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Abstract. In this article we investigate the Cauchy problem for a class second-order Fuchsian equations.
We propose a new topological approach to prove the existence of at least one classical solution and at least
two nonnegative classical solutions. The arguments are based upon recent theoretical results.

1. Introduction

In this paper, we investigate the IVP for a class of second-order Fuchsian equations

t2∂2
t u + 2a(x)t∂tu + b(x)u = f (t, x,u, t∂tu, ∂xu), t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ut(0, x) = u1(x), x ∈ R,

(1)

where

(H1) a, b ∈ C(R), |a|, |b| ≤ B on R, for some positive constant B > 1
2 .

(H2) f ∈ C(R5),

| f (t, x,u, t∂tu, ∂xu)| ≤ a1(t, x)|u|p1 + a2(t, x)|∂tu|p2 + a3(t, x)|∂xu|p3 ,

(t, x) ∈ [0,∞) ×R, a j ∈ C([0,∞) ×R), 0 ≤ a j ≤ B on [0,∞) ×R, p j ∈ R, p j ≥ 0, j ∈ {1, 2, 3}.

(H3) u0,u1 ∈ C
1(R), 1

2 < u0 ≤ B, |u1| ≤ B on [0,∞) ×R.
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In [3] is developed a well-posedness theory in Sobolev spaces for the class of second-order hyperbolic
Fuchsian systems and they are investigated the numerical approximations of these Fuchsian equations
when data are imposed on the singularity of the spacetime and one evolves the solution from the singularity.

The aim of this paper is to investigate the IVP (1) for existence of global classical solutions. Suppose

(H4) 1 ∈ C([0,∞) ×R) is a nonnegative function such that

4
(
1 + t + t2

)3
(1 + |x|)

∫ t

0

∣∣∣∣∣ ∫ x

0
1(t1, x1)dx1

∣∣∣∣∣∣dt1 ≤ A, (t, x) ∈ [0,∞) ×R,

for some constant A > 0.

In the last section, we will give an example for a function 1 that satisfies (H4). Our main result for existence
of classical solutions of the IVP (1) is as follows.

Theorem 1.1. Suppose (H1)-(H4). Then the IVP (1) has at least one solution u ∈ C2([0,∞),C1(R)).

Theorem 1.2. Suppose (H1)-(H4). Then the IVP (1) has at least two nonnegative solutions u1,u2 ∈ C
2([0,∞),C1(R)).

The paper is organized as follows. In the next section, we give some auxiliary results. In Section 3 we prove
Theorem 1.1. In Section 3, we prove Theorem 1.2. In Section 4, we give an example to illustrate our main
results.

2. Preliminary Results

Below, assume that X is a real Banach space. Now, we will recall the definitions of compact and
completely continuous mappings in Banach spaces.

Definition 2.1. Let K : M ⊂ X→ X be a map. We say that K is compact if K(M) is contained in a compact subset of
X. K is called a completely continuous map if it is continuous and it maps any bounded set into a relatively compact
set.

Proposition 2.2. (Leray-Schauder nonlinear alternative [1]) Let C be a convex, closed subset of a Banach space E,
0 ∈ U ⊂ C where U is an open set. Let f : U → C be a continuous, compact map. Then

(a) either f has a fixed point in U,

(b) or there exist x ∈ ∂U, and λ ∈ (0, 1) such that x = λ f (x).

To prove our existence result we will use the following fixed point theorem which is a consequence of
Proposition 2.2.

Theorem 2.3. Let E be a Banach space, Y a closed, convex subset of E, U be any open subset of Y with 0 ∈ U.
Consider two operators T and S, where

Tx = ε x, x ∈ U,

for ε > 0 and S : U→ E be such that

(i) I − S : U→ Y continuous, compact and

(ii)
{
x ∈ U : x = λ(I − S)x, x ∈ ∂U

}
= ∅, for any λ ∈

(
0, 1
ε

)
.

Then there exists x∗ ∈ U such that

Tx∗ + Sx∗ = x∗.
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Proof. We have that the operator 1
ε (I − S) : U → Y is continuous and compact. Suppose that there exist

x0 ∈ ∂U and µ0 ∈ (0, 1) such that

x0 = µ0
1
ε

(I − S)x0,

that is

x0 = λ0 (I − S)x0,

where λ0 = µ0
1
ε ∈

(
0, 1
ε

)
. This contradicts the condition (ii). From Leray-Schauder nonlinear alternative, it

follows that there exists x∗ ∈ U so that

x∗ =
1
ε

(I − S)x∗, or ε x∗ + Sx∗ = x∗, or Tx∗ + Sx∗ = x∗.

Definition 2.4. Let X and Y be real Banach spaces. A map K : X → Y is called expansive if there exists a constant
h > 1 for which one has the following inequality

∥Kx − Ky∥Y ≥ h∥x − y∥X,

for any x, y ∈ X.

Now, we will recall the definition for a cone in a Banach space.

Definition 2.5. A closed, convex set P in X is said to be cone if

1. αx ∈ P for any α ≥ 0 and for any x ∈ P,
2. x,−x ∈ P implies x = 0.

Denote P∗ = P\{0}. The next result is a fixed point theorem which we will use to prove existence of at least
two nonnegative global classical solutions of the IVP (1). For its proof, we refer the reader to [4] and [6].

Theorem 2.6. Let P be a cone of a Banach space E; Ω a subset of P and U1,U2 and U3 three open bounded subsets
of P such that U1 ⊂ U2 ⊂ U3 and 0 ∈ U1. Assume that T : Ω → P is an expansive mapping, S : U3 → E is a
completely continuous map and S(U3) ⊂ (I − T)(Ω). Suppose that (U2 \U1) ∩Ω , ∅, (U3 \U2) ∩Ω , ∅, and there
exists u0 ∈ P

∗ such that the following conditions hold:

(i) Sx , (I − T)(x − λu0), for all λ > 0 and x ∈ ∂U1 ∩ (Ω+ λu0),

(ii) there exists ϵ ≥ 0 such that Sx , (I − T)(λx), for all λ ≥ 1 + ϵ, x ∈ ∂U2 and λx ∈ Ω,

(iii) Sx , (I − T)(x − λu0), for all λ > 0 and x ∈ ∂U3 ∩ (Ω+ λu0).

Then T + S has at least two non-zero fixed points x1, x2 ∈ P such that

x1 ∈ ∂U2 ∩Ω and x2 ∈ (U3 \U2) ∩Ω,

or

x1 ∈ (U2 \U1) ∩Ω and x2 ∈ (U3 \U2) ∩Ω.
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3. Proof of Theorem 1.1

Let X = C2([0,∞),C1(R)) be endowed with the norm

∥u∥ = max
{

sup
(t, x) ∈ [0,∞) ×R

|u(t, x)|, sup
(t, x) ∈ [0,∞) ×R

|ut(t, x)|,

sup
(t, x) ∈ [0,∞) ×R

|utt(t, x)|, sup
(t, x) ∈ [0,∞) ×R

|ux(t, x)|,
}
,

provided it exists. For u ∈ X, define the operator

S1u(t, x) = u(t, x) − u0(x) − tu1(x)

+

∫ t

0
(t − t1)

(
(t2

1 − 1)∂2
t u(t1, x) + 2a(x)t1∂tu(t1, x) + b(x)u(t1, x)

− f (t1, x,u(t1, x), t1∂tu(t1, x), ∂xu(t1, x))
)
dt1, (t, x) ∈ [0,∞) ×R.

Lemma 3.1. Suppose (H1)-(H3). If u ∈ X satisfies the equation

S1u(t, x) = 0, (t, x) ∈ [0,∞) ×R, (2)

then it is a solution of the IVP (1).

Proof. Let u ∈ X is a solution of the equation (2).

0 = u(t, x) − u0(x) − tu1(x)

+

∫ t

0
(t − t1)

(
(t2

1 − 1)∂2
t u(t1, x) + 2a(x)t1∂tu(t1, x) + b(x)u(t1, x)

− f (t1, x,u(t1, x), t1∂tu(t1, x), ∂xu(t1, x))
)
dt1, (t, x) ∈ [0,∞) ×R.

(3)

We differentiate (3) with respect to t and we find

0 = ∂tu(t, x) − u1(x)

+

∫ t

0

(
(t2

1 − 1)∂2
t u(t1, x) + 2a(x)t1∂tu(t1, x) + b(x)u(t1, x)

− f (t1, x,u(t1, x), t1∂tu(t1, x), ∂xu(t1, x))
)
dt1, (t, x) ∈ [0,∞) ×R.

(4)

Now, we differentiate (4) with respect to t and we get

0 = ∂2
t u(t, x) + (t2

− 1)∂2
t u(t, x) + 2a(x)t∂tu(t, x) + b(x)u(t, x)

− f (t, x,u(t, x), t∂tu(t, x), ∂xu(t, x))

= t2∂2
t u(t, x) + 2a(x)t∂tu(t, x) + b(x)u(t, x)

− f (t, x,u(t, x), t∂tu(t, x), ∂xu(t, x)), (t, x) ∈ [0,∞) ×R,
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i.e., u satisfies the first equation of (1). Now, we put t = 0 in (3) and (4) and we arrive at

0 = u(0, x) − u0(x)

0 = ∂tu(0, x) − u1(x), x ∈ R.

Therefore u satisfies (1). This completes the proof.

Let

B1 = max
{
2B, 2B2,B + B2 + Bp1+1 + Bp2+1 + Bp3+1

}
.

Lemma 3.2. Suppose (H1)-(H3). For u ∈ X with ∥u∥ ≤ B, we have

|S1u(t, x)| ≤ B1(1 + t + t2)2, (t, x) ∈ [0,∞) ×R.

Proof. We have

|S1u(t, x)| =
∣∣∣∣∣u(t, x) − u0(x) − tu1(x)

+

∫ t

0
(t − t1)

(
(t2

1 − 1)∂2
t u(t1, x) + 2a(x)t1∂tu(t1, x) + b(x)u(t1, x)

− f (t1, x,u(t1, x), t1∂tu(t1, x), ∂xu(t1, x))
)
dt1

∣∣∣∣∣
≤ |u(t, x)| + |u0(x)| + t|u1(x)|

+

∫ t

0
(t − t1)

(
(t2

1 + 1)|∂2
t u(t1, x)| + 2|a(x)|t1|∂tu(t1, x)| + |b(x)||u(t1, x)|

+| f (t1, x,u(t1, x), t1∂tu(t1, x), ∂xu(t1, x))|
)

≤ 2B + tB +
∫ t

0
(t − t1)

(
(t2

1 + 1)B + 2B2t1 + B2

+a1(t1, x)|u(t1, x)|p1 + a2(t1, x)|∂tu(t1, x)|p2 + a3(t1, x)|∂xu(t1, x)|p3

)
dt1

≤ 2B + tB + t2
(
(t2 + 1)B + 2B2t + B2 + Bp1+1 + Bp2+1 + Bp3+1

)
≤ B1 + tB1 + B1t2(t2 + t + 1) ≤ B1(1 + t + t2)2, (t, x) ∈ [0,∞) ×R.

This completes the proof.

For u ∈ X, define the operator

S2u(t, x) =
∫ t

0

∫ x

0
(t − t1)2(x − x1)1(t1, x1)S1u(t1, x1)dx1dt1, (t, x) ∈ [0,∞) ×R.

Lemma 3.3. Suppose (H1)-(H4). For u ∈ X, ∥u∥ ≤ B, we have ∥S2u∥ ≤ AB1.
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Proof. We have

|S2u(t, x)| =
∣∣∣∣∣ ∫ t

0

∫ x

0
(t − t1)2(x − x1)1(t1, x1)S1u(t1, x1)dx1dt1

∣∣∣∣∣
≤

∫ t

0

∣∣∣∣∣ ∫ x

0
(t − t1)2

|x − x1|1(t1, x1)|S1u(t1, x1)|dx1

∣∣∣∣∣dt1

≤ 2B1(1 + |x|)
∫ t

0

∣∣∣∣∣∫ x

0
(t − t1)21(t1, x1)(1 + t1 + t2

1)2dx1

∣∣∣∣∣ dt1

≤ 2B1(1 + |x|)(1 + t + t2)3
∫ t

0

∣∣∣∣∣∫ x

0
1(t1, x1)dx1

∣∣∣∣∣ dt1

≤ AB1, (t, x) ∈ [0,∞) ×R,

and

|∂xS2u(t, x)| =
∣∣∣∣∣ ∫ t

0

∫ x

0
(t − t1)21(t1, x1)S1u(t1, x1)dx1dt1

∣∣∣∣∣
≤

∫ t

0

∣∣∣∣∣ ∫ x

0
(t − t1)21(t1, x1)|S1u(t1, x1)|dx1

∣∣∣∣∣dt1

≤ B1

∫ t

0

∣∣∣∣∣∫ x

0
(t − t1)21(t1, x1)(1 + t1 + t2

1)2dx1

∣∣∣∣∣ dt1

≤ B1(1 + t + t2)3
∫ t

0

∣∣∣∣∣∫ x

0
1(t1, x1)dx1

∣∣∣∣∣ dt1

≤ AB1, (t, x) ∈ [0,∞) ×R,

and

|∂tS2u(t, x)| = 2
∣∣∣∣∣ ∫ t

0

∫ x

0
(t − t1)(x − x1)1(t1, x1)S1u(t1, x1)dx1dt1

∣∣∣∣∣
≤ 2

∫ t

0

∣∣∣∣∣ ∫ x

0
(t − t1)|x − x1|1(t1, x1)|S1u(t1, x1)|dx1

∣∣∣∣∣dt1

≤ 4B1(1 + |x|)
∫ t

0

∣∣∣∣∣∫ x

0
(t − t1)1(t1, x1)(1 + t1 + t2

1)2dx1

∣∣∣∣∣ dt1

≤ 4B1(1 + |x|)(1 + t + t2)3
∫ t

0

∣∣∣∣∣∫ x

0
1(t1, x1)dx1

∣∣∣∣∣ dt1

≤ AB1, (t, x) ∈ [0,∞) ×R,
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and

|∂2
t S2u(t, x)| = 2

∣∣∣∣∣ ∫ t

0

∫ x

0
(x − x1)1(t1, x1)S1u(t1, x1)dx1dt1

∣∣∣∣∣
≤ 2

∫ t

0

∣∣∣∣∣ ∫ x

0
|x − x1|1(t1, x1)|S1u(t1, x1)|dx1

∣∣∣∣∣dt1

≤ 4B1(1 + |x|)
∫ t

0

∣∣∣∣∣∫ x

0
1(t1, x1)(1 + t1 + t2

1)2dx1

∣∣∣∣∣ dt1

≤ 4B1(1 + |x|)(1 + t + t2)2
∫ t

0

∣∣∣∣∣∫ x

0
1(t1, x1)dx1

∣∣∣∣∣ dt1

≤ AB1, (t, x) ∈ [0,∞) ×R.

Consequently ∥S2u∥ ≤ AB1. This completes the proof.

Lemma 3.4. Suppose (H1)-(H3) and let 1 ∈ C([0,∞)×R) be a nonnegative function. If u ∈ X satisfies the equation

S2u(t, x) = 0, (t, x) ∈ [0,∞) ×R, (5)

then u is a solution to the IVP (1).

Proof. We differentiate three times with respect to t and two times with respect to x the equation (5) and we
find

1(t, x)S1u(t, x) = 0, (t, x) ∈ [0,∞) ×R,

whereupon

S1u(t, x) = 0, (t, x) ∈ [0,∞) ×R.

Hence by using Lemma 3.1, we conclude that u is a solution to the IVP (1). This completes the proof.

Below, suppose

(H5) ϵ ∈ (0, 1), A and B satisfy the inequalities ϵB1(1 + A) < 1 and AB1 < 1.

Let ˜̃Y denote the set of all equi-continuous families in X with respect to the norm ∥·∥. Let also, Ỹ = ˜̃Y∪{u0,u1},

Y = Ỹ and

U =
{
u ∈ Y : ∥u∥ < B, if u . 0 then u(0, x) >

1
2
, x ∈ Rn

}
.

For u ∈ U and ϵ > 0, define the operators

Tu(t, x) = ϵu(t, x),

Su(t, x) = u(t, x) − ϵu(t, x) − ϵS2u(t, x), (t, x) ∈ [0,∞) ×R.

For u ∈ U, we have
∥(I − S)u∥ = ∥ϵu + ϵS2u∥ ≤ ϵ∥u∥ + ϵ∥S2u∥ ≤ ϵB1 + ϵAB1.

Thus, S : U→ X is continuous and (I − S)(U) resides in a compact subset of Y. Now, suppose that there is a
u ∈ ∂U so that

u = λ(I − S)u,
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or

u = λϵ (u + S2u), (6)

for some λ ∈
(
0, 1
ϵ

)
. Then, using that S2u(0, x) = 0, we get

u(0, x) = λϵ(u(0, x) + S2u(0, x)) = λϵu(0, x), x ∈ Rn,

whereupon λϵ = 1, which is a contradiction. Consequently{
u ∈ U : u = λ1(I − S)u, u ∈ ∂U

}
= ∅

for any λ1 ∈
(
0, 1
ϵ

)
. Then, from Theorem 2.3, it follows that the operator T + S has a fixed point u∗ ∈ Y.

Therefore

u∗(t, x) = Tu∗(t, x) + Su∗(t, x)

= ϵu∗(t, x) + u∗(t, x) − ϵu∗(t, x) − ϵS2u∗(t, x), (t, x) ∈ [0,∞) ×R,

whereupon
S2u∗(t, x) = 0, (t, x) ∈ [0,∞) ×R.

From here, u∗ is a solution to the problem (1). From here, it follows that u is a solution to the IVP (1). This
completes the proof.

4. Proof of Theorem 1.2

Let X be the space used in the previous section. Suppose

(H6) Let m > 0 be large enough and A, B, r, L, R1 be positive constants that satisfy the following conditions

r < L < R1, ϵ > 0, R1 >
( 2

5m
+ 1

)
L, AB1 <

L
5
.

Let

P̃ =
{
u ∈ X : u ≥ 0 on [0,∞) ×R

}
.

With Pwe will denote the set of all equi-continuous families in P̃. For v ∈ X, define the operators

T1v(t) = (1 +mϵ)v(t) − ϵ
L
10
,

S3v(t) = −ϵS2v(t) −mϵv(t) − ϵ
L
10
,

t ∈ [0,∞). Note that any fixed point v ∈ X of the operator T1 + S3 is a solution to the IVP (1). Define

U1 = Pr =
{
v ∈ P : ∥v∥ < r

}
,

U2 = PL =
{
v ∈ P : ∥v∥ < L

}
,

U3 = PR1 =
{
v ∈ P : ∥v∥ < R1

}
,

R2 = R1 +
A
m

B1 +
L

5m
,

Ω = PR2 =
{
v ∈ P : ∥v∥ ≤ R2

}
.
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1. For v1, v2 ∈ Ω, we have

∥T1v1 − T1v2∥ = (1 +mε)∥v1 − v2∥,

whereupon T1 : Ω→ X is an expansive operator with a constant h = 1 +mε > 1.
2. For v ∈ PR1 , we get

∥S3v∥ ≤ ε∥S2v∥ +mε∥v∥ + ε
L
10
≤ ε

(
AB1 +mR1 +

L
10

)
.

Therefore S3(PR1 ) is uniformly bounded. Since S3 : PR1 → X is continuous, we have that S3(PR1 ) is
equi-continuous. Consequently S3 : PR1 → X is a 0-set contraction.

3. Let v1 ∈ PR1 . Set

v2 = v1 +
1
m

S2v1 +
L

5m
.

Note that S2v1 +
L
5 ≥ 0 on [t0,∞). We have v2 ≥ 0 on [t0,∞) and

∥v2∥ ≤ ∥v1∥ +
1
m
∥S2v1∥ +

L
5m
≤ R1 +

A
m

B1 +
L

5m
= R2.

Therefore v2 ∈ Ω and

−εmv2 = −εmv1 − εS2v1 − ε
L
10
− ε

L
10
,

or
(I − T1)v2 = −εmv2 + ε

L
10
= S3v1.

Consequently S3(PR1 ) ⊂ (I − T1)(Ω).
4. Assume that for any u0 ∈ P

∗ there exist λ ≥ 0 and x ∈ ∂Pr∩ (Ω+λu0) or x ∈ ∂PR1 ∩ (Ω+λu0) such that

S3x = (I − T1)(x − λu0).

Then
−ϵS2x −mϵx − ϵ

L
10
= −mϵ(x − λu0) + ϵ

L
10

or − S2x = λmu0 +
L
5
.

Hence,

∥S2x∥ =
∥∥∥∥∥λmu0 +

L
5

∥∥∥∥∥ > L
5
.

This is a contradiction.
5. Suppose that for any ϵ1 ≥ 0 small enough there exist a x1 ∈ ∂PL and λ1 ≥ 1 + ϵ1 such that λ1x1 ∈ PR1

and

S3x1 = (I − T1)(λ1x1). (7)

In particular, for ϵ1 > 2
5m , we have x1 ∈ ∂PL, λ1x1 ∈ PR1 , λ1 ≥ 1 + ϵ1 and (7) holds. Since x1 ∈ ∂PL and

λ1x1 ∈ PR1 , it follows that( 2
5m
+ 1

)
L < λ1L = λ1∥x1∥ ≤ R1.

Moreover,

−ϵS2x1 −mϵx1 − ϵ
L
10
= −λ1mϵx1 + ϵ

L
10
, or S2x1 +

L
5
= (λ1 − 1)mx1.

From here,

2
L
5
≥

∥∥∥∥∥S2x1 +
L
5

∥∥∥∥∥ = (λ1 − 1)m∥x1∥ = (λ1 − 1)mL, and
2

5m
+ 1 ≥ λ1,

which is a contradiction.
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Therefore all conditions of Theorem 1.2 hold. Hence, the IVP (1) has at least two solutions u1 and u2 so that

∥u1∥ = L < ∥u2∥ < R1 or r < ∥u1∥ < L < ∥u2∥ < R1.

5. An Example

Below, we will illustrate our main results. Let

p1 = 2, p2 = 3, p3 = 4,

and

R1 = B = 10, L = 5, r = 4, m = 1050, A =
1

5B1
, ϵ =

1
5B1(1 + A)

.

Then
B1 = max

{
20, 2 · 102, 10 + 102 + 103 + 104 + 105

}
= 10 + 102 + 103 + 104 + 105,

and

AB1 =
1
5
< B, ϵB1(1 + A) < 1,

i.e., (H5) holds. Next,

r < L < R1, ϵ > 0, R1 >
( 2

5m
+ 1

)
L, AB1 <

L
5
.

i.e., (H6) holds. Take

h(s) = log
1 + s11

√
2 + s22

1 − s11
√

2 + s22
, l(s) = arctan

s11
√

2
1 − s22 , s ∈ R, s , ±1.

Then

h′(s) =
22
√

2s10(1 − s22)

(1 − s11
√

2 + s22)(1 + s11
√

2 + s22)
,

l′(s) =
11
√

2s10(1 + s20)
1 + s40 , s ∈ R, s , ±1.

Therefore

−∞ < lim
s→±∞

(1 + s + s2)h(s) < ∞,

−∞ < lim
s→±∞

(1 + s + s2)l(s) < ∞.

Hence, there exists a positive constant C1 so that

(1 + s + s2)3

(
1

44
√

2
log

1 + s11
√

2 + s22

1 − s11
√

2 + s22
+

1

22
√

2
arctan

s11
√

2
1 − s22

)
≤ C1,

s ∈ R. Note that lim
s→±1

l(s) = π2 and by [7] (pp. 707, Integral 79), we have

∫
dz

1 + z4 =
1

4
√

2
log

1 + z
√

2 + z2

1 − z
√

2 + z2
+

1

2
√

2
arctan

z
√

2
1 − z2 .
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Let

Q(s) =
s10

(1 + s44)(1 + s + s2)2 , s ∈ R,

and

11(t, x) = Q(t)Q(x), t ∈ [0,∞), x ∈ R.

Then there exists a constant C > 0 such that

4
(
1 + t + t2

)3
(1 + |x|)

∫ t

0

∣∣∣∣∣ ∫ x

0
11(t1, x1)dx1

∣∣∣∣∣∣dt1 ≤ C, (t, x) ∈ [0,∞) ×R.

Let

1(t, x) =
A
C
11(t, x), (t, x) ∈ [0,∞) ×R.

Then

4
(
1 + t + t2

)3
(1 + |x|)

∫ t

0

∣∣∣∣∣ ∫ x

0
1(t1, x1)dx1

∣∣∣∣∣∣dt1 ≤ A, (t, x) ∈ [0,∞) ×R,

i.e., (H4) holds. Therefore for the IVP

t2∂2
t u + 2

1+x2 t∂tu + 1
1+x4 u = 1

1+t4 u2 + 1
1+t6 (t∂tu)3 + 1

1+x8 (∂xu)4, t > 0, x ∈ R,

u(0, x) = ∂tu(0, x) = 1
(1+x2)8 , x ∈ R,

are fulfilled all conditions of Theorem 1.1 and Theorem 1.2.
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