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Abstract. In this paper, we give some properties and results of stability related to the S-spectra, S-
pseudospectra, S-essential spectra and S-essential pseudospectra of multivalued linear operators and we
show some of their characteristics.

1. Introduction

The concept of pseudospectrum was presumably introduced in the domain of linear operators by J. M.
Varah [26] and has been subsequently employed by other authors, such as, H. Landau [23], L. N. Trefethen
[25], D. Hinrichsen, A. J. Pritchard [19] and E. B. Davies [17] and more particularly L. N. Trefethen, who
developed this idea for matrices and operators, and used this concept to study interesting problems in
mathematical physics. The definition of a pseudospectrum of a closed densely linear operator T is as
follows: for every ε > 0 is given by:

σε(T) := σ(T) ∪
{
λ ∈ C such that ∥(λ − T)−1

∥ >
1
ε

}
.

By convention we write ∥(λ − T)−1
∥ = ∞ if (λ − T)−1 which is unbounded or nonexistent, i.e., if λ is in the

spectrum σ(T). This means that the pseudospectrum can be introduced as a zone of spectral instability.
In [8–10, 20, 22? ] A. Ammar and A. Jeribi defined the notion of essential pseudospectra of a densely closed,
linear operator in the Banach space by:

σw,ε(T) :=
⋂

K∈K (X)

σε(T + K)

where K (X) is the subspace of compact operators from X into X, which gives some properties of essential
pseudospectra (or Weyl pseudospectra).
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Recently, in [11, 12] A. Ammar, H. Daoud and A. Jeribi, have extended the notion of pseudospectra and
essential pseudospectra on multivalued linear operators and cited some properties and results of stability
of this pseudospectra.

In [13], the authors developed the notion of S-spectra, S-pseudospectra, S-essential spectra and S-essential
pseudospectra for a multivalued linear operator and characterized and investigated their properties.

Linear relations (or multivalued linear operators) made their appearance in functional analysis motivated
by the requirement to consider adjoins of non-densely defined linear differential operators (see J. Von.
Neumann in [24] to first appearance) and additionally by the need to consider the inverses of certain
operators, used, for example, in the study of some Cauchy problems associated to parabolic type equations
in Banach spaces (see, example [18]).

This paper presents some characteristics of stability of S-spectra, S-pseudospectra, S-essential spectra and
S-essential pseudo-spectra of multivalued linear operators and shows their specificities.

The aim of this paper is to extend and improve new results of stability related to S-spectra, S-pseudospectra,
S-essential spectra and S-essential pseudospectra of multivalued linear operators. One of the central
questions consists in characterizing the relationship between the norm of S-resolvent according to S-
spectra, S-pseudospectra, S-essential spectra and S-essential pseudospectra of multivalued linear operators
(see Theorem 3.1 and Theorem 4.3).

The paper is organized in the following way: Section 2 contains preliminary and auxiliary properties that
will need to prove the main results of the other sections. Then, Section 3 presents some results about
the stability of S-spectra and S-pseudospectra of linear relations. Section 4 is devoted to developing this
properties and results on S-essential spectra and S-essential pseudospectra, where we apply the results
obtained in Section 3 to investigate this S-essential spectra and S-essential pseudospectra.

2. Preliminary and auxiliary results

The concept of a linear relation in a linear space generalizes the one of a linear operator to that of a
multivalued linear operator. A systematic treatment was given by Arens [14] and by Coddington [15]. This
concept has been studied in a large number of papers, cf. [16].
Let X, Y, Z be vector spaces overK = R or C. A multivalued linear operator or linear relation T from X to Y
is a mapping from a subspaceD(T) of X, called the domain of T, into the collection of nonempty subsets of
Y such that T(αx1 + βx2) = αT(x1) + βT(x2) for all nonzero scalars α, β and x1, x2 ∈ D(T). If T maps the point
of its domain to singletons, then T is said to be a single valued or simply an operator. We denote the class
of linear relation from X to Y be LR(X,Y) and we write LR(X) = LR(X,X). A linear relation T ∈ LR(X,Y)
is uniquely determined by its graph, G(T), which is defined by

G(T) = {(x, y) ∈ X × Y such that x ∈ D(T), y ∈ Tx},

so that we can identify T with G(T). The inverse of T is the linear relation T−1 defined by

G(T−1) = {(y, x) ∈ Y × X such that (x, y) ∈ G(T)}.

For ∅ , N ⊂ Y we have

T−1(N) = {u ∈ D(T) such that N ∩ Tu , ∅}.

In particular, for v ∈ R(T),

T−1v = {u ∈ D(T) such that v ∈ Tu}.
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Let T ∈ LR(X,Y). The symbols R(T), N(T) and T(0) stand for the range, the null space and the multivalued
part of T, which are defined by

R(T) :=
{
y : (x, y) ∈ G(T)

}
,

N(T) :=
{
x ∈ D(T) : (x, 0) ∈ G(T)

}
, and

T(0) :=
{
y : (0, y) ∈ G(T)

}
.

T is called injective if N(T) = 0 and T is said to be surjective ifR(T) = Y. We denote α(T) := dim N(T), β(T) :=
dim Y/R(T), β(T) := dim Y/R(T) and the index of T is the quantity i(T) := α(T) − β(T) provided α(T) and
β(T) are not both infinite.
For S,T ∈ LR(X,Y), we define the relation S + T by

G(S + T) = {(x, y) ∈ X × Y : y = s + t, where (x, s) ∈ G(S) and (x, t) ∈ G(T)}.

For S ∈ LR(X,Y) and R ∈ LR(Y,Z) where R(S) ∩D(R) , ∅, the product RS is defined by

G(RS) = {(x, z) ∈ X × Z such that (x, y) ∈ G(S) and (y, z) ∈ G(R) for some y ∈ Y}.

For a given closed linear subspace E of X let QX
E (or simply, QE) denote the natural quotient map with

domain X and null space E. We shall denote QY
T(0)

by QT, or simply Q when T is understood. We define

∥Tx∥ := ∥QTx∥ (x ∈ D(T)) and ∥T∥ := ∥QT∥.

For U and V be nonempty subsets of a normed space, we define the distance between U and V by the
formula dist(U,V) := inf{∥u − v∥ such that u ∈ U, v ∈ V}. We shall write dist(x,V), or dist(V, x) for the
distance between {x} and V. The minimum modulus of T is the quantity γ(T) := sup{λ such that ∥Tx∥ ≥
λdist(x,N(T)) for x ∈ D(T)}. T is said to be continuous if ∥T∥ < ∞ and T is called open if γ(T) > 0. If
D(T) = X and if ∥T∥ < ∞, then we shall say that T is bounded.

The relation T is called closed if its graph G(T) is closed in X × Y, or equivalently, if T = T. T is said to
be closable if T is an extension of T i.e., if

Tx = Tx for all x ∈ D(T).

We denote the class of all closed linear relations from X to Y by CR(X,Y) and we write CR(X) = CR(X,X)
and KR(X,Y) will denote the class of all compact linear relations from X to Y where T ∈ LR(X,Y) is called
compact if QTTBX is compact and BX is the unit ball of X. Let X̃ denote the completion of the normed space
X and let T̃ denote the linear relation in LR(X̃, Ỹ) whose graph is the completion of G(T), we call T̃ the
completion (or complete closure) of T.
Let X̃ denote the completion of the normed space X and let T̃ denote the linear relation in LR(X̃, Ỹ) whose
graph is the completion of G(T), we call T̃ the completion (or complete closure) of T.

Definition 2.1. Let T ∈ LR(X,Y) where X, Y are normed space.

(i) T is said to be upper semi-Fredholm, if there exists a closed, finite, codimensional subspace M of X, such that the
restriction T|M has a single valued continuous inverse.

(ii) T is said to be lower semi-Fredholm linear relation if its conjugate T′ is upper semi-Fredholm linear relation.

We denote by F+(X,Y), which we abbreviate as F+, the set of upper semi- Fredholm linear relations and by F−(X,Y)
(or F−) the set of lower semi-Fredholm linear relations. ♢

In the case when X and Y are Banach spaces, we extend the classes of closed single-valued Fredholm type
operators given earlier to include closed multivalued operators, and note that the definitions of the classes
F+(X,Y) and F−(X,Y) are consistent, respectively, with
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Φ+(X,Y) :=
{
T ∈ CR(X,Y) : α(T) < ∞ and R(T) is closed in Y

}
, and

Φ−(X,Y) :=
{
T ∈ CR(X,Y) : β(T) < ∞ and R(T) is closed in Y

}
,

Φ±(X,Y) = Φ+(X,Y) ∪Φ−(X,Y),
(
resp. Φ(X,Y) = Φ+(X,Y) ∩Φ−(X,Y)

)
.

If X = Y, then ,Φ+(X,Y),Φ−(X,Y),Φ±(X,Y) andΦ(X,Y) are replaced respectively byΦ+(X),Φ−(X),Φ±(X)
and Φ(X). T. Several authors in [3, 4, 6, 7] has studied some properties of Fredholm relations that we need
to study the concept of demicompactness.

Lemma 2.1. Let X and Y be normed spaces and T ∈ LR(X,Y) then

(i) [16, Proposition II.1.2] QT is single valued.
(ii) [16, Proposition II.1.4] ∥Tx∥ = dist(y,T(0)) for any y ∈ Tx.
(iii) [16, Proposition II.1.4] ∥Tx∥ = dist(Tx,T(0)) = dist(Tx, 0) (x ∈ D(T)).
(iv) [16, Proposition II.1.6] ∥T∥ = sup

x∈BX

∥Tx∥with BX := {x ∈ X : ∥x∥ ≤ 1}.

(v) [16, Theorem II.2.5] γ(T) = ∥T−1
∥
−1. ♢

Lemma 2.2. [16, Proposition I.2.8] Let T ∈ LR(X,Y) where X and Y linear spaces. Then for x ∈ D(T), we have
the following equivalence:

(i) y ∈ Tx⇔ Tx = y + T(0).
In particular,

(ii) 0 ∈ Tx⇔ Tx = T(0). ♢

Remark 2.1. Let X and Y be linear spaces and T ∈ LR(X,Y) then from Lemma 2.2,

N(T) = {x ∈ D(T) such that Tx = T(0)}. ♢

Lemma 2.3. [16, Corollary I.2.4] Let T be a linear relation. Then T(0) and T−1(0) are linear subspaces. ♢

Lemma 2.4. [16, Corollary III.7.7] Let T ∈ LR(X,Y) where X, Y are normed spaces be open and injective with
dense range. Then for any relation S such that S(0) ⊂ T(0),D(S) ⊃ D(T) and ∥S∥ < γ(T),
we have T + S is open injective with dense range. ♢

Lemma 2.5. [12, Lemma 2.5] Let T,S ∈ LR(X) where X is a normed space such that T is injective, open and
S(0) ⊂ T(0). Then

γ(T − S) ≥ γ(T) − ∥S∥. ♢

Definition 2.2. Let T ∈ LR(X) and where X is a normed space, let λ ∈ C,

R(λ,T) = (λ − T)−1

called the resolvent of T (corresponding to λ). The resolvent set of T is the set

ρ(T) = {λ ∈ C such that λ − T is injective, open with dense range on X}.

The spectrum of T is the set σ(T) := C\ρ(T). ♢

Remark 2.2. From [16, Definitions VI.1.1] and [16, Exercise VI.1.2], we observe that if T ∈ CR(X) where X is a
complete space, we have

ρ(T) = {λ ∈ C such that (λ − T)−1 is a bounded linear operator on X}. ♢
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Definition 2.3. Let X be a Banach space and let S, T ∈ LR(X) such that S is continuous, T is closed with S(0) ⊂ T(0)
andD(S) ⊃ D(T), in [2], T. Alvarez, A. Ammar and A. Jeribi defined the notion of S- resolvent set of T by :

ρS(T) = {λ ∈ C such that λS − T is bijective}

and the S-spectrum of T by σS(T) = C\ρS(T) and the S- essential spectra of T by

σw,S(T) =
⋂

K∈KT(X)

σS(T + K)

where

KT(X) = {K ∈ KR(X) such thatD(K) ⊃ D(T) and K(0) ⊂ T(0)}. ♢

Proposition 2.1. [2, Theorem 3.1]. Let T ∈ CR(X) where X is a Banach space and S is continuous, with S(0) ⊂ T(0)
andD(S) ⊃ D(T), then

σw,S(T) = C\{λ ∈ C such that λS − T ∈ Φ(X) and i(λS − T) = 0}. ♢

3. Stability of S-spectra and S-pseudospectra of linear relations

In this section, we study results of stability and properties of S-spectra and S-pseudospectra.

Definition 3.1. In [13], A. Ammar, H. Daoud and A. Jeribi introduced the definition of S-spectrum of a linear
relation in a normed space X. Let T ∈ LR(X), S a continuous linear relation such that S(0) ⊂ T(0) andD(S) ⊃ D(T),
then we the S-resolvent set of T by

ρS(T) := {λ ∈ C such that (λS − T) is injective, open with dense range on X}.

We denote the S- spectra set of T by:
σS(T) = C\ρS(T). ♢

It is clear that if T ∈ CR(X) and X is complete, we will return to the S- spectrum definition in a Banach space with
closed linear relation. In this case

ρS(T) := {λ ∈ C such that λS − T is bijective} (see Definition 2.3).

= {λ ∈ C such that (λS − T)−1 is a bounded linear operator on X}. ♢

Proposition 3.1. Let T, S ∈ LR(X) where X is a normed space, S is continuous such that S(0) ⊂ T(0) and
D(S) ⊃ D(T), then for any λ, β ∈ C with β , 0

N(λS − βT) = N(β−1λS − T),
R(λS − βT) = R(β−1λS − T)

and γ(λS − βT) = |β| γ(β−1λS − T). ♢

Proof. Let x ∈ N(λS− βT), if and only if, x ∈ D(λS− βT) = D(λS)∩D(T) = D(T) and 0 ∈ (λS− βT)x, if and
only if, x ∈ D(β−1λS − T) = D(β−1λS) ∩D(T) = D(T) and 0 ∈ (β−1λS − T)x, i.e., x ∈ N(β−1λS − T).
On the other hand, sinceD(λS − βT) = D(β−1λS − T) = D(T),

R(λS − βT) = (λS − βT)(D(λS − βT))
= (λS − βT)(D(T))
= β−1(λS − βT)(D(T))
= (β−1λS − T)(D(T))
= (β−1λS − T)(D(β−1λS − T))
= R(β−1λS − T).
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Finally, we have

γ(λS − βT) = sup{λ such that ∥(λS − βT)x∥ ≥ λdist(x,N(λS − βT)) for x ∈ D(T)}
= sup{λ such that |β|∥(β−1λS − T)x∥ ≥ λdist(x,N(β−1λS − T))

for x ∈ D(T)}
= |β| γ(β−1λS − T).

Q.E.D.

Corollary 3.1. Let T, S ∈ LR(X) where X is a normed space, S is continuous such that S(0) ⊂ T(0) andD(S) ⊃ D(T),
then for any β ∈ C with β , 0

ρS(βT) = ρS(T) β

and σS(βT) = σS(T) β. ♢

Proposition 3.2. Let T, S ∈ LR(X) where X is a normed space, S is continuous such that S(0) ⊂ T(0) and
D(S) ⊃ D(T), and ε > 0. Then for any α, β ∈ C with β , 0 we have,

ρS(αS + βT) = α + ρS(T) β

and σS(αS + βT) = α + σS(T) β. ♢

Proof. Let λ ∈ ρS(αS + βT), if, and only if, (λ − α)S − βT is injective, open with dense range, if, and only if,
(λ − α) ∈ ρS(βT), if, and only if, (λ − α) ∈ ρS(T) β.

In similar way, we obtain σS(αS + βT) = α + σS(T) β. Q.E.D.

Definition 3.2. Let X be a Banach space, ε > 0, let T ∈ CR(X), and S ∈ LR(X) such that S continuous, S(0) ⊂ T(0)
andD(S) ⊃ D(T). In [13], A. Ammar, H. Daoud and A. Jeribi defined the S-pseudospectra of T as follows:

σε,S(T) = σS(T) ∪
{
λ ∈ C such that ∥(λS − T)−1

∥ >
1
ε

}
.

We denote the S-pseudoresolvent set of T

ρε,S(T) = C\σε,S(T) = ρS(T) ∩
{
λ ∈ C such that ∥(λS − T)−1

∥ ≤
1
ε

}
. ♢

Proposition 3.3. Let X be a Banach space, ε > 0. Let T ∈ CR(X) and S ∈ LR(X) is a continuous linear relation
such that S(0) ⊂ T(0) andD(S) ⊃ D(T). Then ∥S∥ = 0 implies ρε,S(T) = ∅ or C. ♢

Proof. In [13, Lemma 2.3], we have λ ∈ ρS(T), if, and only if, T is injective, open with dense range, i.e,
λS − T is injective, open with dense range, if, and only if, T is injective, open with dense range. Thus, we
discus two case:

case 1: if T is not injective, open with dense range, then ρε,S(T) = ∅.

case 2: if T is injective, open with dense range, then

ρε,S(T) = {λ ∈ C such that ∥(λS − T)−1
∥ ≤

1
ε
}.

Using Lemma 2.1 (v), we have

ρε,S(T) = {λ ∈ C such that γ(λS − T) ≥ ε}.
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Since S(0) ⊂ T(0), then λS(0) ⊂ T(0) and hence T(0) − λS(0) ⊂ T(0).On the other hand, it is clear that
T(0) ⊂ T(0) − λS(0) and for x ∈ D(λS − T) = D(λS) ∩D(T) = D(T), we have

∥(λS − T)x∥ = ∥(T − λS)x∥
= dist(Tx − λSx, (T − λS)(0))
= dist(Tx − λSx,T(0))

Now, since ∥S∥ = 0, then, using [13, Lemma 2.2], λSx ⊂ R(S) ⊂ S(0) ⊂ T(0), hence,

∥(λS − T)x∥ = dist(Tx,T(0))
= ∥Tx∥.

Finally, it is obvious, since T is injective, open with dense range, that λS−T is injective, open with dense
range and

γ(λS − T) = sup {α such that ∥(λS − T)x∥ ≥ α dist(x,N(λS − T)) for x ∈ D(λS − T)}
= sup {α such that ∥(λS − T)x∥ ≥ α dist(x, 0) for x ∈ D(λS − T)}
= sup {α such that ∥Tx∥ ≥ α dist(x,N(T)) for x ∈ D(T)}
= γ(T),

and we obtain that
ρε,S(T) = {λ ∈ C such that γ(T) ≥ ε}.

Thus ρε,S(T) = ∅ or C. Q.E.D.

In the sequel of the paper, X will denote a Banach space, ε > 0 and S, T ∈ LR(X) such that S is continuous,
T is closed with S(0) ⊂ T(0),D(S) ⊃ D(T) and ∥S∥ , 0 except where stated otherwise.

Proposition 3.4. Let α, β ∈ C such that β , 0, then,

σε,S(αS + βT) = α + σ ε
|β| ,S

(T) β. ♢

Proof. λ ∈ σε,S(αS + βT), if, and only if, λ ∈ σS(αS + βT) or

∥((λ − α)S − βT)−1
∥ >

1
ε

, if, and only if, (λ − α)S − βT is not injective, open with dense range or ∥(β−1(λ −

α)S − T)−1
∥ = |β|∥((λ − α)S − βT)−1

∥ >
|β|

ε
, i.e., (λ − α) ∈ σS(βT) or ∥(β−1(λ − α)S − T)−1

∥ >
|β|

ε
, if, and only if,

β−1(λ − α) ∈ σS(T) or ∥(β−1(λ − α)S − T)−1
∥ >
|β|

ε
, if, and only if, β−1(λ − α) ∈ σ ε

|β| ,S
(T). Q.E.D.

Proposition 3.5. For δ > 0, we have

σε,S(T) ⊆ Dδ + σε,S(T) ⊆ σε+δ,S(T),

where Dδ = {λ ∈ C such that |λ| ≤ δ
∥S∥ }. ♢

Proof. Let λ ∈ Dδ +σε,S(T), then there exists λ1 ∈ Dδ and λ2 ∈ σε,S(T) such that λ = λ1 +λ2. ewline Assume

that λ < σε+δ,S(T), then λ1 + λ2 ∈ ρS(T) and ∥((λ1 + λ2)S− T)−1
∥ ≤

1
ε + δ

. Therefore (λ1 + λ2)S− T is injective,
surjective, open and γ((λ1 + λ2)S − T) ≥ ε + δ. Using the fact that ∥λ1S∥ = |λ1|∥S∥ ≤ δ < δ + ε and applying
Lemma 2.4, we obtain (λ1 + λ2)S − T − λ1S = λ2S − T is injective, surjective and open, i.e., λ2 ∈ ρS(T). On
the other hand, by Lemma 2.5,

γ(λ2S − T) = γ(T − λ2S)
= γ(T − λ2S − λ1S + λ1S)
≥ γ(T − (λ2 + λ1)S) − ∥λ1S∥
≥ ε + δ − |λ1|∥S∥
≥ ε.
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Thus

∥(λ2S − T)−1
∥ ≤

1
ε
.

Finally, we conclude

λ2 < σε,S(T),

and this is a contradiction. Q.E.D.

Proposition 3.6. Let B ∈ LR(X) such that B(0) ⊂ T(0),D(B) ⊃ D(T) and ∥B∥ < ε, then

σε−∥B∥,S(T) ⊆ σε,S(T + B) ⊆ σε+∥B∥,S(T). ♢

Proof. It is simply to show, since B(0) ⊂ T(0),D(B) ⊃ D(T) and B is continuous, using [1, Lemma 3.5], that
T + B is closed

Let λ < σε+∥B∥,S(T), i.e., λ ∈ ρS(T) and ∥(λS − T)−1
∥ ≤

1
ε + ∥B∥

, i.e., λS − T is injective, open, surjective and

γ(λS−T) ≥ ε+∥B∥. We have B(0) ⊂ (λS−T)(0) = T(0),D(B) ⊃ D(λS−T) = D(T) and ∥B∥ < ε+∥B∥ ≤ γ(λS−T),
then, using Lemma 2.4, we obtain λS − T − B is injective, open with dense range, i.e., λ ∈ ρS(T + B). On the
other hand, by Lemma 2.5, we have

γ(λS − T − B) ≥ γ(λS − T) − ∥B∥
≥ ε + ∥B∥ − ∥B∥
≥ ε.

Then

∥(λS − (T + B))−1
∥ ≤

1
ε
.

Hence
λ < σε,S(T + B).

For the first inclusion, let λ < σε,S(T + B). Then λ ∈ ρS(T + B) and ∥(λS − T − B)−1
∥ ≤

1
ε
. Hence λS − T − B is

injective, open, surjective and γ(λS−T−B) ≥ ε > ∥B∥.Using Lemma 2.4, λS−T−B+B = λS−T is injective,
open with dense range. Then λ ∈ ρS(T). In similar way, by Lemma 2.5, we have

γ(λS − T) = γ(λS − T − B + B)
≥ γ(λS − T − B) − ∥B∥
≥ ε − ∥B∥.

Then

∥(λS − T)−1
∥ ≤

1
ε − ∥B∥

.

Hence

λ < σε−∥B∥,S(T). Q.E.D.

We give some further results on the location of the pseudospectra. We start with the following general
result. Although the result is well known, we include the proof. For a subset Ω ∈ Cwe set as usual

dist(λ,Ω) = inf{|z − λ| such that z ∈ Ω},

and note that if Ω is compact, then the infimum is attained for some point in Ω.
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Theorem 3.1. (i) Let T, S ∈ LR(X), where X is a normed space, such that S is continuous,, ∥S∥ , 0, S(0) ⊂ T(0)
andD(S) ⊃ D(T), then λ < σS(T), implies

∥(λS − T)−1
∥ ≥

1
dist(λ, σS(T))∥S∥

.

(ii) Let T ∈ CR(X), S ∈ LR(X), where X is a Banach space, such that S is continuous, ∥S∥ , 0, S(0) ⊂ T(0) and
D(S) ⊃ D(T), then λ < σε,S(T), implies

∥(λS − T)−1
∥ ≥

1
dist(λ, σε,S(T))∥S∥ + ε

. ♢

Proof. (i) Let λ ∈ ρS(T), we have dist(λ, σS(T)) = inf{|z − λ| such that z ∈ σS(T)}. Then for all η > 0 there
exists zη ∈ σS(T) such that

|λ − zη| < dist(λ, σS(T)) + η.

We first show that (λS − T)(0) = T(0). In fact, since S(0) ⊂ T(0) then (λS−T)(0) ⊂ T(0), so, (λS − T)(0) ⊂ T(0).
On the other hand, since S(0) is a linear subspace (Lemma 2.3), then T(0) ⊂ λS(0)−T(0) = (λS−T)(0), hence
T(0) ⊂ (λS − T)(0).

We suppose that |λ − zη| <
γ(λS−T)
∥S∥ , since λS − T is injective open with dense range, (zη − λ)S(0) = S(0) ⊂

(λS − T)(0) = T(0),D((zη − λ)S) = D(S) ⊃ D(λS − T) = D(T) and ∥(zη − λ)S∥ = |λ − zη|∥S∥ < γ(λS − T), then,
λS− T + (zη −λ)S = zηS− T is injective open with dense range (using Lemma 2.4). Hence zη ∈ ρS(T). This is
a contradiction.

Therefore |λ − zη| ≥
γ(λS−T)
∥S∥ for all η > 0. Thus

γ(λS − T)
∥S∥

≤ |λ − zη|

< dist(λ, σS(T)) + η for all η > 0.

So
γ(λS − T)
∥S∥

≤ dist(λ, σS(T)).

Hence

∥(λS − T)−1
∥ ≥

1
dist(λ, σS(T))∥S∥

.

(ii) Let λ ∈ ρε,S(T), since dist(λ, σS,ε(T)) = inf{|z − λ| such that z ∈ σS,ε(T)}, then for η > 0, there exists
zη ∈ σS,ε(T) such that |λ − zη| < dist(λ, σS,ε(T)) + η.We discuss two case:

Case 1: if |λ − zη| ≥
γ(λS−T)
∥S∥ , then,

γ(λS − T)
∥S∥

≤ |λ − zη|

< dist(λ, σε,S(T)) + η, for all η > 0.

Hence
γ(λS − T)
∥S∥

≤ dist(λ, σε,S(T)),

γ(λS − T) ≤ dist(λ, σε,S(T))∥S∥.

Thus
∥(λS − T)−1

∥ ≥
1

dist(λ, σε,S(T))∥S∥
.
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Case 2: if |λ − zη| <
γ(λS−T)
∥S∥ , i.e., ∥(λ − zη)S∥ < γ(λS − T), since (zη − λ)S(0) = S(0) ⊂ (λS − T)(0) = T(0),

D((zη − λ)S) = D(S) ⊃ D((λS − T)) = D(λS) ∩D(T) = D(T) and λS − T is injective open with dense range
(as λ ∈ ρS(T)), then, using Lemma 2.4, we have λS − T + (zη − λ)S = zηS − T is injective open with dense

range, i.e., zη ∈ ρS(T). But zη ∈ σε,S(T), then ∥(zηS − T)−1
∥ >

1
ε

, i.e., γ(zηS − T) < ε.

Now, using Lemma 2.5, we obtain

γ(zηS − T) = γ(λS − T + (zη − λ)S)
≥ γ(λS − T) − |zη − λ|∥S∥.

Therefore
γ(λS − T)
∥S∥

≤
γ(zηS − T)
∥S∥

+ |zη − λ|

<
ε
∥S∥
+ dist(λ, σε,S(T)) + η, ∀ η > 0.

Thus
γ(λS − T)
∥S∥

≤
ε
∥S∥
+ dist(λ, σε,S(T)),

i.e.,
γ(λS − T) ≤ ε + dist(λ, σε,S(T))∥S∥.

Then

∥(λS − T)−1
∥ ≥

1
dist(λ, σε,S(T))∥S∥ + ε

. Q.E.D.

Corollary 3.2. Let T ∈ CR(X), S ∈ LR(X), where X is a Banach space, such that S is continuous, ∥S∥ , 0,
S(0) ⊂ T(0) andD(S) ⊃ D(T), then

{λ ∈ C such that dist(λ, σS(T)) <
ε
∥S∥
} ⊆ σε,S(T). ♢

Proof. Let λ < σε,S(T), then λ < σS(T), using Theorem 3.1 (i), we have

1
dist(λ, σS(T))∥S∥

≤ ∥(λS − T)−1
∥ ≤

1
ε
.

Therefore
dist(λ, σS(T))∥S∥ ≥ ε.

Hence

dist(λ, σS(T)) ≥
ε
∥S∥
. Q.E.D.

Theorem 3.2. Let T ∈ CR(X) where X is a Banach space and assume that V is a bounded single valued relation in
LR(X) such that 0 ∈ ρ(V). Let k = ∥V∥∥V−1

∥. Let B = VTV−1. Then

σS(T) = σVSV−1 (B) (3.1)

and for k , 0, we have

σε/k,VSV−1 (B) ⊆ σε,S(T) ⊆ σkε,VSV−1 (B) (3.2)

and

σε/k,S(T) ⊆ σε,VSV−1 (B) ⊆ σkε,S(T). (3.3)

♢
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Proof. We first show that B is closed. Since V is a bounded linear operator, i.e., V(0) = {0}, D(V) = X
and V is continuous, then, by [16, Definitions II.5.1 (6)], V is closed thus V has a closed range, R(V) = X,
(as 0 ∈ ρ(V)). We have α(V) = 0 < ∞ and γ(V) > 0 (as V injective and open), by [16, Proposition II.5.17],
VT is closed. Moreover, since V−1 is single valued and bounded, then VTV−1 is closed (using [16, Exercise
II.5.18]). Hence B is closed. It is simply to verify since S(0) ⊂ T(0), D(S) ⊃ D(T) and S is continuous that
VSV−1(0) = VS(0) ⊂ VT(0) = VTV−1(0) = B(0),

D(VSV−1) = VD(VS) ( using [16, I.1.3 (2)])
= V{x ∈ X, Sx ∩D(V) , ∅} ( using [16, I.1.3 (1)])
= V{x ∈ X, Sx , ∅} ( sinceD(V) = X )
= V(D(S))
⊃ V(D(T))
= VD(VT) = V{x ∈ X, Tx ∩D(V) , ∅}
= D(VTV−1) ( using [16, I.1.3 (2)])
= D(B),

and ,by [16, Proposition II.3.13],

∥VSV−1
∥ ≤ ∥VS∥∥V−1

∥ ( since V−1(0) = 0)
≤ ∥V∥∥S∥∥V−1

∥ ( sinceD(V) = X)
≤ k∥S∥.

Using [1, Lemma 3.5], we prove that λS − T and λVSV−1
− B are closed.

On the other hand,

λS − T = λS − V−1BV
(λS − T)V−1 = (λS − VBV)V−1

(λS − T)V−1 = (λSV−1
− VBVV−1) ( using [16, Proposition I.4.2 (d)])

(λS − T)V−1 = (λSV−1
− VB) ( as V(0) = 0)

V(λS − T)V−1 = V(λSV−1
− VB)

V(λS − T)V−1 = (λVSV−1
− VV−1B) ( using [16, Proposition I.4.2 (e)])

V(λS − T)V−1 = (λVSV−1
− B) ( as V(0) = 0)

(λS − T) = V−1(λVSV−1
− B)V ( as V is injective.)

Now, if λ ∈ ρS(T) then the closed relation λS − T is injective, surjective and open. By [16, Proposition
VI.5.2]) V(λS − T)V−1 = λVSV−1

− B is also closed, bounded below (injective and open), surjective. Hence
λ ∈ ρVSV−1 (B).
Conversely, if λ ∈ ρVSV−1 (B) then the closed relation (λVSV−1

− B) is injective, surjective and open, by
[16, Proposition VI.5.2], V−1(λVSV−1

− B)V = λS − T is also closed, bounded below (injective and open),
surjective. Hence λ ∈ ρS(T), which implies the first result.

Now, we have V−1(λVSV−1
− B)V = (λS − T) and V(λS − T)V−1 = (λVSV−1

− B). Then V−1(λVSV−1
−

B)−1V = (λS − T)−1 and V(λS − T)−1V−1 = (λVSV−1
− B)−1. Thus

∥(λS − T)−1
∥ = ∥V−1(λVSV−1

− B)−1V∥
≤ ∥V−1(λVSV−1

− B)−1
∥∥V∥ (using [16, Proposition II.3.13],

since V(0) = 0.)
≤ ∥V−1

∥∥(λVSV−1
− B)−1

∥∥V∥ (using [16, Proposition II.3.13],
sinceD(V−1) = R(V) = X.)

≤ k∥(λVSV−1
− B)−1

∥.

In the same way,
∥(λVSV−1

− B)−1
∥ ≤ k∥(λS − T)−1

∥.



A. Ammar, H. Daoud, A. Jeribi / FAAC 16 (2) (2024), 1–18 12

For λ ∈ σε/k,VSV−1 (B),

λ ∈ σVSV−1 (B) or ∥(λVSV−1
− B)−1

∥ >
k
ε
.

Then,

λ ∈ σS(T) or ∥(λS − T)−1
∥ ≥

1
k
∥(λVSV−1

− B)−1
∥ >

1
ε
.

Hence

λ ∈ σε,S(T).

Therefore

σε/k,VSV−1 (B) ⊆ σε,S(T).

On the other hand, for λ ∈ σε,S(T),

λ ∈ σS(T) or ∥(λS − T)−1
∥ >

1
ε
.

Then,

λ ∈ σVSV−1 (B) or ∥(λVSV−1
− B)−1

∥ ≥
1
k
∥(λS − T)−1

∥ >
1
kε
.

Hence

λ ∈ σkε,VSV−1 (T).

Therefore

σε,S(T) ⊆ σkε,VSV−1 (B).

With similar reasoning, we prove that

σε/k,S(T) ⊆ σε,VSV−1 (B) ⊆ σkε,S(T). Q.E.D.

Corollary 3.3. Let T ∈ CR(X) where X is a Banach space, let S ∈ LR(X) be continuous such that S(0) ⊂ T(0) and
D(S) ⊃ D(T) and assume that V is a bounded single valued relation inLR(X) such that 0 ∈ ρ(V). Let k = ∥V∥∥V−1

∥.
Let B = VTV−1.

If S commute with V (i.e., SV = VS) or S commute with V−1 (i.e., SV−1 = V−1S) (for example S = I), then

σS(T) = σS(B) (3.4)

and for k , 0, we have

σε/k,S(B) ⊆ σε,S(T) ⊆ σkε,S(B) (3.5)

and

σε/k,S(T) ⊆ σε,S(B) ⊆ σkε,S(T). (3.6)

♢
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4. Stability of S-essential spectra and S-essential
pseudospectra of linear relations

In this section, we study results of stability and properties of S-essential spectra and S-essential pseudospec-
tra.

Definition 4.1. In [13, Definition 4.1], the authors introduced the following definition: Let T be a linear relation in
CR(X) where X is a Banach space. The S-essential pseudospectra of T is the set

σw,ε,S(T) =
⋂

K∈KT(X)

σε,S(T + K)

whereKT(X) := {K ∈ KR(X) such thatD(K) ⊃ D(T) and K(0) ⊂ T(0)},
and The S-essential pseudoresolvent set

ρw,ε,S(T) = C\σw,ε,S(T). ♢

Theorem 4.1. [13, Theorem 4.2] The following properties are equivalent:

(i) λ < σw,ε,S(T).

(ii) For all continuous linear relations B ∈ LR(X) such thatD(B) ⊃ D(T), B(0) ⊂ T(0) and ∥B∥ < ε, we have

T + B − λS ∈ Φ(X) and i(T + B − λS) = 0.

(iii) For all continuous single valued relations D ∈ LR(X) such thatD(D) ⊃ D(T) and ∥D∥ < ε, we have

T +D − λS ∈ Φ(X) and i(T +D − λS) = 0. ♢

Proposition 4.1. [13, Proposition 4.4] Let T ∈ CR(X). Then

(i) If 0 < ε1 < ε2 then σw,S(T) ⊂ σw,ε1,S(T) ⊂ σw,ε2,S(T).
(ii) For ε > 0, σw,ε,S(T) ⊂ σε,S(T).
(iii)
⋂
ε>0 σw,ε,S(T) = σw,S(T). ♢

Theorem 4.2. [13, Theorem 4.9]

σw,ε,S(T) =
⋂

P∈PT(X)

σε,S(T + P). ♢

Proposition 4.2. Let J(X) be a subset of LR(X).
If KT(X) ⊂ J(X) ⊂ PT(X), then

σw,ε,S(T) =
⋂

J∈J(X)

σε,S(T + J).

Proof.
σw,ε,S(T) =

⋂
P∈PT(X)

σε,S(T + P) ⊂
⋂

J∈J(X)

σε,S(T + J) ⊂
⋂

K∈KT(X)

σε,S(T + K) = σw,ε,S(T).

Q.E.D.

Corollary 4.1. It follows, from the definition of S-Essential Pseudospectra, Theorem 4.2 and Corollary 4.2 that
(i) σw,ε,S(T + K) = σw,ε,S(T) for all K ∈ KT(X).
(ii) σw,ε,S(T + P) = σw,ε,S(T) for all P ∈ PT(X).
(iii) σw,ε,S(T + J) = σw,ε,S(T) for all J ∈ J(X) such thatKT(X) ⊂ J(X) ⊂ PT(X). ♢
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Proposition 4.3. Let α, β ∈ C such that β , 0, then

σw,ε,S(αS + βT) = α + σw, ε
|β| ,S(T) β. ♢

Proof. Let α, β ∈ Cwith β , 0. It is simply to verify that {βK : K ∈ KT(X)} = KT(X). In fact, if K ∈ KT(X),
βK(0) = K(0) ⊂ T(0), D(βK) = D(K) ⊃ D(T), moreover since K is compact, QβKβKBX = βQKKBX = βQKKBX
is compact, then βK is compact hence βK ∈ KT(X). Therefore {βK : K ∈ KT(X)} ⊂ KT(X).
Conversely, by the same way, if K ∈ KT(X), β−1K ∈ KT(X). ThenKT(X) ⊂ {βK : K ∈ KT(X)}. Therefore

σw,ε,S(αS + βT) =
⋂

K∈KT(X)

σε,S(αS + βT + K)

=
⋂

K∈KT(X)

σε,S(αS + βT + βK)

=
⋂

K∈KT(X)

σε,S(αS + β(T + K)).

Using Proposition 3.4,
σw,ε,S(αS + βT) =

⋂
K∈KT(X)

(α + σ ε
|β| ,S

(T + K) β)

= α + (
⋂

K∈KT(X)

σ ε
|β| ,S

(T + K)) β.

= α + σw, ε
|β| ,S

(T) β.

Q.E.D.

Proposition 4.4. For δ > 0, we have

σw,ε,S(T) ⊆ Dδ + σw,ε,S(T) ⊆ σw,ε+δ,S(T). ♢

Proof. Let K ∈ KT(X), then K is compact hence it is continuous (by [16, Corollary V.2.3]). Using [1, Lemma
3.5], T + K is closed. By Proposition 3.5,

Dδ + σε,S(T + K) ⊆ σε+δ,S(T + K).

Then
Dδ +

⋂
K∈KT(X)

σε,S(T + K) ⊆
⋂

K∈KT(X)

σε+δ,S(T + K).

Hence

Dδ + σw,ε,S(T) ⊆ σw,ε+δ,S(T). Q.E.D.

Proposition 4.5. Let B ∈ LR(X) such that B(0) ⊂ T(0),D(B) ⊃ D(T) and ∥B∥ < ε, then we have

σw,ε−∥B∥,S(T) ⊆ σw,ε,S(T + B) ⊆ σw,ε+∥B∥,S(T). ♢

Proof. Let K ∈ KT(X), then K is compact hence it is continuous (by [16, Corollary V.2.3]). Using [1, Lemma
3.5], T + K is closed.
Moreover, since B ∈ LR(X) such that B(0) ⊂ T(0) = (T + K)(0), D(B) ⊃ D(T) = D(T + K) and ∥B∥ < ε, then,
from Proposition 3.6,

σε−∥B∥,S(T + K) ⊆ σε,S(T + B + K) ⊆ σε+∥B∥,S(T + K).

Hence ⋂
K∈KT(X)

σε−∥B∥,S(T + K) ⊆
⋂

K∈KT(X)

σε,S(T + B + K) ⊆
⋂

K∈KT(X)

σε+∥B∥,S(T + K).
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But, since T(0) = (T + B)(0) andD(T) = D(T + B), thenKT(X) = K(T+B)(X). Thus⋂
K∈KT(X)

σε−∥B∥,S(T + K) ⊆
⋂

K∈KT+B(X)

σε,S(T + B + K) ⊆
⋂

K∈KT(X)

σε+∥B∥,S(T + K).

Therefore

σw,ε−∥B∥,S(T) ⊆ σw,ε,S(T + B) ⊆ σw,ε+∥B∥,S(T). Q.E.D.

Theorem 4.3. Let T ∈ CR(X), S ∈ LR(X), where X is a Banach space, such that S is continuous, ∥S∥ , 0,
S(0) ⊂ T(0) andD(S) ⊃ D(T),

(i) if λ < σw,S(T), then

∥(λS − T)−1
∥ ≥

1
dist(λ, σw,S(T))∥S∥

.

(ii) if λ < σw,ε,S(T) and (λS − T) is injective and open (for example λ < σS(T)), then

∥(λS − T)−1
∥ ≥

1
dist(λ, σw,ε,S(T))∥S∥ + ε

. ♢

Proof. (i) Let λ < σw,S(T), then, by Proposition 2.1, λS − T ∈ Φ(X) and i(λS − T) = 0. Since dist(λ, σw,S(T)) =
inf{|z − λ| such that z ∈ σw,S(T)}, then, for all η > 0, there exists zη ∈ σw,S(T) such that

|λ − zη| < dist(λ, σw,S(T)) + η.

If |λ − zη| <
γ(λS−T)
∥S∥ , since (zη − λ)S(0) = S(0) ⊂ (λS − T)(0), D((zη − λ)S) = D(S) ⊃ D((λS − T)) = D(T)

and ∥(zη − λ)S∥ = |λ − zη|∥S∥ < γ(λS − T) then, by [7, Proposition 10], λS − T + (zη − λ)S = zηS − T ∈
Φ(X) and i(zηS − T) = i(λS − T + zηS − λS) = i(λS − T) = 0. Hence zη ∈ ρw,S(T), and this is a contradiction.

Therefore |λ − zη| ≥
γ(λ−T)
∥S∥ for all η > 0. Thus

γ(λS − T)
∥S∥

≤ |λ − zη|

< dist(λ, σw,S(T)) + η for all η > 0.

So
γ(λS − T)
∥S∥

≤ dist(λ, σw,S(T)).

Hence

∥(λS − T)−1
∥ ≥

1
dist(λ, σw,S(T))∥S∥

.

(ii) Since dist(λ, σw,ε,S(T)) = inf{|z − λ| such that z ∈ σw,ε,S(T)}, then, for η > 0, there exists zη ∈ σw,ε,S(T) such
that |λ − zη| < dist(λ, σw,ε,S(T)) + η.

Let B be a linear relation such that B(0) ⊂ T(0),D(B) ⊃ D(T) and ∥B∥ < ε. Let λ < σw,ε,S(T), then by Theorem
4.1, λS − T − B ∈ Φ(X) and i(λS − T − B) = 0.

Now, if |λ − zη| <
γ(λS−T−B)
∥S∥ , since (zη − λ)S(0) ⊂ (λS − T − B)(0),D((zη − λ)S) ⊃ D((λS − T − B)) = D(T) and

∥(zη − λ)S∥ = |λ − zη|∥S∥ < γ(λS − T − B), then, by [7, Proposition 10], λS − T − B + zηS − λS = zηS − T − B ∈
Φ(X) and i(zηS − T − B) = i(λS − T − B + zηS − λS) = i(λS − T − B) = 0. Hence zη ∈ ρw,ε,S(T). This is a
contradiction. Therefore γ(λS−T−B)

∥S∥ ≤ |λ − zη|. On the other hand, since (λS − T) is injective and open, then

γ(λS − T − B) ≥ γ(λS − T) − ∥B∥
> γ(λS − T) − ε
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Thus
γ(λS − T)
∥S∥

<
γ(λS − T − B)

∥S∥
+
ε
∥S∥

< |λ − zη| +
ε
∥S∥

< dist(λ, σw,ε,S(T)) + η +
ε
∥S∥
.

Hence
γ(λS − T) ≤ dist(λ, σw,ε,S(T))∥S∥ + ε.

Then

∥(λS − T)−1
∥ ≥

1
dist(λ, σw,ε,S(T))∥S∥ + ε

. Q.E.D.

Theorem 4.4. Let T ∈ CR(X) where X is a Banach space and assume that V is a bounded single valued relation in
LR(X) such that 0 ∈ ρ(V). Let k = ∥V∥∥V−1

∥, k , 0. Let B = VTV−1. Then

σw,S(T) = σw,VSV−1 (B),

σw,ε/k,VSV−1 (B) ⊆ σw,ε,S(T) ⊆ σw,kε,VSV−1 (B)

and

σw,ε/k,S(T) ⊆ σw,ε,VSV−1 (B) ⊆ σw,kε,S(T). ♢

Proof. Let K ∈ KT(X), then K is compact hence it is continuous (by [16, Corollary V.2.3]). Using [1, Lemma
3.5], T + K is closed. Moreover

V(T + K)V−1 = V(TV−1 + KV−1) ( using [16, Proposition I.4.2 (d)])
= VTV−1 + VKV−1 ( using [16, Proposition I.4.2 (e)])
= B + VKV−1.

From Theorem 3.2, for ε > 0, we have

σε/k,S(T + K) ⊆ σε,VSV−1 (B + VKV−1) ⊆ σkε,S(T + K).

Hence ⋂
K∈KT(X)

σε/k,S(T + K) ⊆
⋂

K∈KT(X)

σε,VSV−1 (B + VKV−1) ⊆
⋂

K∈KT(X)

σkε,S(T + K).

But {VKV−1 : K ∈ KT(X)} = KB(X). In fact if K ∈ KT(X), then K(0) ⊂ T(0), hence VKV−1(0) = VK(0) ⊂
VT(0) = VTV−1(0) = B(0). Moreover, since V is bounded, D(VK) = {x ∈ X : Kx ∩ D(V) , ∅} = D(K) and
D(VT) = {x ∈ X : Tx ∩ D(V) , ∅} = D(T). Then D(VKV−1) = {x ∈ X : V−1x ∩ D(VK) , ∅} ⊃ {x ∈ X :
V−1x ∩D(VT) , ∅} = D(VTV−1) = D(B).
On the other hand, K is compact V is continuous and V(0) = {0} ⊂ D(K). Then by [16, Proposition V.2.10]
VK is precompact. Thus, by [16, Theorem V.2.2], Γ0(VK) = 0. Furthermore, since V−1 is single valued
(0 ∈ ρ(V)), by [16, Proposition IV.2.15], we have Γ0(VKV−1) ≤ Γ0(VK)Γ0(V−1) = 0. Hence, by [16, Theorem
V.2.2], VKV−1 is precompact and we have X is complete then VKV−1 is compact. Therefore

{VKV−1 : K ∈ KT(X)} ⊂ KB(X).

In the similar way, if KB ∈ KB(X), then KB(0) ⊂ S(0), hence V−1KBV(0) = V−1KB(0) ⊂ V−1B(0) = V−1BV(0) =
T(0). Moreover, since V−1 is bounded (as 0 ∈ ρ(V)), D(V−1KB) = {x ∈ X : KBx ∩ D(V−1) , ∅} = D(KB) and
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D(VS) = {x ∈ X : Sx ∩ ∩D(V−1)eq∅} = D(B). Then D(V−1KBV) = {x ∈ X : Vx ∩ D(V−1KB)eq∅} ⊃ {x ∈ X :
Vx ∩D(V−1B)eq∅} = D(V−1BV) = D(T).

Moreover, KB is compact, V−1 is continuous and V−1(0) = {0} ⊂ D(KB) as 0 ∈ ρ(V). Then, by [16, Proposition
V.2.10], V−1KB is precompact. Thus by [16, Theorem V.2.2] Γ0(V−1KB) = 0. Furthermore, since V is single
valued, by [16, Proposition IV.2.15], Γ0(V−1KBV) ≤ Γ0(V−1KB)Γ0(V) = 0. Hence by [16, Theorem V.2.2],
V−1KBV is precompact and we have X is complete then V−1KBV is compact. Therefore V−1KBV ∈ KT(X).
Hence

KB(X) ⊂ {VKV−1 : K ∈ KT(X)}.

Therefore ⋂
K∈KT(X)

σε/k,S(T + K) ⊆
⋂

K∈KB(X)

σε,VSV−1 (B + K) ⊆
⋂

K∈KT(X)

σkε,S(T + K).

Then, for any ε > 0
σw,ε/k,S(T) ⊆ σw,ε,VSV−1 (B) ⊆ σw,kε,S(T).

In similar way, we prove that⋂
K∈KT(X)

σε/k,VSV−1 (B + VKV−1) ⊆
⋂

K∈KT(X)

σε,S(T + K) ⊆
⋂

K∈KT(X)

σkε,VSV−1 (B + VKV−1),

which implies that ⋂
K∈KB(X)

σε/k,S(B + K) ⊆
⋂

K∈KT(X)

σε,S(T + K) ⊆
⋂

K∈KB(X)

σkε,VSV−1 (B + K).

Then
σw,ε/k,VSV−1 (B) ⊆ σw,ε,S(T) ⊆ σw,kε,VSV−1 (B).

Moreover, by Proposition 4.1,⋂
ε>0

σw,ε/k,S(T) ⊆
⋂
ε>0

σw,ε,VSV−1 (B) ⊆
⋂
ε>0

σw,kε,S(T).

and from the proof of Theorem 3.2, we show that B is closed, then, we have,

σw,S(T) ⊆ σw,VSV−1 (B) ⊆ σw,S(T).

Which implies the first result. Q.E.D.

Corollary 4.2. Let T ∈ CR(X) where X is a Banach space, let S ∈ LR(X) be continuous such that S(0) ⊂ T(0) and
D(S) ⊃ D(T) and assume that V is a bounded single valued relation inLR(X) such that 0 ∈ ρ(V). Let k = ∥V∥∥V−1

∥,
k , 0. Let B = VTV−1.
If S commute with V (i.e., SV = VS) or S commute with V−1 (i.e., SV−1 = V−1S) (for example S = I), then

σw,S(T) = σw,S(B),

σw,ε/k,S(B) ⊆ σw,ε,S(T) ⊆ σw,kε,S(B)

and

σw,ε/k,S(T) ⊆ σw,ε,S(B) ⊆ σw,kε,S(T). ♢
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