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Abstract. In this research article, we use the concept of the γ-relative boundedness, which represents as a
generalization of the notion of relative boundedness, in order to give a necessary and sufficient conditions
on the inputs of a block operator matrix to become self-adjoint.

1. Introduction

Let X and Y be two Banach spaces over the same fields K = R or C. Let T be an operator acting from
X into Y. We denote by D(T) ⊂ X its domain, by N(T) ⊂ X its null space and by R(T) ⊂ Y its range.
Furthermore, recall that an operator T is said to be closed if, from simultaneous convergence of sequences
xn −→ x, with xn ∈ D(T), and Txn −→ y, it follows that x ∈ D(T) and Tx = y. T is said to be bounded if,
D(T) = X and

∥T∥ = sup
{
∥Tx∥
∥x∥

: 0 , x ∈ X
}
< ∞.

We denote by L(X,Y) (respectively, C(X,Y)) the set of all bounded (respectively, densely defined closed)
linear operators from X into Y, and we denote by K (X,Y) the subspace of compact operators from X into
Y. The nullity of T, α(T), is defined as the dimension of N(T) and the deficiency of T, β(T), is defined as the
codimension of R(T) in Y. If S and T are two linear operators such that D(T) ⊂ D(S) and Tx = Sx for all
x ∈ D(T), then S an extension of T. A linear operator T is called to be closable if, it admits a closed extension.
In this case, the smallest of such extension is called the closure of T and is denoted by T. For a closed linear
operator T, the set of semi-Fredholm operators and Fredholm operators are defined respectively as follows

Φ+(X,Y) := {T ∈ C(X,Y) : α(T) < ∞ and R(T) is closed in Y}

and

Φ(X,Y) := {T ∈ C(X,Y) : α(T) < ∞, β(T) < ∞ and R(T) is closed in Y}.
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The number i(T) = α(T) − β(T) is called the index of T ∈ Φ(X,Y).

Let H and K be two Hilbert spaces with inner product ⟨·, ·⟩. The notion of adjoint operator of a densely
defined linear operator T acting between H and K is determined as an operator T∗ from K into H having
domain

D(T∗) =
{
k ∈ K : ⟨Th, k⟩ = ⟨h, k∗⟩, for some k∗ ∈ H, for all h ∈ D(T)

}
,

and acting by
T∗k = k∗, for all k ∈ D(T∗).

Here the uniqueness of k∗ in H is guaranteed by density of D(T). Nevertheless, it is a non-trivial task
to determine T∗, that is, to describe D(T∗) explicitly and to specify the action of T∗ on elements of D(T∗).
Clearly, T and its adjoint T∗ fulfil the adjoining identity

⟨Th, k⟩ = ⟨h,T∗k⟩, for all h ∈ D(T), k ∈ D(T∗). (1)

Let T : D(T) ⊂ H −→ K and S : D(S) ⊂ K −→ H. The linear operators T and S are said to be adjoint to each
other, in symbols S ∧ T, if

⟨Sk, h⟩ = ⟨k,Th⟩, for all h ∈ D(T) and k ∈ D(S).

A closed operator T : D(T) ⊂ H −→ K is said to be Hermitian, if T is densely defined and T ⊂ T∗, that is, if
D(T) ⊂ D(T∗) and Th = T∗h, for all h ∈ D(T).Moreover, T is said to be self-adjoint if in addition T = T∗.

Remark 1.1. (i) T : D(T) ⊆ H −→ H is Hermitian if, and only if, ⟨Th, h⟩ ∈ R, for all h ∈ D(T). Indeed, suppose
that T is an Hermitian operator, then Th = T∗h, for all h ∈ D(T). This implies that

⟨Th, h⟩ = ⟨h,Th⟩ = ⟨T∗h, h⟩ = ⟨Th, h⟩.

Conversely, suppose that (h,Th) ∈ G(T). Since ⟨Th, h⟩ ∈ R, then

⟨Th, h⟩ = ⟨Th, h⟩ = ⟨h,Th⟩.

This implies from (1) that h ∈ D(T∗) and Th = T∗h. Hence, (h,Th) ∈ G(T∗). As a result, G(T) ⊂ G(T∗), as desired.
(ii) If T is self-adjoint, then σ(T) is a subset of the real axis (see [2], [6, Section 12.11]). ♢

Consider an operator which is defined in Banach or Hilbert space X × Y by the block operator matrix

L =

(
A B
C D

)
.

Here A : X −→ X, B : Y −→ X, C : X −→ Y and D : Y −→ Y are assumed to be densely defined closable
linear operators. In general, the operators occurring in L are unbounded and L does not need to be closed
or to be a self-adjoint operator, even if its entries are closed or self-adjoint. In the present paper, inspired
by the notion of relative boundedness with respect to an axiomatic measure of noncompactness γ, we shall
study the stability of closedness, as well as the stability of self-adjointness, for the operator matrix L in the
γ-diagonally dominant case. This case is characterized by the following condition: the operators C and B
are γ-relatively bounded with respect to the operators A and D, respectively. This implies that R(A), R(B),
R(C) and R(D) are finite dimensional,D(A) ⊂ D(C),D(D) ⊂ D(B) and there exist constants aC, aB, bC, bB ≥ 0
such that

γ(C(D1)) ≤ aC γ(A(D1)) + bC γ(D1),

γ(B(D2)) ≤ aB γ(D(D2)) + bB γ(D2),
where γ(·) denotes an axiomatic measure of noncompactness, D1 is a bounded subset of D(A) and D2 is a
bounded subset ofD(D).

The rest of this paper is organized as follows. In section 2, some notations, basic concept and fundamental
results about measure of noncompactness are recalled. In section 3, stability of closedness of the operator
matrix L are studied under γ-relatively bounded perturbations about the off-diagonal operators B and C,
with some additional conditions. Moreover, in the special case that the space is a Hilbert space, invariance
of self-adjointness of L is discussed.
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2. Preliminary and auxiliary results

In this section, we shall recall some basic concepts, and give some fundamental results about
measure of noncompactness. The theory of measures of noncompactness has many applications in topology,
functional analysis and operator theory [3]. Let X be a Banach space, we denote by MX the family of all
nonempty and bounded subsets of X. Denote by NX the subfamily consisting of all relatively compact sets.
Moreover, we write D, conv(D) to denote the closure and the convex hull of a set D ⊂ X, respectively.

Definition 2.1. A function γ : MX −→ [0,+∞[ is said to be a measure of noncompactness in the space X if, it
satisfies the following conditions:
(i) The family N(γ) := {P ∈MX : γ(P) = 0} is nonempty and N(γ) ⊂ NX.
(ii) If D1 ⊂ D2, then γ(D1) ≤ γ(D2), for D1,D2 ∈MX.

(iii) γ(D) = γ(D).

(iv) γ(conv (D)) = γ(D).
(v) γ(λD1 + (1 − λ)D2) ≤ λγ(D1) + (1 − λ)γ(D2), for all λ ∈ [0, 1].
(vi) If (Dn) is a sequence of closed sets from MX such that Dn+1 ⊂ Dn, for n = 1, 2, · · · and lim

n→+∞
γ(Dn) = 0, then

D∞ =

∞⋂
n=1

Dn , ∅ and γ(D∞) = 0. ♢

Definition 2.2. (i) A measure of noncompactness γ is said to be sublinear if for all D,D1,D2 ∈ MX, it satisfies the
following two conditions:

(i1) γ(λD) = |λ|γ(D), for all λ ∈ R.
(i2) γ(D1 +D2) ≤ γ(D1) + γ(D2).

(ii) A measure of noncompactness γ is said to have maximum property if it satisfies

max{γ(D1);γ(D2)} = γ(D1 ∪D2).

(iii) A measure of noncompactness is said to be regular if, it is sublinear, N(γ) ⊂ NX and has the maximum property.
♢

Remark 2.3. (i) For D ∈ MX, the most important example of measure of noncompactness γ is Kuratowskii measure
of noncompactness which defined by

γ(D) = inf{ϵ > 0 : D can be covered by a finite number of sets of diameter ≤ ϵ}.

(ii) The Kuratowskii’s measure of noncompactness of D is regular. ♢

In [3], the authors construct the measures of noncompactness in cartesian product of a given finite collection
of Banach spaces. More precisely, we have the following.

Proposition 2.4. [3, Theorem 3.3.2] Let X1, · · · ,Xn be a finite collection of Banach space, let γ1, · · · , γn be measures
of noncompactness in X1, · · · ,Xn, respectively. Assume the function F : ([0,+∞[)n

−→ [0,+∞[ is convex and
F(x1, · · · , xn) = 0 if, and only if, xi = 0 for i = 1, · · · ,n. Then,

γ(x) = F(γ1(π1(x)), · · · , γn(πn(x)))

defines a measure of noncompactness in X1 × · · · × Xn. Here, πi denotes the natural projection of into Xi, for
i = 1, · · · ,n. ♢
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According to the previous proposition, if γ is a measure of noncompactness in a Banach space X, then
for all D ∈MXn , the quantity

γ(D) := max{γ(π1(D)), · · · , γ(πn(D))}

defines a measure of noncompactness in Xn.

Throughout this paper, we are working on two Banach spaces X and Y with their respective Kuratowskii
measures of noncompactness γX and γY. When no confusion axses we use just γ instead of γX or γY.

Definition 2.5. For T ∈ L(X), we define its Kuratowskii’s measure by

γ(T) = sup
{
γ(T(D))
γ(D)

: D ∈MX, γ(D) > 0
}
. ♢

In the next proposition, we recall some properties of the Kuratowskii’s measure of a bounded linear operator.

Proposition 2.6. [3] Let X be a Banach space and T ∈ L(X). Then, we have the following properties for the
Kuratowskii measure γ(T).
(i) γ(T) = 0 if, and only if, T ∈ K (X).
(ii) If S ∈ L(X), then γ(ST) ≤ γ(S)γ(T).
(iii) γ(T + S) ≤ γ(T) + γ(S), for every S ∈ L(X).
(iv) If D is a bounded subset of X, then γ(T(D)) ≤ γ(T)γ(D).

(v) γ(T) ≤ ∥T∥. ♢

Lemma 2.7. Let T be a bounded linear operator on X such that γ(T) <
1
2

. Then, I − T is a boundedly invertible
operator. ♢

Proof. Let P and Q be two complex polynomials such that P(z) = z and Q(z) = z− 1. Therefore, the fact that

γ(T) <
1
2

implies from [1, Theorem 3.1] that

Q(T) = I − T ∈ Φ(X). (2)

Now, let ε ∈ [0, 1]. Then, we infer from Definition 2.2 (i1) that

γ(εT) ≤ εγ(T)
≤ γ(T)

<
1
2
.

This implies that I + εT ∈ Φ(X). The use of [6, Theorem 7.25] and the connectedness of [0, 1], allows us to
conclude that

i(I − εT) = i(I − T) = i(I) = 0. (3)

Hence, by referring to (2), (3) and [7, Lemma 3], we deduce that Q(T) = T0 + F, where T0 ∈ Φ+(X) with
α(T0) = 0 and F is a finite rank operator on X. In view of [5, Theorem 11] implies that

α(T0 + F) ≤ α(T0) = 0.

Thus, α(Q(T)) = 0, which implies from (3) that β(Q(T))) = 0. As a result, I − T is a boundedly invertible
operator.
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Definition 2.8. Let X and Y be two Banach spaces. Let S and T be two linear operators from X into Y such that
D(T) ⊂ D(S) and R(T), R(S) are finite dimensional. The operator S is called γ-relatively bounded with respect to T
(or T-γ-bounded) if, there exist constants aS and bS such that

γ(S(D)) ≤ aSγ(T(D)) + bSγ(D), (4)

where D is a bounded subset ofD(T). The infimum of the constants aS which satisfy (4) for some bS ≥ 0 is called the
T-γ-bound of S. ♢

Remark 2.9. Let D be a bounded subset of D(T). The boundedness of the sets T(D) and S(D) is not valid for the
case of unbounded linear operators. Accordingly, we added the condition that R(T) and R(S) are finite dimensional to
guarantee the existence of γ(T(D)) and thus of γ(S(D)). ♢

Lemma 2.10. Let T, S be two closed operators acting from X into Y such thatD(T) ⊂ D(S) and R(T), R(S) are finite
dimensional. If S is T-γ-bounded with T-γ-bound < 1, then T + S is closed. ♢

Proof. Let us assume that (xn) ⊂ D(T) such that xn −→ x and (T + S)xn −→ y as n → ∞. Our purpose is to
show that x ∈ D(T) and (T+S)x = y. Since S is T-γ-bounded with T-γ-bound < 1, then there exist constants
bS ≥ 0 and 0 ≤ aS < 1 such that

γ(S{xn}) ≤ aSγ(T{xn}) + bSγ({xn}). (5)

In addition, we have

γ(T{xn}) = γ((T + S − S){xn})
≤ γ((T + S){xn}) + γ(S{xn}).

This implies that
γ((T + S){xn}) ≥ γ(T{xn}) − γ(S{xn}).

Thus, we get from (5) that

γ((T + S){xn}) ≥ (1 − aS)γ(T{xn}) − bSγ({xn}). (6)

The fact that xn −→ x and (T + S)xn → y as n→ ∞ implies that {xn} and {(S + T)xn} are relatively compact.
This yields from Proposition 2.6 Proposition 2.6 (i) that γ({xn}) = γ({(S + T)xn}) = 0. Therefore, by using (6),
we obtain γ(T{xn}) = 0. Again from Proposition 2.6 (i), there 2.6 (i), there exists a subsequence (xnk ) such
that Txnk −→ z. By the closedness of T, we deduce that x ∈ D(T) and Tx = z. Since Sxnk → y − z, then we
conclude from the closedness of S that x ∈ D(T + S) and (T + S)x = y.

Remark 2.11. Let T and S be two closable operators with R(T) and R(S) are finite dimensional. If S is T-γ-bounded,
then S is the closed extension of the operator S such that D(T) ∪ D(S) ⊊ D(S). Indeed, let (xn) ⊂ D(T) such that
xn −→ x ∈ D(T) and Txn −→ y. This implies that {xn} and {Txn} are relatively compact, so γ({xn}) = γ({Txn}) = 0.
Then, by using (4), we infer that γ(S{xn}) = 0. Hence, there exists a subsequence (xnk ) such that Sxnk −→ α ∈ Y.
Since S is closable, then α = Sx. By setting Sx = α, we conclude thatD(T) ∪D(S) ⊂ D(S). ♢

The example below show that the converse is false.

Example 2.12. Let S = O|D(T), where O stands for the zero operator and T is a closed operator withD(T) ⊊ X. On
the one hand, the fact that D is a bounded subset of D(T) and O is a bounded operator implies that S(D) and O(D)
are bounded sets. Hence, γ(S(D)) = γ(O(D)). Since the zero operator is compact, then by referring to Proposition 2.6
(i), we infer that

γ(S(D)) = 0, D ⊂ D(T).



Aymen Ammar, Nawrez Lazrag / FAAC 16 (2) (2024), 19–30 24

Hence, we deduce that

γ(S(D)) ≤ γ(T(D)), D ⊂ D(T). (7)

By using (7), we infer that S is T-γ-relatively bounded. On the other hand, we haveD(S) = X, but

D(T) ∪D(S) = D(T) ∪D(T) = D(T) , X.

As a result,D(T) ∪D(S) ⊊ X, as desired. ♢

Lemma 2.13. Let assume that T and S are closable such that D(T) ⊂ D(S) and R(T), R(S) are finite dimensional.
If S is T-γ-bounded with T-γ-bound δ, then

γ(S(D)) ≤ aS γ(T(D)) + bS γ(D),

where aS, bS ≥ 0 and D ⊂ D(T). ♢

Proof. Let us assume that S is T-γ-bounded with T-γ-bound δ. This implies that there exist two constants
aS, bS ≥ 0 such that

γ(S(D)) ≤ aS γ(T(D)) + bS γ(D), (8)

where D is a bounded subset ofD(T) ⊂ D(S). It follows immediately from Remark 2.11 thatD(T) ⊂ D(S).
SinceD(T) ⊂ D(S), then S(D(T)) ⊂ S(D(S)). By using the fact that T and S are closable, we have T = T|D(T)

and S = S|D(S). This implies that R(T) = R(T|D(T)) and R(S) = R(S|D(S)). Hence, R(T|D(T)) and R(S|D(T)) are
finite dimensional. Thus, we infer from (8) that

γ(S(D)) ≤ aS γ(T(D)) + bS γ(D),

where D ⊂ D(T) ⊂ D(T).

The following result is useful in the main result of this paper.

Theorem 2.14. Let X be a Hilbert space. Suppose that T is self-adjoint operator and A is Hermitian operator with

D(T) ⊂ D(A). If A is γ-T-bounded with γ-T-bound less than
1
4

, then T + A is also self-adjoint. ♢

Proof. Obviously, D(T + A) = D(T) and T + A is closed and Hermitian since D(T) ⊂ D(A). Due to [4,
Theorem 3.16], it is sufficient to prove that

R((T + A) − λI) = R((T + A) − λI) = X, for all λ ∈ C\R.

On the one hand, the fact that T is self-adjoint implies from Remark 1.1 (ii) that C\R ⊂ ρ(T). Then, for every
λ ∈ C\R, we have T ± λI is invertible and (T ± λI)−1

∈ L(X).
On the other hand, the operator (T + A) ± λI can be written as follows

(T + A) ± λI =
[
I + A(T ± λI)−1

]
(T ± λI), for every λ ∈ C\R. (9)

By virtue of representation (9), it is sufficient to show that the operator I +A(T ± it)−1 is invertible provided
that |t| > t0 and t0 is sufficiently large.
Since T is closed, then for all y ∈ D(T), we have

∥(T ± it)y∥2 = ⟨(T ± it)y, (T ± it)y⟩
= ∥Ty∥2 + ∥ity∥2 + 2Re⟨Ty, ity⟩.
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The fact that T is self-adjoint implies from Remark 1.1 (i) that

∥(T ± it)y∥2 = ∥Ty∥2 + |t|2∥y∥2, for all y ∈ D(T). (10)

Hence, (10) gives the inequality

|t|∥y∥ ≤ ∥(T ± it)y∥, for all y ∈ D(T).

As the operator T ± it has a bounded inverse, thus by setting x = (T ± it)y, we deduce that (T ± it)−1x = y.
Hence,

∥(T ± it)−1x∥ ≤
1
|t|
∥x∥, for all x ∈ X. (11)

SinceD(T) ⊂ D(A) and A is γ-T-bounded, then there exist aA, bA ≥ 0 such that

γ(A(T ± it)−1(D1)) ≤ aA γ(T(T ± it)−1(D1)) + bAγ((T ± it)−1(D1))
≤ aAγ(D1) + (aA|t| + bA)γ((T ± it)−1(D1)),

where (T ± it)−1(D1) is a bounded subset of D(T). Since (T ± it)−1
∈ L(X), then by using (iv) and (v) of

Proposition 2.6, we deduce that

γ(A(T ± it)−1(D1)) ≤ aAγ(D1) + (aA|t| + bA) ∥(T ± it)−1
∥γ(D1),

where γ(D1) > 0. It follows immediately from (11) that

γ(A(T ± it)−1(D1)) ≤
(
2aA +

bA

|t|

)
γ(D1).

This implies that A(T ± it)−1 is a bounded operator. Hence, by referring to Proposition 2.6 (iv), we get

γ(A(T ± it)−1) ≤ 2aA +
bA

|t|
. (12)

On can take number aA close to the γ-T-bound δA, so that the inequality aA <
1
4

is preserved. Then,

γ(A(T ± it)−1) <
1
2
.

Consequently, by referring to Lemma 2.7, we have I + A(T ± it)−1 is a boundedly invertible operator, and
thus R(T + A ± it) = X. Therefore, T + A is self-adjoint in X by [4, Theorem 3.16].

section The main results The goal of this section is to investigate the stability of closedness, as well as
the stability of self-adjointness of the operator matrix L in the γ-diagonally dominant case.

Let X and Y be two Banach spaces. In the product of Banach spaces X × Y, we consider an unbounded
block operator matrix

L =

(
A B
C D

)
, (13)

where A : D(A) ⊂ X −→ X, B : D(B) ⊂ Y −→ X, C : D(C) ⊂ X −→ Y and D : D(D) ⊂ Y −→ Y are densely
defined closed linear operators such that D(A) ⊂ D(C), D(D) ⊂ D(B), R(A),R(B),R(C) and R(D) are finite
dimensional. The domain of L is defined by

D(L) = D(A) ×D(D) ⊂ X × Y.
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Definition 2.15. Let γ(·) be a measure of noncompactness.
(i) The block operator matrix L is called γ-diagonally dominant, if C is A-γ-bounded and B is D-γ-bounded.
(ii) The block operator matrix L is called γ-diagonally dominant with bound δ, if C is A-γ-bounded with bound δC,
B is D-γ-bounded with bound δB, and δ = max{δC; δB}. ♢

Theorem 2.16. Let C and B be γ-relatively bounded with respect to A and D with A-γ-bound and D-γ-bound δC
and δB, respectively. If δC + δB < 1, then the linear operator L is closed. ♢

Proof. Consider the operators

T =

(
A B
0 D

)
and S =

(
0 0
C 0

)
,

withD(T ) = D(A) ×D(D) andD(S) = D(C) × Y. First, we have to prove that T is closed. Let a sequence(
xn
yn

)
∈ D(T ) converge to

(
x
y

)
∈ X × Y, and let

(
un
vn

)
=

(
Axn + Byn

Dyn

)
−→

(
u
v

)
as n −→ ∞.

The fact that D is closed implies that y ∈ D(D) and Dy = v. Since (yn) ⊂ D(D) ⊂ D(B), then there exist
aB, bB ≥ 0 such that

γ(B{yn}) ≤ aB γ(D{yn}) + bBγ({yn}). (14)

Now, by using the fact that yn −→ y and Dyn → Dy, as n → ∞, we infer that {yn} and {Dyn} are relatively
compact. Hence, γ({yn}) = γ({yn}) = γ({Dyn}) = 0. Then, by using (14), we deduce that γ(B{yn}) = 0. Thus,
there exists a subsequence (ynk ) such that Bynk → z. Since B is closed, we conclude that y ∈ D(B) and

Bynk → By −→ By as n −→ ∞.

Therefore, Axnk −→ u − By as n→∞. The fact that A is closed implies that x ∈ D(A) and Ax = u − By. This
is equivalent to say that T is closed.

Finally, we have to show that the linear operator S is T -γ-bounded, and let us find its T -γ-bound. First of
all, based on the hypotheses R(A) and R(B) are finite dimensional, we conclude that dim (R(A) + R(B)) < ∞.
Hence, the fact that

R(T ) ⊂ (R(A) + R(B)) × R(D)

implies that dim(R(T )) < ∞. In addition, since dim(R(C)) < ∞, then dim(R(S)) is finite dimensional. Now,
for D ⊂ D(T ) ⊂ D(S), we get

γ

[(
0 0
C 0

) (
π1(D)
π2(D)

)]
= γ(C(π1(D))).

Here, πi, i = 1, 2 denote the natural projection on X and Y, respectively. According to the assumptions,
there exist constants aC, aB, bC, bB ≥ 0 such that

γ(C(π1(D))) ≤ aC γ(A(π1(D))) + bCγ(π1(D)),

γ(B(π2(D))) ≤ aB γ(D(π2(D))) + bBγ(π2(D)).

Since γ(π1(D)) ≤ γ(π1)γ(D) and γ(π2(D)) ≤ γ(π2)γ(D), then we have

γ(C(π1(D))) ≤ aC γ(A(π1(D))) + bCγ(π1)γ(D). (15)

γ(B(π2(D))) ≤ aB γ(D(π2(D))) + bBγ(π2)γ(D). (16)
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Let the condition δB + δC < 1 be fulfilled. Assume that δB < 1; later, we will say about the changes in the
proof in the case δC < 1. Obviously, we can chose numbers aC and aB in the estimates (15) and (16) to be
close to the numbers δC and δB. So that the inequalities aB < 1 and aC + aB < 1 are preserved. Now, we can
write

γ

[(
A 0
0 D

) (
π1(D)
π2(D)

)]
= γ

[(
A B − B
0 D

) (
π1(D)
π2(D)

)]
.

This implies that

γ

[(
A 0
0 D

) (
π1(D)
π2(D)

)]
≤ γ

[
T

(
π1(D)
π2(D)

)]
+ γ

[(
0 B
0 0

) (
π1(D)
π2(D)

)]
≤ γ

[
T

(
π1(D)
π2(D)

)]
+ γ(B(π2(D))).

Hence, by using (16), we infer that

γ

[(
A 0
0 D

) (
π1(D)
π2(D)

)]
≤ γ

[
T

(
π1(D)
π2(D)

)]
+ aB γ(D(π2(D))) + bBγ(π2)γ(D)

≤ γ

[
T

(
π1(D)
π2(D)

)]
+ aB max

{
γ(A(π1(D)));γ(D(π2(D)))

}
+ bBγ(π2)γ(D)

≤ γ

[
T

(
π1(D)
π2(D)

)]
+ aBγ

[(
A 0
0 D

) (
π1(D)
π2(D)

)]
+ bBγ(π2)γ(D).

By using the fact that aB < 1, we conclude that

γ

[(
A 0
0 D

) (
π1(D)
π2(D)

)]
≤

1
1 − aB

γ

[
T

(
π1(D)
π2(D)

)]
+

bBγ(π2)
1 − aB

γ(D). (17)

Hence, by virtue of (15) and (17), we deduce that

γ(C(π1(D))) ≤ aC γ(A(π1(D))) + bCγ(π1)γ(D)

≤ aC max
{
γ(A(π1(D)));γ(D(π2(D)))

}
+ bCγ(π1)γ(D)

≤ aC γ

[(
A 0
0 D

) (
π1(D)
π2(D)

)]
+ bCγ(π1)γ(D)

≤
aC

1 − aB
γ

[(
A B
0 D

) (
π1(D)
π2(D)

)]
+Naγ(D),

where Na =
aCbBγ(π2)

1 − aB
+ bCγ(π1). As a result,

γ

[(
0 0
C 0

) (
π1(D)
π2(D)

)]
≤

aC

1 − aB
γ

[(
A B
0 D

) (
π1(D)
π2(D)

)]
+Naγ(D).

Thus, the T -γ-bound of the operator S is equal to
aC

1 − aB
< 1. Since T and S are closed, then by using

Lemma 2.10, we conclude that the operator L = T + S is also closed. The proof of theorem is carried out
analogously if the inequality δB < 1 holds instead of δC < 1. In this case, the operatorL has to be presented
in the form

L = T1 + S1, where T1 =

(
A 0
C D

)
and S1 =

(
0 B
0 0

)
.
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The proof of closedness of T1 and T1-γ-boundedness of the operator S1 with T1-γ-bound < 1 is carried out
as before.

Now, let us prove theorem on stability of self-adjointness. In order to prove it, we start our investigation
with the following Lemma. Let X and Y be two Hilbert spaces with inner product ⟨·, ·⟩, then the product
space X × Y is still a Hilbert space with the following induced inner product, still denoted by ⟨·, ·⟩ without
any confusion: 〈

(x, y), (z, t)
〉
= ⟨x, z⟩ + ⟨y, t⟩, for all (x, y), (z, t) ∈ X × Y.

Lemma 2.17. Let X and Y be Hilbert spaces. Assume that A ∈ C(X),B ∈ C(Y,X),C ∈ C(X,Y) and D ∈ C(Y). If
A,D are self-adjoint and C ∧ B, then L is a Hermitian operator. ♢

Proof. Due to Remark 1.1 (i), it is sufficient to show that〈(
Ax + By
Cx +Dy

)
;
(

x
y

)〉
⊂ R, for all

(
x
y

)
∈ D(L).

By using the fact that A and D are self-adjoint and C ∧ B, we infer that〈(
Ax + By
Cx +Dy

)
;
(

x
y

)〉
=

〈
Ax + By, x

〉
+

〈
Cx +Dy, y

〉
= ⟨Ax, x⟩ +

〈
By, x

〉
+

〈
Cx, y

〉
+

〈
Dy, y

〉
= ⟨Ax, x⟩ +

〈
Cx, y

〉
+

〈
Cx, y

〉
+

〈
Dy, y

〉
⊂ R.

Theorem 2.18. Assume that
(i) A and D be self-adjoint operators in the Hilbert spaces X and Y, respectively.
(ii) C∧B for which C and B be γ-relatively bounded with respect to A and D with A-γ-bound and D-γ-bound δC and
δB, respectively.
(iii) δC + δB < 1

4 .

Then, the operator matrix L is self-adjoint. ♢

Proof. By virtue of Theorem 2.16, the operator L is closed. Hence, we will decompose it as the following
form L = T + S, where

T =

(
A 0
0 D

)
and S =

(
0 B
C 0

)
,

with D(T ) = D(A) × D(D) and D(S) = D(C) × D(B). Obviously, D(T ) ⊂ D(S). Hence, due to Theorem
2.14, it is sufficient to prove that T is self-adjoint, S is Hermitian and S is γ−T− bounded with γ-T-bound

less than
1
4

.

First, we propose to prove that T is self-adjoint. Since A and D are self-adjoint, then it follows from [4,
Theorem 3.16] that R(A − λI) = R(A − λI) = X and R(D − λI) = R(D − λI) = Y, for some λ ∈ C. This implies
that

R(T − λI) = R(T − λI)

= R(A − λI) × R(D − λI)
= X × Y, for some λ ∈ C.
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Thus, again by [4, Theorem 3.16], we conclude that T is self-adjoint. Second, we propose to show that S is
Hermitian. The fact that C ∧ B implies that〈(

By
Cx

)
;
(

x
y

)〉
=

〈
By, x

〉
+

〈
Cx, y

〉
=

〈
Cx, y

〉
+

〈
Cx, y

〉
⊂ R.

Thus, by referring to Remark 1.1 (i), we conclude that S is Hermitian.
Finally, let us show that the operator S is γ−T -bounded, and let us find its γ−T -bound. ForD ⊂ D(T ) ⊂
D(S), we get

γ

[(
0 B
C 0

) (
π1(D)
π2(D)

)]
= max

{
γ(B(π2(D))), γ(C(π1(D)))

}
.

Here, πi, i = 1, 2 denote the natural projection on X and Y, respectively. According to the assumptions,
there exist constants aC, aB, bC, bB ≥ 0 such that

γ(C(π1(D))) ≤ aC γ(A(π1(D))) + bCγ(π1(D)),

γ(B(π2(D))) ≤ aB γ(D(π2(D))) + bBγ(π2(D)).

Let the condition δB + δC < 1
4 be fulfilled. Obviously, we can chose numbers aC and aB to be close to the

numbers δC and δB. So that the inequalities aC + aB < 1
4 are preserved. In addition, by using the above

estimates we can conclude that

γ

[
S

(
π1(D)
π2(D)

)]
≤ max

{
aB γ(D(π2(D))) + bBγ(π2(D)); aC γ(A(π1(D))) + bCγ(π1(D))

}
≤ max

{
aB; aC

}
max

{
γ(A(π1(D)));γ(D(π2(D)))

}
+max

{
bB; bC

}
max

{
γ(π1(D));γ(π2(D))

}
≤ max

{
aB; aC

}
γ

[
T

(
π1(D)
π2(D)

)]
+max

{
bB; bC

}
γ

[(
π1(D)
π2(D)

)]
.

Thus, the γ − T− bound of the operator S is equal to

max{aB; aC} ≤ aB + aC <
1
4
.

As a result, T + S is self-adjoint, as desired.
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