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Relatively regular semi-Fredholm operators and essentially Saphar
decomposition
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Abstract. We characterize left (right) Weyl, left (right) Fredholm and left (right) Browder operators
by means of essentially Saphar decompositions and improve some results from [18] and [20]. Some
relationships between different parts of the spectrum of bounded linear operator pencils are established.

1. Introduction

For an infinite dimensional complex Banach space X, L(X) is the Banach algebra of all bounded linear
operators acting on X. For T ∈ L(X) let α(T) denote the dimension of the kernel N(T) and let β(T) denote the
dimension of the range R(T). If M and N are two closed T-invariant subspaces of X such that X = M ⊕ N,
then we write T = TM ⊕ TN and say that T is completely reduced by the pair (M,N), denoting this by
(M,N) ∈ Red(T). An operator T ∈ L(X) is said to be Saphar if T is relatively regular and N(T) ⊂ R(Tn) for
every n ∈N. An operator T ∈ L(X) is essentially Saphar if and only if there exists (M,N) ∈ Red(T) such that
TM is Saphar, TN is nilpotent and dimN < ∞.

Linear operator pencils have the form T − λS, where λ ∈ C, T and S are two bounded linear operators
acting on a Banach space. In this paper we characterize left (right) Weyl, left (right) Fredholm and left
(right) Browder operators by means of essentially Saphar decompositions using various types of spectra of
bounded linear operator pencils. Furthermore we get that boundaries of the essential spectra of operator
pencils are contained in the essentially Saphar spectrum of operator pencils and that their connected hulls
coincide. As applications of these results we establish some relationships between various parts of the
spectrum of operator pencils.

For T,S ∈ L(X), where S is invertible and commutes with T, one of the characterizations is that T is left
(right) Weyl if and only if T is essentially Saphar and 0 is not an interior point of the S-upper (S-lower) semi-
B-Weyl spectrum, while T is left (right) Fredholm if and only if T is essentially Saphar and 0 is not an interior
point of the S-essentially upper Drazin spectrum (the S-essentially descent spectrum). From [18, Theorems
5 and 6] it follows that T ∈ L(X) is left (right) Browder if and only if T is left (right) Fredholm and 0 is not
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an accumulation point of the S-left (S-right) spectrum of T, σl(T,S) = {λ ∈ C : T − λS is not left invertible} (
σr(T,S) = {λ ∈ C : T − λS is not right invertible}), where S ∈ L(X) is invertible and commutes with T. In this
paper we prove that the condition that T is left (right) Fredholm in the previous equivalence can be replaced
by the weaker condition that T is essentially Saphar, while the condition that 0 is not an accumulation point
of the S-left (S-right) spectrum of T can be replaced by the condition that 0 is not an interior point of the
S-point (S-compression) spectrum, or by the condition that 0 is not an interior point of the S-upper Drazin
(S-descent) spectrum. Also this shows that in characterizations of left (right) Browder operators given in [20,
Theorem 3.1] ([20, Theorem 3.2]) the condition that the operator T is left (right) Fredholm can be replaced by
a weaker condition that the operator T is essentially Saphar. These characterizations allow us to prove that
the boundary of the S-left (right) Browder spectrum, as well as the boundary of S-left (right) Weyl and the
boundary of S-left (right) Fredholm spectrum is contained in the S-essentially Saphar spectrum. In that way
we improve Theorem 10 in [18] for the case of relatively regular semi-Fredholm operators. Furthermore
using the consept of essentially Saphar decompositions allows us to give an alternative more direct proof
of Theorem 3.5 in [20]. In [20, Theorem 3.5 (2)] it is stated that the connected hulls of before mentioned
S-spectra coincide with the connected hull of σΦl,r (T,S) = {λ ∈ C : T − λS < Φl,r(X)}, where Φl,r(X) is the set
of all relatively regular semi-Fredholm operators. We get more than this: the connected hulls of all these
S-spectra coincide with the connected hull of the S-essentially Saphar spectrum. As applications of results
regarding boundaries of S-essential spectra we establish some new relationships between various parts of
the S-spectrum, especially regarding isolated points of the S-essential spectra.

This paper is divided into five sections. In the second section we set up terminology and give some
preliminary results. In the third section we provide some new characterizations of left (right) Weyl, left
(right) Fredholm and left (right) Browder by means of essentially Saphar decompositions. The forth section
is dedicated to numerous relationships between different parts of the S-spectrum.

2. Basic notation and preliminary results

For T,S ∈ L(X), S , 0, the corresponding S-spectra are defined as

σ(T,S) = {λ ∈ C : T − λS is not invertible} − the S − spectrum of T,
σl(T,S) = {λ ∈ C : T − λS is not left invertible} − the S − left spectrum of T,
σr(T,S) = {λ ∈ C : T − λS is not right invertible} − the S − right spectrum of T,
σp(T,S) = {λ ∈ C : T − λS is not injective} − the S − point spectrum of T,
σcp(T,S) = {λ ∈ C : T − λS does not have dense range} − the S − compression

spectrum of T.

An operator T ∈ L(X) is called upper (lower) semi-Fredholm, or T ∈ Φ+(X) (T ∈ Φ−(X)), if α(T) < ∞ and
R(T) is closed (β(T) < ∞). The set of semi-Fredholm operators is Φ±(X) = Φ+(X) ∪ Φ−(X). The index for
T ∈ Φ±(X) is defined by i(T) = α(T) − β(T). The set of Fredholm operators is Φ(X) = Φ+(X) ∩Φ−(X).

An operator T ∈ L(X) is said to be upper (lower) semi-Weyl, or T ∈ W+(X) (T ∈ W−(X)), if T ∈ Φ+(X)
and i(T) ≤ 0 (T ∈ Φ−(X) and i(T) ≥ 0). The set of Weyl operators isW(X) =W+(X) ∩W−(X) = {T ∈ Φ(X) :
i(T) = 0}.

A closed subspace M of X is complemented if there is a closed subspace N of X such that X = M ⊕ N.
An operator T ∈ L(X) is relatively regular (or 1-invertible) if there exists S ∈ L(X) such that TST = T. It is
well-known that T is relatively regular if and only if R(T) and N(T) are complemented subspaces of X.

An operator T ∈ L(X) is called left (right) Fredholm, or T ∈ Φl(X) (T ∈ Φr(X)), if T is relatively regular
upper (lower) semi-Fredholm. Set Φl,r(X) = Φl(X) ∪ Φr(X). An operator T ∈ L(X) is left (right) Weyl, or
T ∈ Wl(X) (T ∈ Wr(X)), if T is upper (lower) semi-Weyl and relatively regular.

For T ∈ L(X) and n ∈N0 we set

αn(T) = dimN(Tn+1)/N(Tn) and βn(T) = dimR(Tn)/R(Tn+1).
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From [12, Lemmas 3.1 and 3.2] it follows that αn(T) = dim(N(T) ∩ R(Tn)) and βn(T) = codim (R(T) +N(Tn)).
For n ∈N0, set kn(T) = dim(R(Tn) ∩N(T))/(R(Tn+1) ∩N(T)) [9]. Equivalently,
kn(T) = dim(R(T) +N(Tn+1))/(R(T) +N(Tn)). Let k(T) =

∑
∞

n=0 kn(T).
An operator T ∈ L(X) has uniform descent for n ≥ d if there exists d ∈ N0 such that kn(T) = 0 for each

n ≥ d. T ∈ L(X) is quasi-Fredholm of degree d if there exists a d ∈ N0 such that T has uniform descent for
n ≥ d and R(Tn) is closed for each n ≥ d. An operator T ∈ L(X) is quasi-Fredholm if it is quasi-Fredholm of
some degree d. It is said that T ∈ L(X) has topological uniform descent for (TUD for brevity) n ≥ d [9] if
there exists d ∈ N0 for which T has uniform descent for n ≥ d and if R(Tn) is closed in the operator range
topology of R(Td) for n ≥ d.

The ascent a(T) of T is the smallest n ∈N such that αn(T) = 0. If such n does not exist, then a(T) = ∞. The
descent d(T) is the smallest n ∈N such that βn(T) = 0. If such n does not exist, then d(T) = ∞. The essential
ascent ae(T) is the smallest n ∈ N such that αn(T) = 0.If such n does not exist, then ae(T) = ∞. The essential
descent de(T) of T is the smallest n ∈N such that βn(T) < ∞. If such n does not exist, then de(T) = ∞.

An operator T ∈ L(X) is upper (lower) semi-Browder if it is upper (lower) semi-Fredholm of finite ascent
(descent), and then we write T ∈ B+(X) (T ∈ B−(X)). The set of Browder operators isB(X) = B+(X)∩B−(X).
T is left (right) Browder if T ∈ L(X) is relatively regular upper (lower) semi-Browder and then we write
T ∈ Bl(X) (T ∈ Br(X)) [18].

For S ∈ L(X) such that S , 0 and H = Bl,Br,B,Φ+,Φ−,Φl,Φr,Φ,Φl,r,W+,W−,Wl,
Wr,W, the corresponding S-spectrum of T ∈ L(X) is defined by

σH(T,S) = {λ ∈ C : T − λS < H(X)}.

We recall that the sets Φ+(X),Φ−(X),Φl(X),Φl,r(X),Φr(X),W+(X), W−(X), Wl(X),
Wr(X) are open in L(X) ([6], Theorems 4.2.1, 4.2.2), ([5], Chapter 5.2, Theorem 6), as well B+(X) and
B−(X) ([13], Satz 4) and consequently, Bl(X) and Br(X) are also open in L(X). Hence σH(T,S) is closed for
each H = Bl,Br,B,Φ+,Φ−,Φl,Φr,Φ,Φl,r,W+,W−,Wl,Wr,W.

An operator T ∈ L(X) is said to be upper (lower) Drazin invertible if a(T) < ∞ and R(Ta(T)+1) is closed
(d(T) < ∞ and R(Td(T)) is closed). If ae(T) < ∞ and R(Tae(T)+1) is closed (de(T) < ∞ and R(Tde(T)) is closed),
then T is called essentially upper (lower) Drazin invertible.

If T,S ∈ L(X) such that S , 0, the S-upper Drazin spectrum of T, the S-lower Drazin spectrum of T,
the S-essentially upper Drazin spectrum of T, the S-essentially lower Drazin spectrum of T are denoted as
σD+ (T,S), σD− (T,S), σe

D+
(T,S), σe

D−
(T,S), respectively. If S , 0 commutes with T, then the spectra σD+ (T,S),

σD− (T,S), σe
D+

(T,S), σe
D−

(T,S) are closed [15, (C), p. 135, p. 139].
The S-descent spectrum of T and the S-essentially descent spectrum of T are defined as

σdsc(T,S) = {λ ∈ C : d(T − λS) = ∞},
σe

dsc(T,S) = {λ ∈ C : de(T − λS) = ∞}.

If T ∈ L(X) has finite descent or essential descent, then T has TUD. For T,S ∈ L(X) such that S is invertible
and TS = ST, from [9, Theorem 4.7] it follows that σdsc(T,S) and σe

dsc(T,S) are closed.
For T ∈ L(X) and n ∈ N0 let Tn denote the restriction of T to to R(Tn) [2]. If there exist an integer n for

which the range space R(Tn) is closed and Tn is upper semi-Weyl (lower semi-Weyl), then T is said to be a
upper semi-B-Weyl (lower semi-B-Weyl) operator.

For T,S ∈ L(X), S , 0, the S-upper semi-B-Weyl spectrum of T is

σBW+
(T,S) = {λ ∈ C : T − λS is not upper semi-B-Weyl},

and the S-lower semi-B-Weyl spectrum of T is

σBW−
(T,S) = {λ ∈ C : T − λS is not lower semi-B-Weyl}.

The quasinilpotent part of an operator T ∈ L(X) is the set:

H0(T) = {x ∈ X : lim
n→∞
∥Tnx∥1/n = 0}.



S. Č. Živković-Zlatanović / FAAC 16 (3) (2024), 1–12 4

The analytical core of T is the set:

K(T) = {x ∈ X : there exist δ > 0 and a sequence (xn)n in X such that
Tx1 = x, Txn+1 = xn and ∥xn∥ ≤ δ

n
∥x∥ for all n ∈N.}.

An operator T ∈ L(X) has the single-valued extension property at λ0 ∈ C, SVEP at λ0, if for every open
disc Dλ0 centered atλ0 the only analytic function f : Dλ0 → X which satisfies (T−λI) f (λ) = 0 for all λ ∈ Dλ0 ,
is the function f ≡ 0.

If M,N are vector subspace of X, then we write M
e
⊂ N (M is essentially contained in N) if there exists a

finite-dimensional subspace F of X such that M ⊂ N + F.
For T ∈ L(X) we say that it is Kato if R(T) is closed and N(T) ⊂ R(Tn) for every n ∈ N. An operator

T ∈ L(X) is said to be Saphar if it is a relatively regular Kato operator. For T ∈ L(X) it is said to be essentially
Kato if R(T) is closed and N(T)

e
⊂ ∩

∞

n=1R(Tn). An operator T ∈ L(X) is essentially Saphar if T is a relatively
regular essentially Kato operator [16, p. 233].

For K ⊂ C, the boundary of K, the set of accumulation points of K, the set of interior points of K and the
set of isolated points of K are denoted respectively by ∂K, acc K, int K and iso K. For a compact subset K of
C, the complement of the unbounded component of C \ K is called the connected hull of K and denoted by
ηK [10, Definition 7.10.1]. If H,K ⊂ C are compact, then:

∂H ⊂ K ⊂ H =⇒ ∂H ⊂ ∂K ⊂ K ⊂ H ⊂ ηK = ηH . (2.1)

Lemma 2.1. Let T ∈ L(X) and let there exists a pair (M,N) ∈ Red(T). Then the following statements hold:
(i) T is g-invertible if and only if TM and TN are g-invertible.
(ii) T is left (right) Fredholm if and only if TM and TN are left (right) Fredholm, and in that case i(T) = i(TM)+ i(TN).
(iii) If TM and TN are left (right) Weyl, then T is left (right) Weyl.

Proof. For (i) and (ii) see [19, Lemma 2.1]. The assertion (iii) follows from (ii).

Lemma 2.2. For T ∈ L(X) let there exists a pair (M,N) ∈ Red(T). Then T is Saphar if and only if TM and TN are
Saphar.

Proof. According to [15, p. 143], T is Kato if and only if TM and TN are Kato. Applying Lemma 2.1 (i) we
get the assertion.

Lemma 2.3. Let T ∈ L(X). Then T is essentially Saphar if and only if there exists (M,N) ∈ Red(T) such that
dimN < ∞, TN is nilpotent and TM is Saphar.

Proof. It follows from [17, Theorem 2.1] and Lemma 2.1 (i).

Lemma 2.4. [8, Lemma 2.2] Let T ∈ L(X) be of Kato type of degree d, i.e. there exists a pair (M,N) ∈ Red(T) such
that TM is Kato and Td

N = 0. Then T is quasi-Fredholm of degree d and for n ≥ d it holds

R(T) +N(Tn) = R(TM) ⊕N

and
N(T) ∩ R(Tn) = N(TM).

Lemma 2.5. Let T, S ∈ Ł(X), TS = ST and let S be invertible. The spectra σBW+
(T,S) and σBW−

(T,S) are closed.

Proof. It follows from [3, Proposition 2.5 and Corollary 3.2].

Theorem 2.6. [20, Theorem 2.1] Let T, S ∈ Ł(X), TS = ST and let S be invertible. If T ∈ Φ±(X), then there exists
an ϵ > 0 such that for every λ ∈ C, 0 < |λ| < ϵ implies that T − λS ∈ Φ±(X) and

α(T − λS) = α(T) − k(T), (2.2)
β(T − λS) = β(T) − k(T), (2.3)
i(T − λS) = i(T). (2.4)
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Lemma 2.7. Let E and F be sets of the complex plane. Then:
(i) If ∂F ⊂ E ⊂ F, then iso F ⊂ iso E.
(ii) If ∂F ⊂ E and F is closed, then ∂F ∩ iso E ⊂ iso F.

Proof. See [7, Lemma 2.2].

3. Left and right Weyl, Fredholm and Browder operators

In this section we are concerned with various characterizations of left (right) Weyl, left (right) Fredholm
and left (right) Browder operators by means of essentially Saphar decompositions.

Theorem 3.1. Let T,S ∈ L(X), and let S be invertible and commute with T. Then the following statements are
equivalent:
(i) T is left Weyl;
(ii) T is essentially Saphar and 0 < acc σWl (T,S);
(iii) T is essentially Saphar and 0 < int σWl (T,S);
(iv) T is essentially Saphar and 0 < acc σW+

(T,S);
(v) T is essentially Saphar and 0 < int σW+

(T,S).
(vi) T is essentially Saphar and 0 < acc σBW+

(T,S);
(vii) T is essentially Saphar and 0 < int σBW+

(T,S).

Proof. (i)=⇒(ii): Let T be left Weyl. Then T is left Fredholm, and hence according to [16, Theorem 16.21]
there exists (M,N) ∈ Red(T) such that dimN < ∞, TN is nilpotent and TM is Kato. From Lemma 2.1 (i) it
follows that TM is Saphar. Lemma 2.3 provides that T is essentially Saphar. Using the fact thatΦl(X) is open
and Theorem 2.6 we conclude that there exists an ϵ > 0 such that for every λ ∈ C, 0 < |λ| < ϵ implies that
T − λS ∈ Wl(X). Consequently, 0 < acc σWl (T,S).

(ii)=⇒(iii)=⇒(v)=⇒(vii), (ii)=⇒(iv)=⇒(vi)=⇒(vii) It is clear.
(vii)=⇒(i) Suppose that T is essentially Saphar and 0 < int σBW+

(T,S). From Lemma 2.3 it follows that
there exist (M,N) ∈ Red(T) and d ∈N0 such that dimN < ∞, Td

N = 0 and TM is Saphar. Lemma 2.4 provides
that T is quasi-Fredholm of degree d, and hence T has TUD for n ≥ d. According to [9, Theorem 4.7] it
follows that there exists an ϵ > 0 such that for every λ ∈ C the following implication holds:

0 < |λ| < ϵ =⇒
αn(T − λS) = αd(T),

βn(T − λS) = βd(T), for every n ∈N0.
(3.1)

As σBW+
(T,S) is closed, from 0 < int σBW+

(T,S) it follows that there exists λ ∈ C such that 0 < |λ| < ϵ and
T−λS is an upper semi-B-Weyl operator. Therefore, there exists n ∈N0 such that R((T−λS)n) is closed and
(T − λS)n : R((T − λS)n)→ R((T − λS)n) is upper semi-Weyl. Consequently,

αn(T − λS) = dim(N(T − λS) ∩ R((T − λS)n)) = α((T − λS)n) < ∞ (3.2)

and
βn(T − λS) = dim(R((T − λS)n)/R((T − λS)n+1)) = β((T − λS)n),

which implies

αn(T − λS) − βn(T − λS) = α((T − λS)n) − β((T − λS)n) ≤ 0. (3.3)

Now from (3.1), (3.2) and (3.3) we conclude that

αd(T) < ∞ and αd(T) ≤ βd(T). (3.4)
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According to Lemma 2.4 we have that

R(T) +N(Td) = R(TM) ⊕N

and

N(T) ∩ R(Td) = N(TM),

and hence
αd(T) = dim(N(T) ∩ R(Td) = α(TM), βd(T) = codim (R(T) +N(Tn)) = β(TM).

Now from (3.4) we obtain that α(TM) < ∞ and α(TM) ≤ β(TM). Since TM is relatively regular, it follows that
TM is left Weyl. As dimN < ∞, we have that TN is Weyl. According to Lemma 2.1 (iii) it follows that T is
left Weyl.

Theorem 3.2. Let T,S ∈ L(X), and let S be invertible and commute with T. Then the following statements are
equivalent:
(i) T is right Weyl;
(ii) T is essentially Saphar and 0 < acc σWr (T,S);
(iii) T is essentially Saphar and 0 < int σWr (T,S);
(iv) T is essentially Saphar and 0 < acc σW−

(T,S);
(v) T is essentially Saphar and 0 < int σW−

(T,S).
(vi) T is essentially Saphar and 0 < acc σBW−

(T,S);
(vii) T is essentially Saphar and 0 < int σBW−

(T,S).

Proof. Similarly to the proof of Theorem 3.1.

Theorem 3.3. Let T,S ∈ L(X), and let S be invertible and commute with T. Then the following statements are
equivalent:
(i) T is left Fredholm;
(ii) T is essentially Saphar and 0 < acc σΦl (T,S);
(iii) T is essentially Saphar and 0 < int σΦl (T,S);
(iv) T is essentially Saphar and 0 < acc σΦ+ (T,S);
(v) T is essentially Saphar and 0 < int σΦ+ (T,S);
(vi) T is essentially Saphar and 0 < acc σe

D+
(T,S);

(vii) T is essentially Saphar and 0 < int σe
D+

(T,S).

Proof. (i)=⇒(ii): It follows from the proof of the implication (i)=⇒(ii) in Theorem 3.1.
(ii)=⇒(iii)=⇒(v)=⇒(vii), (ii)=⇒(iv)=⇒(vi)=⇒(vii) It is clear.
(vii)=⇒(i) Suppose that T is essentially Saphar and 0 < int σe

D+
(T,S). Then T has TUD for n ≥ d, for some

d ∈ N0, and according to [9, Theorem 4.7] it follows that there exists an ϵ > 0 such that for every λ ∈ C
the implication (3.1) holds. Since σe

D+
(T,S) is closed, from 0 < int σe

D+
(T,S) it follows that there exists λ ∈ C

such that 0 < |λ| < ϵ and ae(T − λS) < ∞. Hence there is an n ∈ N0 such that αn(T − λS) < ∞. From (3.1) it
follows that αd(T) < ∞. As in the proof of Theorem 3.1 we conclude that α(TM) = αd(T), and so α(TM) < ∞.
Consequently, TM is left Fredholm. From dimN < ∞, we have that TN is Fredholm. Now according to
Lemma 2.1 (ii) it follows that T is left Fredholm.

Theorem 3.4. Let T,S ∈ L(X), and let S be invertible and commute with T. Then the following statements are
equivalent:
(i) T is right Fredholm;
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(ii) T is essentially Saphar and 0 < acc σΦr (T,S);
(iii) T is essentially Saphar and 0 < int σΦr (T,S);
(iv) T is essentially Saphar and 0 < acc σΦ− (T,S);
(v) T is essentially Saphar and 0 < int σΦ− (T,S);
(vi) T is essentially Saphar and 0 < acc σe

D−
(T,S);

(vii) T is essentially Saphar and 0 < int σe
D−

(T,S);
(viii) T is essentially Saphar and 0 < acc σe

dsc(T,S);
(ix) T is essentially Saphar and 0 < int σe

dsc(T,S).

Proof. Similarly to the proof of Theorem 3.3 and Theorem 3.1.

In the following two theorems we give some characterizations of left and right Browder operators by
means of essentially Saphar decompositions.

Theorem 3.5. Let T,S ∈ L(X), and let S be invertible and commute with T. The following statements are equivalent:
(i) T is left Browder;
(ii) T is essentially Saphar and a(T) < ∞;
(iii) T is essentially Saphar and T has SVEP at 0;
(iv) T is essentially Saphar and there exists p ∈N such that H0(T) = N(Tp);
(v) T is essentially Saphar and H0(T) is closed;
(vi) T is essentially Saphar and H0(T) ∩ K(T) = {0};
(vii) T is essentially Saphar and H0(T) ∩ K(T) is closed;
(viii) T is essentially Saphar and N(T∞) ∩ R(T∞) = {0}.
(ix) T is essentially Saphar and 0 < acc σl(T,S),

(x) T is essentially Saphar and 0 < int σl(T,S),

(xi) T is essentially Saphar and 0 < acc σBl (T,S),

(xii) T is essentially Saphar and 0 < int σBl (T,S),

(xiii) T is essentially Saphar and 0 < acc σD+ (T,S),

(xiv) T is essentially Saphar and 0 < int σD+ (T,S).
(xv) T is essentially Saphar and 0 < acc σp(T,S),

(xvi) T is essentially Saphar and 0 < int σp(T,S),

Proof. (i)=⇒(ii): Let T be left Browder. Then a(T) < ∞, T is left Fredholm, and hence T is essentially Saphar.
(ii)=⇒(i): Let T be essentially Saphar and let a(T) < ∞. Then according to Lemma 2.3 there exists

(M,N) ∈ Red(T) such that dimN < ∞, TN is nilpotent and TM is Saphar. From a(T) < ∞ it follows that
a(TM) < ∞, and so from [1, Lemma 1.19 (i)] it follows that N(TM) ∩ R(Ta(TM)) = {0}. Since TM is Saphar, we
have that N(TM) ∩ R(Ta(TM)) = N(TM), and hence N(TM) = {0}. Thus TM is left invertible. Now according to
[18, Theorem 5] we conclude that T is left Browder.

(ii)⇐⇒(iii): Suppose that T is essentially Saphar. Then T has TUD for n ≥ d, and from [4, Theorem 2.5]
it follows that a(T) < ∞ if and only if T has SVEP at 0.

(iii)⇐⇒(iv)⇐⇒(v)⇐⇒(vi)⇐⇒(vii)⇐⇒(viii): It follows from [1, Theorem 2.79], [1, Corollary 2.66], [11,
Theorem 3.2].

(i)=⇒(ix): Suppose that T is left Browder. Then T is essentially Saphar. According to the equivalence
between (5.1) and (5.2) in [18, Theorem 5] there exists an ϵ > 0 such that for every λ ∈ C satisfying |λ| < ϵ it
follows that T − λS is left invertible. Consequently, 0 < acc σl(T,S).
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The implications (ix)=⇒(x)=⇒(xvi), (ix)=⇒(xv)=⇒(xvi), (ix)=⇒(x)=⇒(xii)=⇒(xiv), (ix)=⇒(xi)=⇒(xiii)=⇒(xiv)
are clear.

(xiv)=⇒(ii): Suppose that T is essentially Saphar and 0 < int σD+ (T,S). Then there is a d ∈ N0 such that
T has TUD for n ≥ d. From [9, Theorem 4.7] it follows that there exists an ϵ > 0 such that for every λ ∈ C it
holds:

0 < |λ| < ϵ =⇒ αn(T − λS) = αd(T), for every n ∈N0. (3.5) As σD+ (T,S) is closed,

from 0 < int σD+ (T,S) it follows that there exists a µ ∈ C such that 0 < |µ| < ϵ and T − µS is upper Drazin
invertible. Hence there is n ∈N0 such that αn(T − µS) = 0. Now according to (3.5) we obtain that αd(T) = 0,
and hence a(T) < ∞.

(xvi)=⇒(ii): Suppose that T is essentially Saphar and 0 < int σp(T,S). As in the previous part of the proof
we conclude that there exists an ϵ > 0 such that (3.5) holds. Since 0 < int σp(T,S), there exists a µ ∈ C such
that |µ| < ϵ and T − µS is injective. If µ = 0, then T is injective and a(T) < ∞. If µ , 0, then 0 < |µ| < ϵ and
from α0(T − µS) = 0 according to (3.5) it follows that αd(T) = 0, and hence a(T) < ∞.

Theorem 3.6. Let T,S ∈ L(X), and let S be invertible and commute with T. Then the following statements are
equivalent:
(i) T is right Browder;
(ii) T is essentially Saphar and d(T) < ∞;
(iii) T is essentially Saphar and T′ has SVEP at 0;
(iv) T is essentially Saphar and there exists q ∈N such that K(T) = R(Tq);
(v) T is essentially Saphar and H0(T) + K(T) = X;
(vi) T is essentially Saphar and X = N(T∞) + R(T∞)
(vii) T is essentially Saphar and H0(T) + K(T) is norm dense in X;
(viii) T is essentially Saphar and N(T∞) + R(T∞) is norm dense in X.
(ix) T is essentially Saphar and 0 < acc σr(T,S);
(x) T is essentially Saphar and 0 < int σr(T,S);
(xi) T is essentially Saphar and 0 < acc σcp(T,S);
(xii) T is essentially Saphar and 0 < int σcp(T,S);
(xiii) T is essentially Saphar and 0 < acc σBr (T,S);
(xiv) T is essentially Saphar and 0 < int σBr (T,S);
(xv) T is essentially Saphar and 0 < acc σD− (T,S);
(xvi) T is essentially Saphar and 0 < int σD− (T,S);
(xvii) T is essentially Saphar and 0 < acc σdsc(T,S);
(xviii) T is essentially Saphar and 0 < int σdsc(T,S).

Proof. (i)=⇒(ii): Let T be right Browder. Then d(T) < ∞ and T is right Fredholm. As in the proof of the
implication (i)=⇒(ii) in Theorem 3.1 we obtain that T is essentially Saphar.

(ii)=⇒(i): Suppose that T is essentially Saphar and d(T) < ∞. Then there exists (M,N) ∈ Red(T) such
that dimN < ∞, TN is nilpotent and TM is Saphar. From d(T) < ∞ it follows that d(TM) < ∞, and so from [1,
Lemma 1.19 (ii)] it follows that N(Td(TM)

M ) + R(TM) = X. Since TM is Kato, we have that N(Ta(TM)
M ) ⊂ R(TM).

Consequently, R(TM) = X, and hence TM is right invertible. From [18, Theorem 6] it follows that T is right
Browder.

(ii)⇐⇒(iii)⇐⇒(iv)⇐⇒(v)⇐⇒(vi)⇐⇒(vii)⇐⇒(viii): It follows from [1, Theorem 2.80], [1, Corollary 2.74]
and [11, Theorem 3.4].

(i)=⇒(ix): It follows from the equivalence between (6.1) and (6.2) in [18, Theorem 6].
The implications (ix)=⇒(x)=⇒(xii), (ix)=⇒(xi)=⇒(xii), (ix)=⇒(x)=⇒(xiv)=⇒(xvi)=⇒

(xviii) and (ix)=⇒(xiii)=⇒(xv)=⇒(xvii)=⇒(xviii) are clear.
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(xii)=⇒(ii): Suppose that T is essentially Saphar and 0 < int σcp(T,S). Then there exists (M,N) ∈ Red(T)
such that dimN < ∞, TN is nilpotent and TM is Saphar. Since TM is Kato, we have that R(TM) is closed, and
since dimR(TN) < ∞, we have that R(T) = R(TM) ⊕ R(TN) is closed. There is a d ∈ N0 such that T has TUD
for n ≥ d and from [9, Theorem 4.7] it follows that there exists an ϵ > 0 such that for every λ ∈ C,

0 < |λ| < ϵ =⇒
R(T − λS) is closed,

βn(T − λS) = βd(T), for every n ∈N0.
(3.6)

Since 0 < int σcp(T,S), there exists a µ ∈ C such that |µ| < ϵ and R(T−µS) is dense. As R(T−µS) is closed,
it follows that R(T − µS) = X. If µ = 0, then R(T) = X and d(T) < ∞. If 0 < |µ| < ϵ, then from β0(T − µS) = 0
according to (3.6) it follows that βd(T) = 0, and hence d(T) < ∞.

(xviii)=⇒(ii): Suppose that T is essentially Saphar and 0 < int σdsc(T,S). As in the previous part of the
proof we conclude that there exists an ϵ > 0 such that (3.6) holds. As 0 < int σdsc(T,S) and σdsc(T,S) is closed,
there exists a µ ∈ C such that 0 < |µ| < ϵ and d(T − µS) < ∞. It implies that there is n ∈ N0 such that
βn(T − µS) = 0, and so from 0 < |µ| < ϵ according to (3.6) it follows that βd(T) = 0. Thus d(T) < ∞.

4. Relationships between various parts of the S-spectrum

IfK ⊂ L(X) the commutant ofK is defined by

comm(K ) = {A ∈ L(X) : AB = BA for every B ∈ K}.

The commutant of T ∈ L(X) is comm(T) = comm(K ) with K = {T}, and the double commutant is the
commutant of the commutant:

comm2(T) = comm(comm(T)).

Theorem 4.1. Let T,S ∈ L(X), and let S be invertible and S ∈ comm2(T). If T is essentially Saphar, then there
exists ϵ > 0 such that T − λS is Saphar for each λ such that 0 < |λ| < ϵ.

Proof. Suppose that T is essentially Saphar. There exists (M,N) ∈ Red(T), such that T = TM ⊕ TN, TM is
Saphar, dimN < ∞ and TN is nilpotent. If M = {0}, then T is nilpotent. Since TS = ST, from [16, Thorem
2.11] it foollows that

σ(T − λS) ⊂ σ(T) − λσ(S) = −λσ(S), for every λ ∈ C. (4.1)

As 0 < σ(S), from (4.1) it follows that T − λS is invertible for every λ ∈ C, λ , 0. Therefore, T − λS is Saphar
for every λ , 0.

Suppose that M , {0}. Let P ∈ L(X) be the projection such that R(P) = M and N(P) = N. Then TP = PT,
and hence SP = PS, which implies that (M,N) ∈ Red(S).

From [16, Corollary 12.4 and Lemma 13.6] it follows that there exists an ϵ > 0 such that for |λ| < ϵ,
TM − λSM is Saphar. Since TN is nilpotent and SN is invertible and commutes with TN, as in the previous
part of the proof we can conclude that TN − λSN is invertible for all λ , 0. Thus TN − λSN is Saphar for all
λ , 0. Lemma 2.2 provides that T − λS is Saphar for each λ such that 0 < |λ| < ϵ.

Corollary 4.2. Let T,S ∈ L(X), and let S be invertible and S ∈ comm2(T). Then
(i) σeS(T,S) is closed;
(ii) The set σS(T,S) \ σeS(T,S) consists of at most countably many points.

Proof. (i): It follows from Theorem 4.1.
(ii): Suppose that λ0 ∈ σS(T,S) \ σeS(T,S). Then T − λ0S is essentially Saphar and applying Theorem 4.1

we get that there exists ϵ > 0 such that T − λS is Saphar for each λ such that 0 < |λ − λ0| < ϵ. This implies
that λ0 ∈ iso σS(T,S). Therefore, σS(T,S) \ σeS(T,S) ⊂ iso σS(T,S), which implies that σS(T,S) \ σeS(T,S) is at
most countable.
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The following theorem is an improvement of [18, Theorem 10] and [20, Theorem 3.5]. The proof
presented here is more direct than the proof of the inclusions (1) in [20, Theorem 3.5].

Theorem 4.3. Let T,S ∈ L(X), and let S be invertible and commute with T. Then there are inclusions:

(i)
∂ σ
Bl

(T,S) ⊂ ∂ σ
Wl

(T,S) ⊂ ∂ σΦl
(T,S)

⊂ ⊂ ⊂ ⊂

∂ σ
B

(T,S) ⊂ ∂ σ
W

(T,S) ⊂ ∂ σΦ (T,S) ⊂ ∂ σΦl,r
(T,S) ⊂ ∂ σeS (T,S),

⊂ ⊂ ⊂ ⊂

∂ σ
Br (T,S) ⊂ ∂ σ

Wr (T,S) ⊂ ∂ σΦr (T,S)

Furthermore, if S is invertible and S ∈ comm2(T), then:

(ii) ησeS(T,S) = ησH(T,S) for each H =Wl,Wr,W,Φl,Φr,Φ,Φl,r,Bl,Br,B.

(iii) The setσH(T,S) consists ofσeS(T,S) and possibly some holes inσeS(T,S) for each H =Wl,Wr,W,Φl,Φr,Φ,Φl,r,Bl,Br,B.

Proof. Since the following inclusions hold

σΦl (T,S) ⊂ σWl
(T,S) ⊂ σBl (T,S)

⊂ ⊂ ⊂ ⊂

σeS(T,S) ⊂ σΦl,r (T,S) ⊂ ⊂ σΦ(T,S) ⊂ σW(T,S) ⊂ σB(T,S),
⊂ ⊂ ⊂ ⊂

σΦr (T,S) ⊂ σWr (T,S) ⊂ σBr (T,S)

according to (2.1), for the inclusion (i) it is enough to prove that

∂σH(T,S) ⊂ σeS(T,S) for each H =Wl,Wr,W,Φl,Φr,Φ,Φl,r,Bl,Br,B. (4.2)

From the equivalence (i)⇐⇒(xii) in Theorem 3.5 it follows that

λ < σBl (T,S) ⇐⇒ T − λS ∈ Bl(X)
⇐⇒ T − λS is essentially Saphar ∧ 0 < int σBl (T − λS,S)
⇐⇒ λ < σeS(T,S) ∧ λ < int σBl (T,S),

and hence σBl (T,S) = σeS(T,S)∪ int σBl (T,S). Similarly, applying Theorems 3.6, 3.1, 3.2, 3.3, 3.4, for each H =
Wl,Wr,W,Φl,Φr,Φ,Φl,r,Bl,Br,B, we obtain that

σH(T,S) = σeS(T,S) ∪ int σH(T,S). (4.3)

As σH(T,S) is closed, it follows that ∂σH(T,S) ⊂ σH(T,S), which together with (4.3) implies (4.2).
Suppose that S ∈ comm2(T). The set σH(T,S) is closed for each H = eS,Wl,Wr,W,Φl,

Φr,Φ,Φl,r,Bl,Br,B and from σH(T,S) ⊂ σ(T,S) = σ(TS−1) it follows that σH(T,S) is compact. Now (ii)
and (iii) follow from (2.1), (4.2) and (4.3).

Theorem 4.4. Let T,S ∈ L(X), and let S be invertible and commute with T. Then

(i) iso σΦl (T,S) ⊂ iso σΦ(T,S) ∪ int σe
dsc(T,S);

(ii) iso σΦr (T,S) ⊂ iso σΦ(T,S) ∪ int σe
D+

(T,S);

(iii) iso σWl (T,S) ⊂ iso σW(T,S) ∪ int σBW−
(T,S);

(iv) iso σWr (T,S) ⊂ iso σW(T,S) ∪ int σBW+
(T,S);

(v) iso σBl (T,S) ⊂ iso σB(T,S) ∪ int σcp(T,S);

(vi) iso σBr (T,S) ⊂ iso σB(T,S) ∪ int σp(T,S);

(vii) iso σWl (T,S) ⊂ iso σB(T,S) ∪ int σdsc(T,S);

(viii) iso σWr (T,S) ⊂ iso σB(T,S) ∪ int σD+ (T,S).
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Proof. (i): Let λ0 ∈ iso σΦl (T,S) \ int σe
dsc(T,S). Then there exists a sequence (λn), λn → λ0 as n → ∞, such

that de(T−λnS) < ∞ and T−λnS is left Fredholm for all n ∈N. Thus α(T−λnS) < ∞, and so ae(T−λnS) = 0,
n ∈N. From [16, Lemma 22.11] it follows that de(T − λnS) = ae(T − λnS) = 0, and so β(T − λnS) < ∞, n ∈N.
Therefore, T − λnS is Fredholm for every n ∈ N and hence λ0 ∈ ∂σΦ(T,S). From Theorem 4.3 we have that
∂σΦ(T,S) ⊂ σΦl (T,S) and from λ0 ∈ iso σΦl (T,S) ∩ ∂σΦ(T,S) according to Lemma 2.7 (ii) we conclude that
λ0 ∈ iso σΦ(T,S).
(ii): It follows from the inclusion ∂σΦ(T,S) ⊂ σΦr (T,S), similarly to the proof of (i).
(iii): According to Theorem 4.3 we have that

∂σW(T,S) ⊂ σWl (T,S). (4.4)

Let λ0 ∈ iso σWl (T,S)\ int σBW−
(T,S). Then there exists a sequence (λn), λn → λ0 as n→∞, such that T−λnS

is left Weyl and lower semi-B-Weyl. Let n ∈ N be arbitrary. Then α(T − λnS) < ∞, α(T − λnS) ≤ β(T − λnS)
and there is a dn ∈ N0 such that (T − λnS)dn is lower semi-Weyl. Hence βdn (T − λnS) = β((T − λnS)dn )) < ∞,
and so de(T − λnS) < ∞. As α(T − λnS) < ∞, we have that ae(T − λnS) = 0. According to [16, Lemma
22.11] it follows that de(T − λnS) = ae(T − λnS) = 0, and so β(T − λnS) < ∞. Therefore, T − λnS is Fredholm.
Since T − λnS is lower semi-B-Weyl, it is lower semi-Weyl [3, Proposition 2.1], and since T − λnS is upper
semi-Weyl, we conclude that it is Weyl. Hence λ0 ∈ ∂σW(T,S). From (4.4) and λ0 ∈ iso σWl (T,S)∩∂σW(T,S)
according to Lemma 2.7 (ii) we conclude that λ0 ∈ iso σW(T,S).
(iv): It follows from ∂σW(T,S) ⊂ σWr (T,S), similarly to the proof of (iii).
(v): Suppose that λ0 ∈ iso σBl (T,S) \ int σcp(T,S). Then there exists a sequence (λn), λn → λ0 as n → ∞,
such that T − λnS is left Browder and R(T − λnS) is dense in X for all n ∈ N. Since T − λnS is relatively
regular, its range is closed, and hence T − λnS is surjective, that is d(T − λnS) = 0. As a(T − λnS) < ∞,
from [1, Theorem 1.20] it follows that a(T − λnS) = d(T − λnS) = 0, and so T − λnS is invertible for all
n ∈ N. It implies that λ0 ∈ ∂σB(T,S). From Theorem 4.3 we have that ∂σB(T,S) ⊂ σBl (T,S) and hence from
λ0 ∈ iso σBl (T,S) ∩ ∂σB(T,S) according to Lemma 2.7 (ii) we conclude that λ0 ∈ iso σB(T,S).
(vi): It follows from ∂σB(T,S) ⊂ σBr (T,S), similarly to the proof of (v).
(vii): Let λ0 ∈ iso σWl (T,S) \ int σdsc(T,S). Then there exists a sequence (λn), λn → λ0 as n → ∞, such that
d(T − λnS) < ∞ and T − λnS is left Weyl for all n ∈ N. Consequently, α(T − λnS) ≤ β(T − λnS), n ∈ N.
Further, we have β(T − λnS) ≤ α(T − λnS) by [1, Theorem 1.22, part (ii)], so α(T − λnS) = β(T − λnS) < ∞.
We conclude from [1, Theorem 1.22, part (iv)] that a(T − λnS) is finite, hence that T − λnS is Browder for all
n ∈ N. Thus λ0 ∈ ∂σB(T,S). According to Theorem 4.3 we have that ∂σB(T,S) ⊂ σWl (T,S), and hence from
λ0 ∈ ∂σB(T,S) ∩ iso σWl (T,S) according to Lemma 2.7 (ii) we conclude that λ0 ∈ iso σB(T,S).
(viii): It can be proved by using the inclusion ∂σB(T,S) ⊂ σWr (T,S), similarly to the proof of (vii).

Corollary 4.5. Let T,S ∈ L(X), and let S be invertible and commute with T. Then
(i) σΦ(T,S) = σΦl (T,S) ∪ int σe

dsc(T,S);
(ii) σΦ(T,S) = σΦr (T,S) ∪ int σe

D+
(T,S);

(iii) σW(T,S) = σWl (T,S) ∪ int σBW−
(T,S);

(iv) σW(T,S) = σWr (T,S) ∪ int σBW+
(T,S);

(v) σB(T,S) = σBl (T,S) ∪ int σcp(T,S);
(vi) σB(T,S) = σBr (T,S) ∪ int σp(T,S).

Proof. (v): From Theorem 3.6 it follows that σBr (T,S) = σeS(T,S) ∪ int σcp(T,S) and hence σBl (T,S) ∪
int σcp(T,S) ⊂ σBl (T,S)∪ σBr (T,S) = σB(T,S). To prove the converse inclusion suppose that λ0 ∈ σB(T,S) and
λ0 < σBl (T,S)∪ int σcp(T,S). As in the proof of the inclusion (v) in Theorem 4.4 we obtain that λ0 ∈ ∂σB(T,S)
and since ∂σB(T,S) ⊂ σBl (T,S) we get λ0 ∈ σBl (T,S), which is a contradiction.

For each of the remaining equalities (inclusions) we proceed in a similar way as in the proof of the
corresponding inclusion in Theorem 4.4.
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Corollary 4.6. Let T,S ∈ L(X), and let S be invertible and and commute with T. Then
(i) iso σeS(T,S) ⊂ iso σΦl (T,S) ∪ int σe

D+
(T,S);

(ii) iso σeS(T,S) ⊂ iso σΦr (T,S) ∪ int σe
dsc(T,S);

(iii) iso σeS(T,S) ⊂ iso σWl (T,S) ∪ int σBW+
(T,S);

(iv) iso σeS(T,S) ⊂ iso σWr (T,S) ∪ int σBW−
(T,S);

(v) iso σeS(T,S) ⊂ iso σBl (T,S) ∪ int σp(T,S);
(vi) iso σeS(T,S) ⊂ iso σBl (T,S) ∪ int σD+ (T,S);
(vii) iso σeS(T,S) ⊂ iso σBr (T,S) ∪ int σcp(T,S);
(viii) iso σeS(T,S) ⊂ iso σBr (T,S) ∪ int σdsc(T,S).

Proof. (i): Suppose that λ0 ∈ iso σeS(T,S) \ int σe
D+

(T,S). Then there exists a sequence (λn), λn → λ0 as
n → ∞, such that T − λnS is essentially Saphar and λn < σe

D+
(T,S), and hence λn < int σe

D+
(T,S), that is

0 < int σe
D+

(T − λnS,S) for all n ∈N. From Theorem 3.3 it follows that T − λnS is left Fredholm for all n ∈N.
Consequently, λ0 ∈ ∂ σΦl (T,S) ∩ iso σeS(T,S). Since ∂ σΦl (T,S) ⊂ σeS(T,S), from Lemma 2.7 (ii) it follows that
λ0 ∈ iso σΦl (T,S).

The inclusion (ii)-(viii) can be proved similarly by using Theorems 3.4, 3.1, 3.2, 3.5, 3.6 and Theorem
4.3.
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