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Abstract. In this paper, we consider various classes of metrically generalized ρ-almost periodic se-
quences. We present several structural results about the introduced classes of generalized ρ-almost
periodic sequences and provide certain applications of our results to the abstract Volterra difference
equations.

1. Introduction and preliminaries

Suppose that (X, ∥ · ∥) is a complex Banach space. An X-valued sequence (xk)k∈Z [(xk)k∈N] is said to be
(Bohr) almost periodic if and only if, for every ϵ > 0, there exists a natural number K0(ϵ) such that among
any K0(ϵ) consecutive integers in Z [N], there exists at least one integer τ ∈ Z [τ ∈ N] such that∥∥xk+τ − xk

∥∥ ≤ ϵ, k ∈ Z [k ∈ N].

It is well known that the range of any almost periodic X-valued sequence is relatively compact in X. The
equivalent notion of Bochner almost periodicity ofX-valued sequences is considered in the important research
monograph [20] by A. M. Samoilenko and N. A. Perestyuk. We know that a sequence (xk)k∈Z in X is almost
periodic if and only if there exists an almost periodic function f : R → X such that xk = f(k) for all
k ∈ Z. Furthermore, for every almost periodic sequence (xk)k∈N in X, there exists a unique almost periodic
sequence (x̃k)k∈Z in X such that x̃k = xk for all k ∈ N. The class of almost periodic sequences appears in
the qualitative analysis of solutions for various classes of impulsive Volterra integro-differential equations,
Volterra integro-difference equations and ordinary differential equations; cf. also the doctoral dissertation
[21] by M. Veselý for some recent results obtained in this direction. For more details about almost periodic
functions and their applications, we refer the reader to the research monographs [7, 8, 10, 11, 13–15, 19, 22].

The class of Stepanov almost periodic sequences, introduced by J. Andres and D. Pennequin in [3], reduces
to the class of almost periodic sequences, which is not the case for the corresponding classes of functions. This
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is no longer true for the class of equi-Weyl almost periodic sequences, which provides a proper extension
of the class of almost periodic sequences; cf. A. Iwanik [12]. The class of Besicovitch almost periodic
sequences has been introduced by A. Bellow, V. Losert [5] and further analyzed by V. Bergelson et al. in
[6]. In our joint research article with W.-S. Du and D. Velinov [9], we have recently introduced and analyzed
the classes of (equi-)Weyl-p-almost periodic sequences, Doss-p-almost periodic sequences and Besicovitch-
p-almost periodic sequences with a general exponent p ≥ 1, providing also several new applications to the
abstract impulsive Volterra integro-differential inclusions. After that, we have extended these classes of
generalized almost periodic sequences in our joint research study [16] with B. Chaouchi, W.-S. Du and D.
Velinov.

The main aim of this research study is to continue the investigation raised in [16]. We reconsider
and slightly generalize various classes of generalized ρ-almost periodic sequences examined there by using
the concept of metrical generalizations of almost periodicity ([15]). We analyze here the Stepanov, Weyl,
Besicovitch and Doss classes of metrically generalized ρ-almost periodic sequences, providing also certain
applications to the abstract Volterra difference equations.

The paper is organized as follows. Section 2 investigates the metrically generalized ρ-almost periodic
sequences. In Definition 2.1, we introduce the notion of Stepanov-(B,Λ′,F,P, ρ, l)-almost periodic sequence,
(equi-)Weyl-(B,Λ′,F,P, ρ)-almost periodic sequence and Doss-(B,Λ′,F,P, ρ)-almost periodic sequence of
the form F : Λ ×X → Y , where (X, ∥ · ∥) and (Y, ∥ · ∥Y ) are complex Banach spaces and ∅ ≠ Λ ⊆ Zn has
certain properties. The class of Besicovitch-(B,F,P)-almost periodic sequences is introduced in Definition
2.6. We reexamine and slightly generalize several results from [16]; the main structural results of Section 2
are Theorem 2.2, Proposition 2.4 and Proposition 2.5. In Section 3, we present some illustrative applications
to the abstract Volterra difference equations.

2. Metrically generalized ρ-almost periodic sequences

In this section, we analyze Stepanov, Weyl, Besicovitch and Doss classes of metrically ρ-almost periodic
type sequences of the form F : Λ×X → Y, where ∅ ≠ Λ ⊆ Zn. We assume henceforth that Λ = Λ1 × Λ2 ×
... × Λn, where for each j ∈ Nn there exists an integer a ∈ Z such that Λj = Z, Λj = {..., a − 2, a − 1, a}
or Λj = {a, a + 1, a + 2, ...}. Define Λ′′ := {a ∈ Zn : a + Λ ⊆ Λ}. For every integer l ∈ N, we define Pl to
be the set consisting of all closed subrectangles of Λ which contains exactly (l + 1)n points with all integer
coordinates. In the sequel, we will assume that condition [16, (FV)] automatically holds as well as that for
each l ∈ N and J ∈ Pl we have that (Pl,J , dl,J) is a pseudometric space, where Pl,J ⊆ Y J is closed under the
addition and subtraction of functions and 0 ∈ Pl,J . Define ∥f∥l,J := dl,J(f, 0) for all f ∈ Pl,J . Henceforth, B
denotes a non-empty collection of subsets of X such that for each x ∈ X there exists B ∈ B such that x ∈ B.
By L(X,Y ) we denote the Banach space of all bounded linear operators from X into Y ; L(X,X) ≡ L(X)
and I denotes the identity operator on Y.

The following notion generalizes the notion introduced recently in [16, Definition 3, Definition 6, Defini-
tion 7]:

Definition 2.1. Suppose that F : Λ × X → Y is a given sequence, F : N → [0,∞), Λ′ ⊆ Λ′′ and ρ is a
binary relation on Y. Then we say that F (·; ·) is:

(i) Stepanov-(B,Λ′,F,P, ρ, l)-almost periodic for some l ∈ N if and only if, for every ϵ > 0 and B ∈ B,
there exists L > 0 such that, for every t0 ∈ Λ′, there exists a point τ ∈ Λ′ ∩ B(t0, L) which satisfies
that, for every J ∈ Pl and for every j ∈ J, x ∈ B, there exists zj,x ∈ ρ(F (j;x)) such that

sup
x∈B

F(l)
∥∥F (·+ τ ;x)− z·,x

∥∥
l,J

< ϵ; (2.1)

(ii) equi-Weyl-(B,Λ′,F,P, ρ)-almost periodic if and only if, for every ϵ > 0 and B ∈ B, there exist l ∈ N
and L > 0 such that, for every t0 ∈ Λ′, there exists a point τ ∈ Λ′ ∩B(t0, L) which satisfies that, for
every J ∈ Pl and for every j ∈ J, x ∈ B, there exists zj,x ∈ ρ(F (j;x)) such that (2.1) holds;
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(iii) Weyl-(B,Λ′,F,P, ρ)-almost periodic if and only if, for every ϵ > 0 and B ∈ B, there exists L > 0 such
that, for every t0 ∈ Λ′, there exists a point τ ∈ Λ′∩B(t0, L) which satisfies that there exists an integer
lτ ∈ N such that, for every l ≥ lτ , J ∈ Pl, j ∈ J and x ∈ B, there exists zj,x ∈ ρ(F (j;x)) such that
(2.1) holds;

(iv) Doss-(B,Λ′,F,P, ρ)-almost periodic if and only if, for every ϵ > 0 and B ∈ B, there exists L > 0
such that, for every t0 ∈ Λ′, there exists a point τ ∈ Λ′ ∩B(t0, L) which satisfies that there exists an
increasing sequence (lk) of positive integers such that, for every k ∈ N, J ∈ Plk , j ∈ J and x ∈ B, there
exists zj,x ∈ ρ(F (j;x)) such that (2.1) holds with the number l replaced by the number lk therein.

In the sequel, we omit the term “B” for the functions of the form F : Λ → Y, the term “Λ′” if Λ′ = Λ′′ and
the term “ρ” if ρ = I. We will not consider here the uniformly recurrent analogues of the notion introduced
above; cf. also [16, Definition 9, Definition 10]. In Definition 2.1, the natural choice is

∥f∥l,J ≡

[∑
j∈J

∥∥f(j)∥∥pνp(j)]1/p

, f ∈ Pl,J , (2.2)

for some p ∈ [1,∞) but we can also consider the notion with

∥f∥l,J ≡
∑
j∈J

∥∥f(j)∥∥pνp(j), f ∈ Pl,J , (2.3)

where p ∈ (0, 1); here, ν : Zn → [0,∞) is an arbitrary weight sequence (in [16], we have always assumed that
ν(·) ≡ 1 and p ≥ 1). The similar pseudometrics will be used for the Besicovitch-(B,F,P)-almost periodic
sequences introduced in Definition 2.6 below.

The interested reader may try to analyze the uniform convergence (or the convergence in the pseudometric
of space Pl,J) of metrically generalized ρ-almost periodic sequences. We continue by reexaming two examples
from [16]:

Example. (i) The sequence (xk)k∈N, given by xk := 1 if there exists j ∈ N such that k = j3, and xk := 0,
otherwise, is equi-Weyl-(l−σ, p)-almost periodic for any σ > 1/2 and p > 0; cf. (2.2)-(2.3) with ν(·) ≡ 1
and [16, Remark 2].

(ii) Let l0 ∈ N, let (xk)k∈N be a real sequence defined by xk := 0 for k = 1, 2, ...., l0; xl0+2k := 1 (k ∈ N0)
and xl0+2k+1 := −1 (k ∈ N0). Then (xk)k∈N is equi-Weyl-(l−σ,P,−I)-almost periodic for any σ > 0,
where Pj,l is given by (2.2)-(2.3) with ν(·) being an arbitrary non-negative function; cf. also [16,
Example 1(ii)].

In [16, Proposition 3], we have shown that the notion of Stepanov-(B,Λ′,F,P, ρ, l)-almost periodicity
is not satisfactory enough because it is in a close connection with the notion of metrical Bohr-(B,Λ′, ρ)-
almost periodiity, where the pseudometric ∥ · ∥l,J is given by the formula (2.2). A similar statement holds
for the corresponding classes of sequences with the exponents p ∈ (0, 1), when the pseudometric ∥ · ∥l,J is
given by the formula (2.3). Furthermore, the statement of [16, Proposition 4] remains true with the general
exponents p > 0 but an equi-Weyl-(F,P)-almost periodic sequence F : Zn → Y need not be bounded if the
pseudometric is given by the formula (2.2) or (2.3) and there is no constant c > 0 such that ν(·) ≥ c, which
can be approved by a great number of very simple counterexamples.

If F : Λ×X → Y is Stepanov-(B,Λ′,F,P, ρ, l)-almost periodic for some l ∈ N, then it is clear that F (·; ·)
is equi-Weyl-(B,Λ′,F,P, ρ)-almost periodic. Furthermore, it is clear that every equi-Weyl-(B,Λ′,F,P, ρ)-
almost periodic sequence is Weyl-(B,Λ′,F,P, ρ)-almost periodic as well as that every Weyl-(B,Λ′,F,P, ρ)-
almost periodic sequence is Doss-(B,Λ′,F,P, ρ)-almost periodic. All these inclusions are strict, as easily
approved.

In [16, Theorem 4, Theorem 5], we have considered the extensions of (equi-)Weyl-p-almost periodic type
sequences, Doss-p-almost periodic type sequences and Besicovitch-p-almost periodic type sequences, where
p ≥ 1; let us first notice that this statement holds for all exponents p > 0.Without going into full details, we
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want also to note that the argumentation contained in the proof of the above-mentioned Theorem 4 shows
that the possible extensions can be considered even if the pseudometric on Pl,J is given by (2.2) or (2.3);
for example, we have the following result (see [15, Definition 4.3.6, Definition 6.2.11] for the corresponding
notion):

Theorem 2.2. Suppose that F : Z×X → Y is a given sequence, p > 0, Λ′ ⊆ Z and ρ = T ∈ L(Y ). If F (·; ·)
is (equi-)Weyl-(B,Λ′,F,P, ρ)-almost periodic [Doss-(B,Λ′,F,P, ρ)-almost periodic], where Pl,J is given by
(2.2) for p ≥ 1 and (2.3) for 0 < p < 1, with the function ν : Z → [0,∞) such that there exists a finite real
constant c > 0 such that ν(k) ≤ cν(k + 1), k ∈ Z. Define ν̃(t) := ν(k), if t ∈ [k, k + 1) for some k ∈ Z,
P := L∞(R : C), Pt,l := Lp

ν̃([t, t + l] : Y ) for all t ∈ R, l > 0, and Pt := Lp
ν̃([−t, t] : Y ) for all t ∈ R. Then

there exists a continuous function F̃ : R ×X → Y such that F̃ ∈ (e−)W
(x,F,T,Pt,l,P)

[0,1],Λ′,B (R ×X : Y ) [F̃ (·; ·) is

Doss-(P, x,F,B,Λ′, T )-almost periodic] and F̃ (t;x) = F (t;x) for all t ∈ Z and x ∈ X.

Remark 2.3. We can also extend the weight sequence ν(·) in the following way: ν̃(t) := ν(k+1), if t ∈ (k, k+1]
for some k ∈ Z; then a similar result holds true if we assume that there exists a finite real constant c > 0
such that ν(k) ≥ cν(k + 1), k ∈ Z.

The statement of [16, Proposition 6] can be metrically generalized in the following way (the proof is
almost the same and therefore omitted; observe only that the inequality between the means implies that
the inequality stated on [16, p. 13, l. 13] holds in the reverse sense for p ∈ (0, 1) so that a similar extension
cannot be formulated for these values of exponent p):

Proposition 2.4. Suppose that F : Λ → Y satisfies that R(F ) ⊆ K for some compact convex subset K
of Y , 1 ≤ p < +∞, Λ′ = Λ′′ and ρ = I. Suppose, further, that F(l) ≡ l−n/p for all l ∈ N. If F (·) is
equi-Weyl-(Λ′,F,P)-almost periodic, where for each l > 0 and J ∈ Pl we have that the pseudometric on Pl,J

is given by (2.2) and there exists a bounded sequence φ : Λ′′ → [0,∞) such that ν(x + y) ≤ ν(x)φ(y) for
all x ∈ Λ and y ∈ Λ′′. Then for each ϵ > 0 there exist a Bohr ν-almost periodic function H : Λ → Y [that
is, for every ϵ > 0, there exists L > 0 such that, for every t0 ∈ Λ′′, there exists τ ∈ B(t0, l) ∩ Λ′′ such that
∥[H(t + τ) − H(t)] · ν(t)∥Y ≤ ϵ for all t ∈ Λ] with values in K and an integer l ∈ N such that, for every
J ∈ Pl, we have

l−n/p

[∑
j∈J

∥F (j)−H(j)∥pνp(j)

]1/p

≤ ϵ.

We will include the main details of the proof of the following extension of [16, Proposition 7]:

Proposition 2.5. Suppose that F : Λ → Y is a given sequence, p > 0, Λ′ = Λ′′ and ρ = T ∈ L(Y ). If for
each ϵ > 0 there exist a Bohr (T, ν)-almost periodic sequence H : Λ → Y [that is, for every ϵ > 0, there exists
L > 0 such that, for every t0 ∈ Λ′′, there exists τ ∈ B(t0, l)∩Λ′′ such that ∥[H(t+ τ)−TH(t)] · ν(t)∥Y ≤ ϵ
for all t ∈ Λ] and an integer l ∈ N such that, for every J ∈ Pl, we have

F(l)

[∑
j∈J

∥∥F (j;x)−H(j;x)
∥∥pνp(j)]1/p

≤ ϵ, if p ≥ 1, resp., (2.4)

F(l)
∑
j∈J

∥∥F (j;x)−H(j;x)
∥∥pνp(j) ≤ ϵ, if p ∈ (0, 1).

Suppose, further, that there exists a bounded sequence φ : Λ → [0,∞) such that ν(x+ y) ≤ ν(x)φ(y) for all
x ∈ Λ, y ∈ Λ′′ and

F(l)

[∑
j∈J

νp(j)

]1/p

≤ ϵ, if p ≥ 1, resp., (2.5)
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F(l)
∑
j∈J

νp(j) ≤ ϵ, if p ∈ (0, 1).

Then F (·) is equi-Weyl-(F,P, T )-almost periodic, where the pseudometric on Pl,J is given by (2.2) for p ≥ 1,
resp. (2.3) for p ∈ (0, 1).

Proof. Let L > 0 and τ ∈ B(t0, l) ∩ Λ′′ be as in the formulation of proposition. Furthermore, let ϵ > 0 be
given and let an integer l > 0 satisfy the prescribed assumption. Fix J ∈ Pl. Using the decomposition

∥F (t+ τ)− TF (t)∥Y
≤ ∥F (t+ τ)−H(t+ τ)∥Y + ∥H(t+ τ)− TH(t)∥Y
+ ∥T∥ · ∥H(t)− F (t)∥Y , t ∈ Λ, τ ∈ Λ′′

and our assumptions on the sequence ν(·), we get the existence of a finite real constant cp > 0 such that[∑
j∈J

∥∥F (j + τ)− F (j)
∥∥p

νp(j)

]1/p

≤ cp
(
1 + ∥φ∥∞

)
×

{[∑
j∈J

∥∥F (j + τ)−H(j + τ)
∥∥p

νp(j + τ)

]1/p

+

[∑
j∈J

∥∥H(j + τ)− TH(j)
∥∥p

νp(j)

]1/p

+ ∥T∥ ·

[∑
j∈J

∥∥F (j)−H(j)
∥∥p

νp(j)

]1/p}
, if p ≥ 1.

Keeping in mind the estimate (2.5), this simply implies the required; similarly we can consider the case
p ∈ (0, 1).

Suppose now that, for every l ∈ N, (Pl, dl) is a pseudometric space, where Pl ⊆ Y [−l,l]n∩Λ is closed under
the addition and subtraction of functions and 0 ∈ Pl. Define ∥f∥l := dl(f, 0) for all f ∈ Pl. For the sequel,
we need to introduce the following metrical generalization of the notion from [16, Definition 8]:

Definition 2.6. Suppose that F : Λ ×X → Y is a given sequence and F : (0,∞) → [0,∞). Then we say
that F (·; ·) is Besicovitch-(B,F,P)-almost periodic if and only if, for every ϵ > 0 and B ∈ B, there exists a
trigonometric polynomial P (·; ·) such that

sup
x∈B

lim sup
l→+∞

F(l)
∥∥F (·;x)− P (·;x)

∥∥
l
< ϵ.

We wil not consider here the completeness of the space of Besicovitch-(B,F,P)-almost periodic sequences;
cf. [16, Theorem 6] for more details in this direction. See also [16, Corollary 3].

3. Applications to the abstract Volterra difference equations

In this section, we will consider certain applications of the metrically generalized ρ-almost periodic
sequences to the abstract Volterra difference equations. We will split the exposition into three separate
parts.

1. On the abstract first-order difference equation

u(k + 1) = Au(k) + f(k), k ∈ Z. (3.1)

In [4, Section 3], D. Araya, R. Castro and C. Lizama have analyzed the almost automorphic solutions
of the first-order linear difference equation (3.1), where A ∈ L(X) and (fk)k∈Z is an almost automorphic
sequence. Some results about the existence and uniqueness of polynomially bounded, metrically Weyl almost
automorphic solutions of (3.1) have recently been established in our joint research study [1] with S. Abbas.
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For simplicity, we will first assume here that A = λI, where λ ∈ C and |λ| ̸= 1. Keeping in mind [4,
Theorem 3.1], we know that the almost automorphy of sequence (fk)k∈Z implies the existence of a unique
almost automorphic solution u(·) of (3.1), which is given by

u(k) =

k∑
m=−∞

λk−mf(m− 1), k ∈ Z, (3.2)

if |λ| < 1, and

u(k) = −
∞∑

m=k

λk−m−1f(m), k ∈ Z, (3.3)

if |λ| > 1. The uniqueness of polynomially bounded solutions of (3.2) can be trivially proved and the following
extension of [16, Theorem 7] can be stated (keeping in mind the prescribed assumption on the weight ν(·)
and the estimate ν(j) ≤ ν(j− v− 1)ψ(v+1) for all j ∈ Z, v ∈ N0, the proof is almost the same as the proof
of the above-mentioned result and therefore omitted):

Theorem 3.1. Suppose that F : (0,∞) → (0,∞), 1 ≤ p < +∞, ρ = T ∈ L(X) and f(·) is equi-
Weyl-(F,P, T )-almost periodic [polynomially bounded Weyl-(F,P, T )-almost periodic; polynomially bounded
Doss-(F,P, T )-almost periodic], where for each l > 0 and J ∈ Pl the pseudometric on Pl,J is given by (2.2)
with the sequence ν : Z → [0,∞) satisfying that there exist a sequence ψ : Z → (0,∞) and a number σ > 0
such that ν(x+ y) ≤ ν(x)ψ(y) for all x, y ∈ Z and

∑+∞
v=0[ψ(v+1)]p/(1+ vσ)p < +∞. Then a unique (equi-

)Weyl-(F,P, T )-almost periodic [polynomially bounded Weyl-(F,P, T )-almost periodic; polynomially bounded
Doss-(F,P, T )-almost periodic] solution of (3.1) is given by (3.2) if |λ| < 1, and (3.3) if |λ| > 1.

The interested reader may try to extend the statements of [16, Theorem 8, Theorem 9] in this direction.
For the sake of completeness, we will include the most relevant details of the proof of the following slight
extension of [16, Theorem 10], which has been slightly incorrectly formulated since the estimate (3.5) with
ν(·) ≡ 1 has been mistakenly ignored:

Theorem 3.2. Suppose that F : (0,∞) → (0,∞), 1 ≤ p < +∞, F1 : (0,∞) → (0,∞) and f(·) is
polynomially bounded Besicovitch-(F,P)-almost periodic, where for each l > 0 the pseudometric on Pl is
given by

∥f∥l ≡

[ ∑
j∈[−l,l]∩Z

∥∥f(j)∥∥pνp(j)]1/p

, f ∈ Pl, (3.4)

with the sequence ν : Z → [0,∞) satisfying that there exist a sequence ψ : Z → (0,∞) and a number σ > 0
such that ν(x + y) ≤ ν(x)ψ(y) for all x, y ∈ Z and

∑+∞
v=0[ψ(v + 1)]p/(1 + vσ)p < +∞. Suppose, further,

that for each ϵ > 0 there exist l0 > 0, c > 0 and k > 0 such that, for every l ≥ l0 and v ∈ N0, we have

F1(l)

F(l + v)
≤ c

(
1 + v

)k
.

If

lim sup
l→+∞

F1(l)

[ ∑
j∈[−l,l]∩Z

νp(j)

]1/p

< +∞, (3.5)

then a unique polynomially bounded Besicovitch-(F1,P)-almost periodic solution of (3.1) is given by (3.2) if
|λ| < 1, and (3.3) if |λ| > 1.
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Proof. We will consider the case |λ| < 1, only. Let ϵ > 0 be fixed. Then there exists a trigonometric
polynomial p(·) such that

lim sup
l→+∞

F(l)

[ ∑
j∈[−l,l]∩Z

∥f(j)− p(j)∥p
]1/p

< ϵ.

The sequence j 7→ up(j) ≡
∑+∞

v=0 λ
vp(j − v − 1), j ∈ Z is almost periodic, as simply approved. Keeping

in mind the assumptions on the weight sequence ν(·) and the function F1(·), we can repeat verbatim the
argumentation contained in the proof of [16, Theorem 7] in order to see that

lim sup
l→+∞

F1(l)

[ ∑
j∈[−l,l]∩Z

∥∥u(j)− up(j)
∥∥pνp(j)]1/p

< ϵ. (3.6)

Now we can find a trigonometric polynomial P (·) such that ∥P1(j) − up(j)∥ ≤ ϵ for all j ∈ Z. Using this
estimate, (3.5) and (3.6), we simply get

lim sup
l→+∞

F1(l)

[ ∑
j∈[−l,l]∩Z

∥u(j)− P (j)∥pνp(j)

]1/p

< Const. · ϵ.

The existence and uniqueness of metrically generalized ρ-almost periodic solutions for the difference
equation

u(k + 1) = A(k)u(k) + f(k), k ≥ 0; u(0) = u0,

where (A(k))k≥0 is a sequence of closed linear operators obeying certain properties, can be considered
similarly as above; cf. also [17, Subsection 3.1] and [18].

2. On the abstract fractional difference equation

∆αu(k) = Au(k + 1) + f(k), k ∈ Z. (3.7)

Let us recall that E. Alvarez, S. Dı́az and C. Lizama have analyzed, in [2], the existence and uniqueness
of (N,λ)-periodic solutions of the abstract fractional difference equation (3.7), where A is a closed linear
operator on X, 0 < α < 1 and ∆αu(k) denotes the Caputo fractional difference operator of order α.
If A is a closed linear operator on X such that 1 ∈ ρ(A), where ρ(A) denotes the resolvent set of A,
and ∥(I − A)−1∥ < 1, then [2, Theorem 3.4] shows that A generates a discrete (α, α)-resolvent sequence
{Sα,α(v)}v∈N0

such that
∑+∞

v=0 ∥Sα,α(v)∥ < +∞. Furthermore, if (fk)k∈Z is a bounded sequence, then the
function

u(k) =

k−1∑
l=−∞

Sα,α(k − 1− l)f(l), k ∈ Z (3.8)

is a mild solution of (3.7).
In [16, Subsection 4.2], we have particularly considered the existence and uniqueness of equi-Weyl-

(F, 1, T )-almost periodic solutions of (3.7), where T ∈ L(X). Here we will only note that we can similarly
analyze the existence and uniqueness of equi-Weyl-(F,P, T )-almost periodic solutions of (3.7), where T ∈
L(X) and for each l > 0 and J ∈ Pl the pseudometric on Pl,J is given by (2.2) with p = 1 and the sequence
ν : Z → [0,∞) satisfying that there exists a bounded sequence ψ : Z → (0,∞) such that ν(x+y) ≤ ν(x)ψ(y)
for all x, y ∈ Z.

3. Some multi-dimensional analogues of (3.1). In this part, we will only note that the following
multi-dimensional linear difference equations

u
(
k1 + 1, k2 + 1, ..., kn + 1

)
= λ1λ2...λn · u

(
k1, k2, ..., kn

)
+ F

(
k1, k2, ..., kn

)
,
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(k1, k2, ..., kn) ∈ Zn, where λ1, λ2, ..., λn are certain complex numbers satisfying max(|λ1|, |λ2|, ..., |λn|) < 1,
and

u
(
k1 + 1, ..., kn + 1

)
= λu

(
k1, ..., kn

)
+ F

(
k1, ..., kn

)
,

(
k1, ..., kn

)
∈ Zn,

where λ ∈ C and |λ| < 1, are considered in [16, Subsection 4.3]. Similar conclusions can be given for the
metrically generalized ρ-almost periodic solutions of these problems. Moreover, the existence and uniqueness
of metrically generalized ρ-almost periodic solutions for the difference equation

u(k,m) = A(k,m)u(k − 1,m− 1) + f(k,m), k, m ∈ N,

subjected with the initial conditions

u(k, 0) = uk,0; u(0,m) = u0,m, k, m ∈ N0,

can be considered similarly as in [17, Subsection 3.2]. Details can be left to the interested readers.
Concerning the almost periodic solutions of the abstract impulsive Volterra integro-differential equations,

we will only note that an attempt should be made to extend the result of [9, Theorem 8] for metrically (equi-
)Weyl-p-almost periodic sequences (yk)k∈N.
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