [S2,T1]
(Ai,Bi) is mi − isometric⇐⇒ (Si,Ti) is mi − isometric, i = 1, 2,
(A1 ⊗A2,B1 ⊗ B2) is m − isometric⇐⇒ (S1S2,T1T2) ∈ m − isometric

and

(i) ∧ (ii) =⇒ (iii) if and only if (S1S2,T1T2) is m − isometric
and (S1,T1) is m1 − isometric imply (S2,T2) is m2 − isometric.

Let t ≤ m1 be the least positive integer such that (S1,T1) ∈ t-isometric. (Thus, (S1,T1) is strict t-isometric.)
Then

△
m
S1S2,T1T2

(I) = (I − ES1S2,T1T2 )m(I)

=
(
ES1,T1△S2,T2 + △S1,T1 )m)

(I)

=

m∑
j=0

(
m
j

)
E

m− j
S1,T1
△

m− j
S2,T2
△

j
S1,T1

(I) = 0.

Since the operators ES1,T1 and △S2,T2 commute, as also do the operators △S1,T1 and △S2,T2 ,

E
m− j
S1,T1

(△ j
S1,T1

)(I)

=

 j∑
k=0

(−1)k
(

j
k

)
E

m− j+k
S1,T1

 (I)

=

j∑
k=0

(−1)k
(

j
k

)
⌊

d∑
i=1

LA1i⊗IRB1i⊗I⌋
m− j+k(I)

=

j∑
k=0

(−1)k
(

j
k

)
⌊

d∑
i=1

A1iB1i ⊗ I⌋m− j+k

(⌊
d∑

i=1

A1iB1i ⊗ I⌋n =
d∑

i=1

(A1i ⊗ I)⌊
d∑

i=1

A1iB1i ⊗ I⌋n−1(B1i ⊗ I),

all positive integers n)

=

j∑
k=0

(−1)k
(

j
k

)
⌊

d∑
i=1

A1iB1i⌋
m− j+k

⊗ I

= X j ⊗ I (say).
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Hence

△
m− j
S2,T2

(
E

m− j
S1,T1

(△ j
S1,T1
I)
)

=

m− j∑
p=0

(−1)p
(

m − j
p

) I ⊗ ⌊
d∑

i=1

A2iB2i⌋


p (

X j ⊗ I
)

=

m− j∑
p=0

(−1)p
(

m − j
p

) X j ⊗ ⌊

d∑
i=1

A2iB2i⌋
p


= X j ⊗ Y j say,

and

△
m
S1S2,T1T2

(I) =
m∑

j=0

(
m
j

)
(X j ⊗ Y j).

The sequence {X j}
t−1
j=0 being linearly independent, we must have Y j = 0 for all 0 ≤ j ≤ t − 1. Since j ≤ t − 1

implies m − j = m1 +m2 − 1 − t + 1 ≥ m2, we have

I ⊗
m2∑
p=0

(−1)p
(

m2
p

)
⌊

d∑
i=1

A2iB2i⌋
p = 0

⇐⇒

m2∑
p=0

(−1)p
(

m2
p

)
⌊

d∑
i=1

A2iB2i⌋
p

= △
m2
A2,B2

(I) = 0.

This completes the proof.

An anlogue of Theorem 3.3 holds for products of m-symmetric operators.

Theorem 3.4. Given commuting d-tuplesAi,Bi ∈ B(X)d such thatAi is left invertible for 1 ≤ i ≤ 2, any two of the
following conditions implies the third.

(i). (A1 ⊗A2,B1 ⊗ B2) is m-symmetric; m = m1 +m2 − 1.
(ii). (A1,B1) is m1-symmetric.
(iii). (A2,B2) is m2-symmetric.

Proof. That (ii) and (iii) imply (i), without any hypothesis on the left invertibility of A1 and A2, is well
known [7]. We prove (i) and (ii) imply (iii); the proof of (i) and (iii) imply (ii) is similar and left to the reader.

Assume t ≤ m1 is the least positive integer such that δt−1
A1,B1

(I) , 0. (Thus, A1,B1 is strict t-symmetric.)
Then

δm
A1⊗A2,B1⊗B2

(I) = (LA1⊗A2 −RB1⊗B2 )m(I)

=
(
LA1 ⊗ LA2 −RB1 ⊗RB2

)m (I)
=

(
(LA1 ⊗ LA2 −RB1 ⊗ LA2 ) + (RB1 ⊗ LA2 −RB1 ⊗RB2 )

)m (I)

=

 m∑
j=0

(
m
j

) (
δm− j
A1,B1

⊗ L
m− j
A2

)
×

(
R

j
B1
⊗ δ j
A2,B2

) (I)

=

m∑
j=0

(
m
j

) (
R

j
B1
δm− j
A1,B1

(I)
)
⊗

(
L

m− j
A2
δ j
A2,B2

(I)
)
.
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Since (A1,B1) is strict t-symmetric and LA1δ
t−1
A1,B1

(I) = RB1δ
t−1
A1,B1

(I) , 0, the argument of the proof of Lemma

3.1 implies the linear independence of the sequence {R j
B1
δm− j
A1,B1

(I)}t−1
m− j=0. Hence Lm− j

A2
δ j
A2,B2

(I) = 0 for all
m − j ≤ t − 1, equivalently, j ≥ m − t + 1 ≥ m1 +m2 − 1 −m1 + 1 = m2. But then, since LA2 is left invertible,
δ j
A2,B2

(I) = 0 for all j ≥ m2.

Strictness in conditions (i)− (iii) of Theorem 3.3 requires more: thus whereas (A1⊗A2,B1⊗B2) is strictly
m isometric implies (Ai,Bi) is strictly mi-isometric for both i = 1 and i = 2, (Ai,Bi) is strictly mi-isometric
for both i = 1 and i = 2 does not in general imply (A1 ⊗A2,B1 ⊗ B2) is strictly m isometric.

Theorem 3.5. Given commuting d-tuplesAi,Bi ∈ B(X)d, 1 ≤ i ≤ 2, such that [A1,A2] = [B1,B2] = 0, if (Ai,Bi)
is mi-isometric and (A1A2,B1B2) is m isometric, m = m1 +m2 − 1, then:

(i) (A1A2,B1B2) is strictl m-isometric if and only if

△
m1−1
A1,B1

(
△

m2−1
A2,B2

(I)
)
= △m2−1

A2,B2

(
△

m1−1
A1,B1

(I)
)
, 0; (3)

(ii) (A1A2,B1B2) is strict m-isometric implies (Ai,Bi) is strict mi-isometric for 1 ≤ i ≤ 2;
(iii) (Ai,Bi) is strict mi-isometric for 1 ≤ i ≤ 2 does not imply (A1A2,B1B2) is strict m-isometric

Proof. The hypothesis [A1,A2] = [B1,B2] = 0 implies

[△A1,B1 ,△A2,B2 ] = 0 = [Em2−1
A1,B1
,△A2,B2 ].

Since

E
m2−1
A1,B1
△

m1−1
A1,B1

(
△

m2−1
A2,B2

(I)
)

= △
m2−1
A2,B2

(
E

m2−1
A1,B1
△

m1−1
A1,B1

(I)
)

= △
m2−1
A2,B2

(
△

m1−1
A1,B1

(I)
)
,

whenever △m1
A1,B1

(I) = 0 (equivalently, EA1,B1△
m1−1
A1,B1

(I) = △m1−1
A1,B1

(I)), if (A1A2,B1B2) is m-isometric and either
of (Ai,Bi), 1 ≤ i ≤ 2, is not strict mi-isometric then (3) is contradicted. Hence (i) implies (ii).

To prove (i), assume (A1A2,B1B2) is strict m-isometric . Then △m
A1A2,B1B2

(I) = 0 and △m−1
A1A2,B1B2

(I) , 0. We
have

0 , △
m−1
A1A2,B1B2

(I)

=

m−1∑
j=0

(
m − 1

j

)
△

m−1− j
A2,B2

(
E

m−1− j
A1,B1

△
j
A1,B1

(I)
)

(see the proof ofTheorem 3.3)

=

m1−1∑
j=0

(
m − 1

j

)
△

m−1− j
A2,B2

(
E

m−1− j
A1,B1

△
j
A1,B1

(I)
)

(since △m1
A1,B1

(I) = 0 for j ≥ m1)

=

(
m − 1
m1 − 1

)
△

m2−1
A2,B2

(
△

m1−1
A1,B1

(I)
)
,

since △m−1− j
A2,B2

(I) = 0 for all m − 1 − j ≥ m2, equivalently, m1 − 2 ≥ j, and Em−1−(m1−1)
A1,B1

(
△

m1−1
A1,B1

(I)
)
= △m1−1

A1,B1
(I).
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To complete the proof, we give an example proving (iii). Let I2 = I ⊕ I, and let A,B ∈ B(X) be such that
(A,B) is strict m-isometric. Define operatorsAi,Bi ∈ B(X ⊕X)d, 1 ≤ i ≤ 2, by

A1 = (A11, · · · ,A1d) =
1
√

d
(A ⊕ I, · · · ,A ⊕ I),

A2 = (A21, · · · ,A2d) =
1
√

d
(I ⊕ A, · · · , I ⊕ A),

B1 = (B11, · · · ,B1d) =
1
√

d
(B ⊕ I, · · · ,B ⊕ I),

B2 = (B21, · · · ,B2d) =
1
√

d
(I ⊕ B, · · · , I ⊕ B).

Then

△
m
A1,B1

(I2) =

m∑
j=0

(−1) j
(

m
j

) (
LA1 ∗RB1

)m− j (I2)

=

m∑
j=0

(−1) j
(

m
j

)
⌊

d∑
i=1

1
d

(AB ⊕ I)⌋m− j

⌊ d∑
i=1

(AB ⊕ I)⌋t =
d∑

i=1

(A ⊕ I)⌊
d∑

i=1

(AB ⊕ I)⌋t−1(B ⊕ I) for integers t ≥ 1


=

m∑
j=0

(−1) j
(

m
j

)
⌊(AB ⊕ I)⌋m− j

=

m∑
j=0

(−1) j
(

m
j

)
(Am− jBm− j

⊕ I)

= 0,

and

△
m−1
A1,B1

(I2) , 0.

Similarly, △m
A2,B2

(I2) = 0 and △m−1
A2,B2

(I2) , 0.

Consider now △m
A1A2,B1B2

(I2). SinceAi and Bi are commuting d-tuples such that [A1,A2] = [B1,B2] = 0,
(A1A2,B1B2) is (2m − 1)-isometric. Again, since

A1A2 =
1
d

(A ⊕ A, · · · ,A ⊕ A) ∈ B(X ⊕X)d2

and

B1B2 =
1
d

(B ⊕ B, · · · ,B ⊕ B) ∈ B(X ⊕X)d2
,
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△
m
A1A2,B1B2

(I2)

=

m∑
j=0

(−1) j
(

m
j

) (
LA1A2 ∗RB1B2

)m− j (I2)

=

m∑
j=0

(−1) j
(

m
j

)
⌊

d2∑
i=1

1
d2 (AB ⊕ AB)⌋m− j

(⌊
d2∑

i=1

(AB ⊕ AB)⌋t =
d2∑

i=1

(A ⊕ A)⌊
d2∑

i=1

(AB ⊕ AB)⌋t−1(B ⊕ B)

for all integers t ≥ 1)

=

m∑
j=0

(−1) j
(

m
j

)
⌊(AB ⊕ AB)⌋m− j

=

m∑
j=0

(−1) j
(

m
j

)
(Am− jBm− j

⊕ Am− jBm− j)

= 0,

i.e., (A1A2,B1B2) is m-isometric. Thus (A1A2,B1B2) is not strict (2m − 1)-isometric for all m ≥ 2.

Remark 3.6. Choosing A,B ∈ B(X), andAi,Bi ∈ B(X⊕X)d, to be the operators of the example proving part
(iii), define operators Si andTi ∈ B((X⊕X)⊗(X⊕X))d by Si = Ai ⊗ I2 andTi = Bi ⊗ I2; 1 ≤ i ≤ 2 and I2 = I⊕ I.
Then (Si,Ti) and (S1 ⊗ S2,T1 ⊗ T2), 1 ≤ i ≤ 2, are all strict m-isometric. Recall from Remark 2.6 of [8] that
(Ai,Bi), 1 ≤ i ≤ 2, strict mi-isometric and [A1,A2] = [B1,B2] = 0 does not in general imply (A1A2,B1B2) is
strict (m1 +m2 − 1)-isometric.

Just as for m-isometric operators, strictness for m-symmetric operators requires more.

Theorem 3.7. Given commuting d-tuplesAi,Bi ∈ B(X)d such that [A1,A2] = [B1,B2] = 0, andAi is left invertible
for 1 ≤ i ≤ 2, if (Ai,Bi) is mi-symmetric, 1 ≤ i ≤ 2, and (A1A2,B1B2) is m-symmetric, m = m1 +m2 − 1, then:

(i) (A1A2,B1B2) is strict m-symmetric if and only if

Lm2−1
A1
× δm2−1
A2,B2

(
Rm1−1
A2
× δm1−1
A1,B1

(I)
)

(4)

= Rm1−1
A2
× δm1−1
A1,B1

(
Lm2−1
A1
× δm2−1
A2,B2

(I)
)
, 0; (5)

(ii) (A1A2,B1B2) is strict m-symmetric implies (Ai,Bi) is strict mi-symmetric for 1 ≤ i ≤ 2;
(iii) (Ai,Bi) is strict mi-symmetric for 1 ≤ i ≤ 2 does not imply (A1A2,B1B2) is strict m-symmetric.

Proof. (i) and (ii). Evidently, if either of (Ai,Bi) is not strict mi-symmetric, then (4) and (5) equal 0 and (i) is
violated. Hence (i) implies (ii). We prove (i), and then modify the example in the proof of Theorem 3.5 to
prove (iii).

(A1A2,B1B2) is strict m-symmetric if and only if δm
A1A2,B1B2

(I) = 0 and

0 , δm−1
A1A2,B1B2

(I) = (LA1A2 −RB1B2 )m−1(I)

=

m−1∑
j=0

(
m − 1

j

) (
Lm−1− j
A1

× δm−1− j
A2,B2

) (
R

j
A2
× δ j
A1,B1

)
(I)

=

m−1∑
j=0

(
m − 1

j

) (
R

j
A2
× δ j
A1,B1

) (
Lm−1− j
A1

× δm−1− j
A2,B2

)
(I)
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by the commutativity hypotheses on Ai,Bi and the commutativity of the left and the right multiplication
operators. Since

R
j
A2
× δ j
A1,B1

(I) = (
d∑

i=1

RA2i )
j(δ j
A1,B1

(I)) = 0

for all j ≥ m1 ,

0 ,
m1−1∑

j=0

(
m − 1

j

) (
R

j
A2
× δ j
A1,B1

) (
Lm−1− j
A1

× δm−1− j
A2,B2

)
(I).

But then, since δm−1− j
A2,B2

(I) = 0 for m − 1 − j = m1 +m2 − 2 − j ≥ m2,

0 ,
(

m − 1
m1 − 1

) (
Rm1−1
A2
× δm1−1
A1,B1

) (
Lm2−1
A1
× δm2−1
A2,B2

)
(I).

(iii). Define operatorsAi and Bi, 1 ≤ i ≤ 2, as in the proof of Theorem 3.5(iii) but with
√

d replaced by d.
Choose the operators A,B this time to be such that A is left invertible and (A,B) is strict m-symmetric. Let,
as before, I2 = I ⊕ I. Then, since

δm
A1,B1

(I2) =

 m∑
j=0

(−1) j
(

m
j

)  d∑
i=1

LA1i


m− j  d∑

i=1

RB1i


j (I2)

=

 m∑
j=0

(−1) j
(

m
j

) (
Lm− j

A⊕I R
j
B⊕I

) (I2)

=

m1−1∑
j=0

(−1) j
(

m
j

) (
Lm− j

A R j
B ⊕ I

) (I2)

= δm
A,B(I) ⊕ 0 = 0,

i.e., (A1,B1) is m-symmetric. Similarly, (A2,B2) is m-symmetric. This, in view of the fact that [A1,A2] =
[B1,B2] = 0, implies (A1A2,B1B2) is (2m − 1)-symmetric. However,

δm
A1A2,B1B2

(I2) =


m∑

j=0

(−1) j
(

m
j

)  1
d2

d2∑
i=1

LA⊕A


m− j  1

d2

d2∑
i=1

RB⊕B


j (I2)

=

 m∑
j=0

(−1) j
(

m
j

) (
Lm− j

A R j
B ⊕ Lm− j

A R j
B

) (I2)

= 0.

Hence (A1A2,B1B2) is not strict (2m − 1)-symmetric for all m > 1.

4.. Results: the inverse problem

By definition, (S1 ⊗ S2,T1 ⊗ T2) is m-isometric if and only if

△
m
S1⊗S2,T1⊗T2

(I ⊗ I) =

 m∑
j=0

(−1) j
(

m
j

) (
LS1⊗S2 RT1⊗T2

) j

 (I ⊗ I)

=

m∑
j=0

(−1) j
(

m
j

)
⌊S1T1⌋

j
⊗ ⌊S2T2⌋

j

= 0
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and it is strict m-isometric if and only if it is m-isometric and

△
m−1
S1⊗S2,T1⊗T2

(I ⊗ I) =
m−1∑
j=0

(−1) j
(

m − 1
j

)
⌊S1T1⌋

j
⊗ ⌊S2T2⌋

j , 0.

(Recall that, given operators Si,Ti ∈ B(X), 1 ≤ i ≤ d, ⌊
∑d

i=1 SiTi⌋
t = S1⌊

∑d
i=1 SiTi⌋

t−1T1+ · · ·+Sd⌊
∑d

i=1 SiTi⌋
t−1Td.)

Paul and Gu [14, Theorem 1.1] prove that “if (S1⊗S2,T1⊗T2) is m-isometric, then there exist integers mi > 0,
and a non-zero scalar c, such that m = m1 + m2 − 1, (S1, 1

c T1) is m1-isometric and (S2, cT2) is m2-isometric”.
Translating this into the terminology above, one has the following.

Proposition 4.1. Given operators Si,Ti ∈ B(X), 1 ≤ i ≤ 2, if

m∑
j=0

(−1) j
(

m
j

)
⌊S1T1⌋

j
⊗ ⌊S2T2⌋

j = 0

then there exist integers mi > 0, and a non-zero scalar c, such that m = m1 +m2 − 1,

m1∑
j=0

(−1) j
(

m1
j

)
⌊S1(

1
c

T1)⌋ j = 0 =
m2∑
j=0

(−1) j
(

m2
j

)
⌊S2(cT2)⌋ j.

The following theorem is an analogue of [14, Theorem 1.1] for commuting d-tuples of operators. Our proof,
which depends on an application of Proposition 4.1, is achieved by reducing the problem to that for single
linear operators.

Theorem 4.2. If Si,Ti ∈ B(X)d, 1 ≤ i ≤ 2, are commuting d-tuples such that (S1⊗S2,T1⊗T2) is strict m-isometric,
then there exist integers mi > 0, and a non-zero scalar c, such that m = m1 +m2 − 1, (S1, 1

cT1) is strict m1-isometric
and (S2, cT2) is strict m2-isometric.

Proof. If (S1 ⊗ S2,T1 ⊗ T2) is strict m-isometric, then, since

S1 ⊗ S2 = (S11 ⊗ S21, · · · ,S11 ⊗ S2d,S12 ⊗ S21, · · · ,S12 ⊗ S2d, · · · ,S1d ⊗ S21, · · · ,S1d ⊗ S2d)

and
T1 ⊗ T2 = (T11 ⊗ T21, · · · ,T11 ⊗ T2d,T12 ⊗ T21, · · · ,T12 ⊗ T2d, · · · ,T1d ⊗ T21, · · · ,T1d ⊗ T2d),

0 = △
m
S1⊗S2,T1⊗T2

(I)

=

 m∑
j=0

(−1) j
(

m
j

) (
LS1⊗S2 ∗RT1⊗T2

) j

 (I

=

m∑
j=0

(−1) j
(

m
j

)
⌊

d∑
i,k=1

(S1i ⊗ S2k)(T1i ⊗ T2k)⌋ j.

This, since

⌊

d∑
i,k=1

(S1i ⊗ S2k)(T1i ⊗ T2k)⌋ = ⌊
d∑

i,k=1

S1iT1i ⊗ S2iT2k⌋

= ⌊

d∑
i=1

S1iT1i⌋ ⊗ ⌊

d∑
k=1

S2kT2k⌋,
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implies

0 = △
m
S1⊗S,T1⊗T2

(I)

=

m∑
j=0

(−1) j
(

m
j

)
⌊

d∑
i=1

S1iT1i⌋
j
⊗ ⌊

d∑
k=1

S2kT2k⌋
j

and

0 , △
m−1
S1⊗S2,T1⊗T2

(I)

=

m−1∑
j=0

(−1) j
(

m − 1
j

)
⌊

d∑
i=1

S1iT1i⌋
j
⊗ ⌊

d∑
k=1

S2kT2k⌋
j.

Applying Proposition 4.1 we have the existence of a non-zero scalar c and positive integers mi, m = m1+m2−1,
such that

m1∑
j=0

(−1) j
(

m1
j

)
⌊

d∑
i=1

S1i(
1
c

T1i)⌋ j = 0 =
m2∑
j=0

(−1) j
(

m2
j

)
⌊

d∑
i=1

S2i(cT2i)⌋ j.

The strictness of the m-isometric property of the tensor products pair (S1 ⊗ S2,T1 ⊗ T2) implies

m1−1∑
j=0

(−1) j
(

m1 − 1
j

)
⌊

d∑
i=1

S1i(
1
c

T1i)⌋ j , 0 ,
m2−1∑

j=0

(−1) j
(

m2 − 1
j

)
⌊

d∑
i=1

S2i(cT2i)⌋ j,

i.e., (S1, 1
cT1) is strict m1-isometric and (S2, cT2) is strict m2-isometric.

Observe from the proof above that the strictness property of the m-isometric operator pair (S1⊗S2,T1⊗T2)
plays no role in the determination of the scalar c or positive integers mi such (S1, 1

cT1) is m1-isometric and
(S2, cT2) is m2-isometric: strictness plays a role only in the determining of the strictness of the m1-isometric
property of (S1, 1

cT1) and the strictness of the m2-isometric property of (S2, cT2). The reverse implication,
i.e., the implication that (S, 1

cT) is strict m1-isometric and (S2, cT2) is strict m2-isometric, fails: this follows
from Theorem 3.5 (see also [8]).

If an operator T ∈ B(H) is m-symmetric, then σa(T), the approximate point spectrum of T, is a subset of
R. Hence T is left invertible if and only if it is invertible. Consider operators Si,Ti ∈ B(X), 1 ≤ i ≤ 2, such
that Si is invertible and δm

S1⊗S2,T1⊗T2
(I ⊗ I) = 0. Then

δm
S1⊗S2,T1⊗T2

(I ⊗ I) =

 m∑
j=0

(−1) j
(

m
j

)
Lm− j

S1⊗S2
R j

T1⊗T2

 (I ⊗ I) = 0

⇐⇒

 m∑
j=0

(−1) j
(

m
j

)
L− j

S1⊗S2
R j

T1⊗T2

 (I ⊗ I) = 0

⇐⇒ △
m
S−1

1 ⊗S−1
2 ,T1⊗T2

(I ⊗ I) = 0.

Assuming, further, (S1 ⊗ S2,T1 ⊗ T2) to be strict m-symmetric, it follows that

(S1 ⊗ S2,T1 ⊗ T2) is strict m − symmetric⇐⇒ (S−1
1 ⊗ S−1

2 ,T1 ⊗ T2) is strict m − isometric.

Hence there exists a non-zero scalar c and positive integers mi, m = m1 +m2 − 1, such that

(S−1
1 ,

1
c

T1) is strict m1 − isometric and (S−1
2 , cT2) is strict m2 − isometric.
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Since

△
mi

S−1
i ,αTi

(I) = 0 ⇐⇒

 mi∑
j=0

(−1) j
(

mi
j

)
L− j

Si
(αRTi )

j

 (I) = 0

⇐⇒

 mi∑
j=0

(−1) j
(

mi
j

)
Lmi− j

Si
(αRTi )

j

 (I) = 0

⇐⇒ δmi
Si,αTi

(I) = 0

and, similarly,

△
mi−1
S−1

i ,αTi
(I) , 0⇐⇒ δmi−1

Si,αTi
(I) , 0,

we have the following Banach space analogue of [14, Theorem 1.2].

Proposition 4.3. If S1,S2 ∈ B(X) are invertible and (S1 ⊗ S2,T1 ⊗ T2) is m-symmetric, for some operators T1,T2 ∈

B(X), then there exists a non-zero scalar c and positive integers mi, m = m1 + m2 − 1, such that (S1, 1
c T1) is

m1-symmetric and (S2, cT2) is m2-symmetric.

Looking upon δm
S1⊗S2,T1⊗T2

(I ⊗ I) as the sum

δm
S1⊗S2,T1⊗T2

(I ⊗ I) =

 m∑
j=0

(−1) j
(

m
j

)
Lm− j

S1⊗S2
R j

T1⊗T2

 (I ⊗ I)

=

m∑
j=0

(−1) j
(

m
j

)
Sm− j

1 T j
1 ⊗ Sm− j

2 T j
2

=

m∑
j=0

(−1) j
(

m
j

) (
⌊S1⌋

mi− j
× ⌊T1⌋

j
)
⊗

(
⌊S2⌋

m− j
× ⌊T2⌋

j
)
,

Proposition 4.3 says the following.

Proposition 4.4. If S1,S2 ∈ B(X) are invertible operators such that

m∑
j=0

(−1) j
(

m
j

) (
⌊S1⌋

m− j
× ⌊T1⌋

j
)
⊗

(
⌊S2⌋

m− j
× ⌊T2⌋

j
)
= 0,

and
m−1∑
j=0

(−1) j
(

m − 1
j

) (
⌊S1⌋

m−1− j
× ⌊T1⌋

j
)
⊗

(
⌊S2⌋

m−1− j
× ⌊T2⌋

j
)
, 0,

then there exists a non-zero scalar c and positive integers mi (1 ≤ i ≤ 2), m = m1 +m2 − 1, such that

m1∑
j=0

(−1) j
(

m1
j

) (
⌊S1⌋

m1− j
× ⌊

1
c

T1⌋
j
)

= 0

=

m2∑
j=0

(−1) j
(

m2
j

) (
⌊S2⌋

m2− j
× ⌊cT2⌋

j
)
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and

m1−1∑
j=0

(−1) j
(

m1 − 1
j

) (
⌊S1⌋

m1−1− j
× ⌊

1
c

T1⌋
j
)

, 0

,

m2−1∑
j=0

(−1) j
(

m2 − 1
j

) (
⌊S2⌋

m2−1− j
× ⌊cT2⌋

j
)
.

Corresponding to Theorem 4.2, we have the following result for tensor products of commuting d-tuples
satisfying a strict m-symmetric property.

Theorem 4.5. If Si,Ti ∈ B(X)d, 1 ≤ i ≤ 2, are commuting d-tuples, S1 and S2 are invertible, and (S1 ⊗ S2,T1 ⊗T2)
is strict m symmetric, then there exists a non-zero scalar c and positive integers mi, m = m1 + m2 − 1, such that
(S1, 1

cT1) is strict m1-symmetric and (S2, cT2) is strict m2-symmetric.

Proof. If (S1 ⊗ S2,T1 ⊗ T2) is strict m-symmetric, then

δm
S1⊗S2,T1⊗T2

(I ⊗ I)

=

 m∑
j=0

(−1) j
(

m
j

)
L

m− j
S1⊗S2

×R
j
T1⊗T2

 (I ⊗ I)

=

m∑
j=0

(−1) j
(

m
j

)  d∑
i,k=1

S1i ⊗ S2k


m− j  d∑

i,k=1

T1i ⊗ T2k


j

=

m∑
j=0

(−1) j
(

m
j

) ⌊ d∑
i=1

S1i⌋
m− j
⌊

d∑
i=1

T1i⌋
j

 ⊗
⌊ d∑

i=1

S2i⌋
m− j
⌊

d∑
i=1

T2i⌋
j


= 0,

and
δm−1
S1⊗S2,T1⊗T2

(I ⊗ I)

=

m−1∑
j=0

(−1) j
(

m − 1
j

) ⌊ d∑
i=1

S1i⌋
m−1− j

⌊

d∑
i=1

T1i⌋
j

 ⊗
⌊ d∑

i=1

S2i⌋
m−1− j

⌊

d∑
i=1

T2i⌋
j


, 0.

The operators S1 and S2 being invertible,
∑d

i=1 S1i and
∑d

i=1 S2i are invertible, Proposition 4.4 applies and we
conclude the existence of a non-zero scalar c and positive integers mi, m = m1 +m2 − 1, such that

m1∑
j=0

(−1) j
(

m1
j

) ⌊ d∑
i=1

S1i⌋
m1− j
⌊

d∑
i=1

1
c

T1i⌋
j

 = δm1

S1, 1cT1
(I) = 0,

m2∑
j=0

(−1) j
(

m2
j

) ⌊ d∑
i=1

S2i⌋
m2− j
⌊

d∑
i=1

cT2i⌋
j

 = δm2
S2,cT2

(I) = 0

and
δm1−1
S1, 1cT1

(I) , 0, δm2−1
S2,cT2

(I) , 0.

This completes the proof.
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Remark 4.6. Paul and Gu [14, Theorem 5.2] state that “if the operators Si are left invertible and the operators
Ti are right invertible, 1 ≤ i ≤ 2, then (S1 ⊗ S2,T1 ⊗ T2) is m-symmetric if and only if there exist a non-zero
scalar c and positive integers mi, m = m1 +m2 − 1, such that (S1, 1

c T1) is strict m1-symmetric and (S2, cT2) is
strict m2-symmetric”. The hypothesis Si are left invertible and Ti are right invertible is a bit of an overkill,
as we show below. As seen in the proof of Theorem 4.5, the invertibility of S1 and S2 - a fact guraranteed
by the left invertibility of Si and the right invertibility of Ti - is sufficient. If Si, 1 ≤ i ≤ 2, is left invertible,
then there exist operators Ei such that (E1 ⊗ E2)(S1 ⊗ S2) = (I ⊗ I) (= I) and

0 = δm
S1⊗S2,T1⊗T2

(I)

=

m∑
j=0

(−1) j
(

m
j

)
(S1 ⊗ S2)m− j(T1 ⊗ T2) j

=

m∑
j=0

(−1) j
(

m
j

)
(E1 ⊗ E2) j(T1 ⊗ T2) j

= △
m
E1⊗E2,T1⊗T2

(I).

For conveneience, set E1 ⊗ E2 = A and T1 ⊗ T2 = B. Then △m
A,B(I) = 0. It is easily seen, use induction, that

(a − 1)m = am
−

∑m−1
j=0

(
m
j

)
(a − 1) j; hence

(LARB − I)m = (LARB)m
−

m−1∑
j=0

(
m
j

)
(LARB − I) j

and upon letting (LARB − I) = ∇A,B that

∇
m
A,B(I) = 0⇐⇒ (LARB)m(I) −

m−1∑
j=0

(
m
j

)
∇

j
A,B(I) = 0

=⇒ (LARB)m+1(I) =
m−1∑
j=0

(
m
j

)
(LARB)∇ j

A,B(I)

=

m−1∑
j=0

(
m
j

)
∇

j+1
A,B(I) +

m−1∑
j=0

(
m
j

)
∇

j
A,B(I)

=

(
m

m − 1

)
∇

m
A,B(I) +

m−1∑
j=0

(
m + 1

j

)
∇

j
A,B(I)

=

m−1∑
j=0

(
m + 1

j

)
∇

j
A,B(I).

An induction argument now proves

(LARB)n(I) =
m−1∑
j=0

(
n
j

)
∇

j
A,B(I)

=

(
n

m − 1

)
∇

m−1
A,B (I) +

m−2∑
j=0

(
n
j

)
∇

j
A,B(I)

for all integers n ≥ m. Observe that △m
A,B(I) = 0 implies A is right invertible and B is left invertible; since
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already B = T1 ⊗ T2 is right invertible, B is invertible, and then

δm
A,B(I) = 0 ⇐⇒

m∑
j=0

(−1) j
(

m
j

)
Lm− j

A R j
B(I) = 0

⇐⇒

m∑
j=0

(−1) j
(

m
j

)
Lm− j

A R−m+ j
B (I) = 0

⇐⇒ △
m
A,B−1 (I) = 0 =⇒ A is right invertible =⇒ A is invertible.

The invertibility of A and B implies that of LARB. We have

1(
n

m − 1

) I − m−2∑
j=0

(
n
j

)
(LARB)−n

∇
j
A,B(I)

 = ∇m−1
A,B (I).

Since
(

n
m − 1

)
is of the order of nm−1 and

(
n

m − 2

)
is of the order of nm−2, letting n −→ ∞ this implies

∇
m−1
A,B (I) = 0⇐⇒ △m−1

A,B (I) = 0.

Repeating the argument, we eventually have

△A,B(I) = 0⇐⇒ (S−1
1 ⊗ S−1

2 )(T1 ⊗ T2) = I⇐⇒ S1 ⊗ S2 = T1 ⊗ T2;

hence there exists a scalar c such that S1 = cT1 and S2 =
1
c T2. In particular, if Si,Ti are Hilbert space operators

such that Si = T∗i , then T1 ⊗ T2 is self-adjoint.
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