Functional Analysis, Approximation and Computation 16 (3) (2024), 13–19

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac

Closedness of the set of all linear preservers of DSS-weak majorization on $\ell^p(I)$

Martin Ljubenović^a

^aFaculty of Mechanical Engineering, Department of Mathematics, University of Niˇs, Aleksandra Medvedeva 14, 18000 Niˇs, Serbia.

Abstract. It is provided that the set of all linear preservers of DSS-weak majorization on $\ell^p(I)$, $p \in [1, \infty)$ is closed under the norm topology, where *I* is an arbitrary non-empty set.

1. Introduction

Theory of majorization is a nice tool for developing new mathematical inequalities [1, 8, 10, 18] and it plays an important role in various branches of science [9] especially in quantum mechanics [19, 20]. In recent years, there is a big progress towards developing extensions of the most important majorization relations on sequence spaces [12, 21, 22] and discrete Lebesgue spaces [2, 5–7, 13, 15]. Also, linear preserver problems of majorization relations are discussed in [4, 11, 14, 16, 17].

DSS-weak majorization relations on $\ell^p(I)$ and their linear preservers are studied in [4, 16]. The aim of the paper is to present the constructive proof that the set of all linear preservers of DSS-weak majorization (\ll_w) is norm-closed in the set of all bounded linear operators on $\ell^p(I)$, where *I* is an arbitrary not-empty set and $p \in [1, \infty)$. When *I* is finite, this conclusion will be obtained using the compactness of $\text{DSS}(\ell^p(I))$. When *I* is an infinite set, Example 2.2 shows that $DSS(\ell^p(I))$ is not compact. Closedness in this case will be proved using Theorem 2.3.

In the sequel, the set *I* will be an arbitrary not-empty set and $p \in [1, \infty)$, unless otherwise stated. The Banach space $\ell^p(I)$ contains all functions $f: I \longrightarrow \mathbb{R}$ that satisfy $\sum_{i \in I} |f(i)|^p < \infty$ and it is equipped with standard *p*-norm. The positive cone of the Banach space $\ell^p(I)$ is defined by

$$
\ell^p(I)^+ := \{ f \in \ell^p(I) : f(i) \ge 0, \forall i \in I \}.
$$

The support of the function $f \in \ell^p(I)$ is a subset of *I* defined by

$$
\operatorname{supp}(f) := \{i \in I \mid f(i) \neq 0\},\
$$

Keywords. DSS - weak majorization; Linear preserver; Doubly substochastic; Partial permutation.

²⁰²⁰ *Mathematics Subject Classification*. Primary 15A86; Secondary 47B60, 15B51.

Received: 12 October 2024; Accepted: 24 October 2024

Communicated by Dragan S. Djordjevic´

This research was financially supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (Contract No. 451-03-65/2024-03) and by the bilateral project between Serbia and France (Generalized inverses on algebraic structures and applications, Grant No. 337-00-93/2023-05/13)

Email address: martinljubenovic@gmail.com (Martin Ljubenovic)´

which is clearly at most a countable set. We recall that each function $f \in \ell^p(I)$ may be represented in the following form $f = \sum_{i \in I} f(i)e_i$ using Kronecker delta functions δ_{ij} , where $e_i(j) = \delta_{ij}$, $i \in I$ and $e_i : I \longrightarrow \mathbb{R}$.

We will consider operators defined on discrete Lebesgue spaces $\ell^p(I)$, where $p \in [1,\infty)$. A bounded linear operator $A: \ell^p(I) \to \ell^p(I)$ may be represented by a matrix $[a_{ij}]_{i,j\in I}$ which may be finite or infinite depends on cardinality of the set *I*. If we define matrix elements with $a_{ij} = \langle Ae_j, e_i \rangle$, $\forall i, j \in I$, where the map $\langle \cdot, \cdot \rangle : \ell^p(I) \times \ell^q(I) \longrightarrow \mathbb{R}$ defined by $\langle f, g \rangle = \sum$ $\sum_{i\in I} f(i)g(i)$ is called the dual pairing, we get the matrix

representation of the operator *A* in the following way:

$$
Af(i) = \sum_{j \in I} a_{ij} f(j), \quad \forall i \in I,
$$
\n⁽¹⁾

that is,

 $Af = \sum$ *i*∈*I* ĺ $\overline{\mathcal{C}}$ $\boldsymbol{\nabla}$ *j*∈*I* $a_{ij} f(j)$ λ \cdot *ei* .

Definition 1.1. [2, Definition 2.1][13, Definition 3.1] Let $A: \ell^p(I) \to \ell^p(I)$, $p ∈ [1, ∞)$ be a bounded linear operator, *where I is a non-empty set. The operator A is called:*

- positive, if $Af \in \ell^p(I)^+$, for each $f \in \ell^p(I)^+$;
- doubly stochastic*, if A is positive,*

$$
\forall i \in I \quad \sum_{j \in I} \langle Ae_j, e_i \rangle = 1, \quad and \quad \forall j \in I \quad \sum_{i \in I} \langle Ae_j, e_i \rangle = 1;
$$

• doubly substochastic*, if A is positive,*

$$
\forall i \in I \quad \sum_{j \in I} \langle A e_j, e_i \rangle \leq 1, \quad and \ \ \forall j \in I \quad \sum_{i \in I} \langle A e_j, e_i \rangle \leq 1;
$$

- a permutation, *if there exists a bijection* $\theta : I \longrightarrow I$ *for which* $Ae_j = e_{\theta(j)}$, *for each* $j \in I$ *;*
- partial permutation *for sets* $I_1 \subseteq I$ *and* $I_2 \subseteq I$ *, if there exists a bijection* $\theta: I_1 \longrightarrow I_2$ *such that*

$$
Ae_j = \begin{cases} e_{\theta(j)}, & j \in I_1, \\ 0, & otherwise. \end{cases}
$$

The set of all doubly substochastic operators and the set of all partial permutations on $\ell^p(I)$ we will denote by $DSS(\ell^p(I))$ and $pP(\ell^p(I))$, respectively.

Definition 1.2. [4, Definition 2.1] Let $f, g \in \ell^p(I)$. Function f is DSS-weakly majorized by g, which is denoted by $f \prec_w g$, if $f = Dg$ for some doubly substochastic operator $D \in DSS(\ell^p(I))$. Similarly, function f is majorized by g , which is denoted by $f < g$, if $f = Dg$ for some doubly stochastic operator $D \in DS(\ell^p(I))$.

Definition 1.3. [4, 16] A bounded linear map $T: \ell^p(I) \to \ell^p(I)$, $p \in [1, \infty)$ is said to preserve DSS-weak majorization *if for arbitrary chosen functions f, g ∈ t^p(I) relation f* $\bm{\preccurlyeq}_w$ *g implies T f* $\bm{\preccurlyeq}_w$ *Tg. The set of all bounded linear preservers of DSS-weak majorization on* $\ell^p(I)$ *we will denote by* $\mathcal{P}_{dw}(\ell^p(I))$ *.*

Theorem 1.4. [4, Theorem 2.9] Let *I* be an infinite set and let $f, g \in \ell^p(I), p \in [1,\infty)$. The following conditions are equivalent:

i) $f \ll_w q$ and $q \ll_w f$;

ii) There are two partial permutations $P_1, P_2 \in pP(\ell^p(I))$ for sets supp(*f*) and supp(*g*) such that $f = P_1g$ and $q = P_2 f$.

In the sequel, we will consider the map $P_{\theta}: \ell^p(I) \to \ell^p(I)$ defined by

$$
P_{\theta}(f) := \sum_{k \in I} f(k) e_{\theta(k)}, \quad f \in \ell^{p}(I), \tag{2}
$$

where $\theta : I \to I$ is a one-to-one function and *I* is an infinite set. Obviously, P_{θ} is a bounded linear operator on $\ell^p(I)$ with norm $||P_{\theta}|| = 1$. Moreover, if θ is a surjective, then P_{θ} is a permutation.

Let *I* be an infinite set. The shape of linear preserves of standard majorization (≺) is presented in [2, Theorem 4.9.] The result [4, Theorem 3.6] states that set of all linear preservers of standard majorization (≺) and DSS-weak majorization (\ll_w) coincide when $p \in (1,\infty)$. Linear preservers of DSS-weak majorization (≺≺*w*), when *p* = 1 are characterized in [16, Theorem 2.3]. All these results are collected and presented in the next theorem.

Theorem 1.5. [2, 4, 16] Let I be an infinite set and let $p \in [1, \infty)$. Suppose that $T : \ell^p(I) \to \ell^p(I)$ is a bounded linear *operator. The following statements are equivalent:*

- *i*) $T \in \mathcal{P}_{dw}(\ell^p(I));$
- ii) $Te_j \ll_w Te_k$ and $Te_k \ll_w Te_j$, $\forall k, j \in I$, and for each $i \in I$ there is at most one $j \in I$ such that $\langle Te_j, e_i \rangle \neq 0$,
- *iii*) $T = \sum$ $\sum_{k\in I_0} \lambda_k P_{\theta_k}$, where $I_0 \subseteq I$ is at most countable, $(\lambda_k)_{k\in I_0} \in \ell^p(I_0)$, and for all $k \in I_0$, θ_k belongs to the family $\Theta = \{\theta_i: I \to I \mid i \in I_0\}$ of one-to-one maps with mutually disjoint images $(\theta_i(I) \cap \theta_j(I) = \emptyset$ for all $i, j \in I_0$ with $i \neq j$).

Corollary 1.6. [14, Corollary 4.1] Let *I* be an arbitrary finite non-empty set and let $p \in [1, \infty)$. The set $DSS(\ell^p(I))$ is a compact set.

We may prove Corollary 1.6 using the different approach in regards to the original proof of this result. Namely, when *I* is finite set, the unit ball of bounded linear operators on $\ell^p(I)$ is compact, hence the closed subset $DSS(\ell^p(I))$ is compact, too.

2. Closedness of P_{dw} ($\ell^p(I)$)

Theorem 2.1. Let I be a finite set and let $p \in [1,\infty)$. The set $P_{dw}(\ell^p(I))$ is a norm-closed subset of the set of all bounded linear operators on $\ell^p(I)$ *.*

Proof. Let $(T_n)_{n\in\mathbb{N}}$ be a sequence of operators $T_n \in \mathcal{P}_{dw}(\ell^p(I))$. Suppose that this sequence converges in norm to a bounded linear map $T: \ell^p(I) \to \ell^p(I)$. Let $f \prec_w g$. Then $T_n f \prec_w T_n g$, $\forall n \in \mathbb{N}$. It follows that there exists a sequence $(D_n)_{n \in \mathbb{N}}$, $D_n \in DSS(\ell^p(I))$, such that

$$
D_n T_n g = T_n f. \tag{3}
$$

Since the set $DSS(\ell^p(I))$ is compact by Corollary 1.6, we get that there exists a subsequence $(D_{n_j})_{j\in\mathbb{N}}$, $D_{n_j} \in DSS(\ell^p(I))$ and there is $D \in DSS(\ell^p(I))$ such that

$$
\lim_{j\to\infty}D_{n_j}=D.
$$

Clearly, $D_{n_j}T_{n_j}g = T_{n_j}f$, $\forall j \in \mathbb{N}$ by (3). Therefore,

$$
Tf = \lim_{j \in \mathbb{N}} T_{n_j} f = \lim_{j \in \mathbb{N}} D_{n_j} T_{n_j} g = DTg,
$$

which implies $Tf \preccurlyeq_w Tq$. □

When *I* is an infinite set the next example shows that $DSS(\ell^p(I))$ is not compact set.

Example 2.2. Let $D_n = \{d_{ij}^n \in \mathbb{R} : i, j \in \mathbb{N}\}$, $n \in \mathbb{N}$ be a sequence of families (i.e. infinite matrices) of real numbers defined by

$$
d_{ij}^n := \begin{cases} \frac{1}{2}, & i = j \le n, \\ 0, & \text{otherwise.} \end{cases}
$$

For each $n \in \mathbb{N}$ the family D_n satisfies

$$
\sup_{j\in\mathbb{N}}\sum_{i\in\mathbb{N}}|d_{ij}^n|=\frac{1}{2}<\infty\ \ \text{and}\ \ \sup_{i\in\mathbb{N}}\sum_{j\in\mathbb{N}}|d_{ij}^n|=\frac{1}{2}<\infty
$$

then using [15, Corollary 3.1] (when $I = N$) these families may be considered as bounded linear operators on $\ell^p(\mathbb{N})$ for every $p \in [1, \infty)$ defined by

$$
D_n f := \sum_{i \in \mathbb{N}} \left(\sum_{j \in \mathbb{N}} d_{ij}^n f(j) \right) e_i.
$$
 (4)

Since, above supremums are equal $\frac{1}{2}$, then using [15, Theorem 3.4] we get that

$$
||D_n|| \leq \max\{\sup_{j\in\mathbb{N}} \sum_{i\in\mathbb{N}} |d_{ij}^n|, \sup_{i\in\mathbb{N}} \sum_{j\in\mathbb{N}} |d_{ij}^n|\} = \frac{1}{2}.
$$

On the other hand, $D_n e_n = \frac{1}{2} e_n$ implies $||D_n|| \ge \frac{1}{2}$. Hence, $||D_n|| = \frac{1}{2}$. Similarly if $k > m$ than

$$
||(D_k - D_m)e_k|| = \frac{1}{2}.
$$

Clearly, the sequence $(D_n)_{n\in\mathbb{N}}$ is not convergent in norm and there is no convergent subsequence of $(D_n)_{n\in\mathbb{N}}$. It follows that $DSS(\ell^p(I))$ is not compact.

Thus, the closedness of the set $\mathcal{P}_{dw}(\ell^p(I))$ cannot be provided using above approach presented in Theorem 2.1 when *I* is an infinite set. We claim that $\mathcal{P}_{dw}(\ell^p(I))$ is closed and it will be proved using different technique presented below.

Theorem 2.3. Let I be an infinite set, let $p \in [1,\infty)$. Suppose that $(f_n)_{n \in \mathbb{N}}$, $f_n \in \ell^p(I)$ and $(g_n)_{n \in \mathbb{N}}$, $g_n \in \ell^p(I)$ are two *convergent sequences such that*

$$
\lim_{n\to\infty}f_n=f\in\ell^p(I)\ \ and\ \ \lim_{n\to\infty}g_n=g\in\ell^p(I).
$$

If $f_n \ll_w g_n$ and $g_n \ll_w f_n$, $\forall n \in \mathbb{N}$, then there exists a partial permutation $P \in pP(\ell^p(I))$ for sets supp(f) and supp(g), such that

$$
f = Pg.
$$

Moreover,

$$
f \ll_w g
$$
 and $g \ll_w f$.

Proof. Since $f, g \in \ell^p(I)$, we have card($supp(f)$) \leq \aleph_0 and card($supp(g)$) \leq \aleph_0 which implies card($|f(I)|$) \leq \aleph_0 and card($|g(I)| \leq \aleph_0$ (where $|f(I)| := \{|f(j)| : j \in J\}$, for some $J \subseteq I$). Because of this, we may define a (strictly) decreasing sequence $(l_n)_{n \in \mathbb{N}_0}$ of non-negative real numbers which converge to zero defined by

$$
l_0 > \sup_{i \in I} \{|f(i)|, |g(i)| \mid i \in I\} \text{ and } l_n \notin |f(I)| \cup |g(I)|, \ n \in \mathbb{N}.
$$
 (5)

For any $h \in \ell^p(I)$, we define sets $I_h^n := \{i \in I : l_n < |h(i)| < l_{n-1}\}$, $\forall n \in \mathbb{N}$. It is easy to conclude that all sets *I*^{*n*}</sup> are finite, mutually disjoint and $\bigcup_{n\in\mathbb{N}} I_h^n = \text{supp}(h)$.

Choose an arbitrary $m \in \mathbb{N}$. We claim that there is $N_f \in \mathbb{N}$ such that $I_f^m = I_{f_n}^m$, for each $n > N_f$. There exists a real number $\delta > 0$ such that

$$
l_m < l_m + \delta < |f(j)| < l_{m-1} - \delta < l_{m-1}
$$

for each *j* ∈ *I*^{*m*}</sup>, because the set *I^m*</sup> is finite. Using $\lim_{n\to\infty} f_n = f$ and

$$
||f - f_n||^p = \sum_{i \in I} |f(i) - f_n(i)|^p \ge |f(j) - f_n(j)|^p \text{ for each } j \in I^m_f
$$

we obtain that there is a $n_1 \in \mathbb{N}$ such that $|f(j) - f_n(j)| \le ||f - f_n|| < \delta$, $\forall n > n_1$, $\forall j \in I_f^m$. Now, we obtain

$$
l_m < |f(j)| - \delta < |f_n(j)| < |f(j)| + \delta < l_{m-1}
$$

for each $j \in I_j^m$. Thus, $j \in I_{f_n}^m$, so $I_j^m \subseteq I_{f_n}^m$, $\forall n > n_1$.

Similarly as above, since all sets I_f^m are finite and using (5), we get that there exists a real number $\epsilon > 0$ such that

$$
(l_m-\epsilon, l_{m-1}+\epsilon)\bigcap \Big|f\Big(\mathrm{supp}\, f\setminus I_f^m\Big)\Big|=\emptyset.
$$

Also, there is a $n_2 \in \mathbb{N}$ such that $f_n(i) \in (f(i) - \epsilon/2, f(i) + \epsilon/2)$, $\forall i \in I$, $\forall n > n_2$. Hence, we conclude

$$
(l_m,l_{m-1})\bigcap \Big|f_n\Big(\operatorname{supp} f\setminus I_f^m\Big)\Big|=\emptyset,
$$

whenever $n > n_2$. Therefore, if $i \in I^m_{f_n}$ that is $|f_n(i)| \in (l_m, l_{m-1})$, then using the above fact we obtain $i \notin \text{supp } f \setminus I^m_f$, that is $i \in I^m_f$. Thus, for each $n > n_2$ we have $I^m_{f_n} \subseteq I^m_f$. Finally,

$$
I_{f_n}^m = I_f^m, \ \forall n > N_f := \max\{n_1, n_2\}.
$$

Analogously, there exists $N_g \in \mathbb{N}$ such that $I_{g_n}^m = I_g^m$, $\forall n > N_g$. Therefore,

$$
I_{f_n}^m = I_f^m \quad \text{and} \quad I_{g_n}^m = I_g^m, \quad \text{for every} \quad n > M := \max\{N_f, N_g\}. \tag{6}
$$

Fix $n > M$ such that $|f_n(k) - f(k)| < \xi/2$ and $|g_n(k) - g(k)| < \xi/2$, $\forall k \in I$. Since, $f_n \ll_w g_n$ and $g_n \ll_w f_n$ we get that there are two partial permutations $P_1, P_2 \in pP(\ell^p(I))$ for sets supp (f_n) and supp (g_n) such that $f_n = P_1 g_n$ and $g_n = P_2 f_n$, by Theorem 1.4. Hence, there exists a bijection

$$
\omega: \operatorname{supp}(f_n) \to \operatorname{supp}(g_n)
$$

such that $f_n(i) = g_n(\omega(i))$, for each $i \in \text{supp}(f_n)$. Using above argument, we have $g_n(\omega(k)) = f_n(k) \in (l_m, l_{m-1})$, $\forall k \in I_{f_n}^m = I_f^m$. Hence, $\omega(k) \in I_{g_n}^m = I_g^m$. If we assume that $i = \omega^{-1}(j) \in \text{supp}(f_n) \setminus I_{f_n}^m$ for some $j \in I_g^m = I_{g_n}^m$, then $f_n(i) \notin (l_m, l_{m-1})$, so $f_n(i) \neq g_n(\omega(i))$ which is a contradiction with definition of ω . Using above argumments, the map

$$
\omega_m: I_f^m \to I_g^m
$$

defined by $\omega_m(i) := \omega(i)$, $\forall i \in I^m_f$ is a bijection from I^m_f to I^m_g . If $f(k) = g(j)$ holds $\forall k \in I^m_f$ and $\forall j \in I^m_g$, it is clear that $f(k) = g(\omega_m(k))$, $\forall k \in I^m_f$. Suppose that $f(k) \neq g(j)$ for some $k \in I^m_f$ and $j \in I^m_g$ and let

$$
\xi := \min\{|f(k) - g(j)| : k \in I_j^m, j \in I_j^m, f(k) \neq g(j)\} > 0.
$$
\n(7)

Using definitions of the maps ω and ω_m we have $f_n(k) = g_n(\omega(k)) = g_n(\omega_m(k))$ for every $k \in I^m_f$, therefore

$$
|f(k) - g(\omega_m(k))| \le |f(k) - f_n(k)| + |f_n(k) - g(\omega_m(k))|
$$

= $|f(k) - f_n(k)| + |g_n(\omega_m(k)) - g(\omega_m(k))| < \xi$.

Hence, $f(k) = g(\omega_m(k))$, $\forall k \in I_f^m$, by (7).

We recall that the above argument is true for each $m \in \mathbb{N}$. The sets I_f^m are mutually disjoint and $\bigcup_{m\in\mathbb{N}}I_f^m=\text{supp}(f)$, hence that the map Ω : $\text{supp}(f)\to\text{supp}(g)$ defined by $\Omega(k):=\omega_m(k)$, whenever $k\in I_f^m$ is a bijection and $f(k) = g(\Omega(k))$, $\forall k \in \text{supp}(f)$. Therefore, there exists a partial permutation $P \in pP(\ell^p(I))$ for sets supp(*f*) and supp(*q*), corresponding to Ω , such that

$$
f = Pg.
$$

In the similar way we may provide that there is a partial permutation *Q* for sets supp(*f*) and supp(*g*) to be *q* = *Qf*. Clearly, *f* \preccurlyeq *w q* and *q* \preccurlyeq *w f* by Theorem 1.4. \Box

Theorem 2.4. Let I be an infinite set, and let $p \in [1,\infty)$. The set $P_{dw}(\ell^p(I))$ is a norm-closed subset of the set of all *bounded linear operators on* $\ell^p(I)$ *.*

Proof. Let $p \in [1, \infty)$, and let $(T_k)_{k \in \mathbb{N}}$ be a sequence of maps $T_k \in \mathcal{P}_{dw}(\ell^p(I))$, which converges in norm to a bounded linear map $T: \ell^p(I) \to \ell^p(I)$. Clearly, $T_k e_i \ll_w T_k e_j$ and $T_k e_j \ll_w T_k e_i$. Since, $\lim_{k \to \infty} T_k e_i = T e_i$ and

 $\lim_{k\to\infty} T_k e_j = T e_j$ we get

 $Te_i \ll_w Te_j$ *and* $Te_j \ll_w Te_i$,

by Theorem 2.3.

Suppose that $\langle Te_{j_1}, e_i\rangle \neq 0$ and $\langle Te_{j_2}, e_i\rangle \neq 0$ for some $i, j_1, j_2 \in I$. Since $T_k \to T$, we get $\langle T_m e_{j_1}, e_i\rangle \neq 0$ and $\langle T_m e_{j_2}, e_i \rangle \neq 0$, for some $m \in \mathbb{N}$, which is in contradiction with $T_m \in \mathcal{P}_{dw}(\ell^p(I))$, by Theorem 1.5. Thus, for every $i \in I$ there is at most one $j \in I$ such that $\langle Te_j, e_i \rangle \neq 0$. Thus, $T \in \mathcal{P}_{dw}(\ell^p(I))$, by Theorem 1.5.

Summary 2.5. *Thus, in this paper we provide the constructive proof that the set* $P_{dw}(\ell^p(I))$ *of all linear preservers of* DSS-weak majorization (\ll_w) is a norm-closed subset of the set of all bounded linear operators on $\ell^p(I)$, where $p\in]1,\infty)$. *We recall that for each p* \in (1, ∞) *linear preservers of standard majorization* (\prec) *and DSS-weak majorization* (\ll_w) *coincide when I is an infinite set, by [4, Theorem 3.6]. Also, in this case, the set of all linear preservers of standard majorization (<) is norm-closed by [3, Theorem 2.4], therefore closedness of the set* $\mathcal{P}_{dw}(\ell^p(I))$ *follows directly as a corollary. However, when p* = 1, the above fact do not hold because linear preservers of DSS-weak majorization (\ll_w) on $\ell^1(I)$ do not have the same form as preservers of standard majorization (<) or weak majorization relations (< $_w$) *and (*≺ *^w), when I is an infinite set. Thus, in this case, Theorem 2.4 cannot be obtained as a consequence of previously published results.*

References

- [1] T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra Appl. 118 (1989) 163–248.
- [2] F. Bahrami, A. Bayati, S. M. Manjegani, Linear preservers of majorization on ℓ *p* (*I*), Linear Algebra Appl. 436 (2012) 3177–3195.
- [3] F. Bahrami, A. Bayati, Some topological properties of the set of linear preservers of majorization, Electron. J. Linear Algebra 23 (2012) 655–663.
- [4] A. B. Eshkaftaki, M. H. Berenjegani, F. Bahrami, DSS- weak majorization and its linear preservers on ℓ^p spaces, Linear Multilinear Algebra 66(10) (2018) 2076–2088.
- [5] A. B. Eshkaftaki, Doubly (sub)stochastic operators on ℓ^p spaces, J. Math. Anal. Appl. 498(1) (2021) article:124923.
- [6] A. B. Eshkaftaki, Increasable doubly substochastic matrices with application to infinite linear equations, Linear Multilinear Algebra 70(20) 2021 5902—5912
- [7] A. B. Eshkaftaki, Minimal completion of I × I doubly substochastic matrices, Linear Multilinear Algebra 70(11) (2022) 2065–2077.
- [8] R. Bhatia, Matrix Analysis, Springer, 1997.
- [9] G. Gour, D. Jennings, F. Buscemi, R. Duan and I. Marvian, Quantum majorization and a complete set of entropic conditions for quantum thermodynamics, Nature Communications 9 5352 (2018).

- [10] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, second ed., Cambridge University Press, London and New York, 1952.
- [11] A. M. Hasani, M. A. Vali, Linear maps which preserve or strongly preserve weak majorization, J. Inequal. Appl. 2007:082910 (2008).
- [12] V. Kaftal, G. Weiss, An infinite dimensional Schur-Horn Theorem and majorization theory, J. Funct. Anal. 259 (2010) 3115–3162.
- [13] M. Ljubenović, Weak majorization and doubly substochastic operators on $\ell^p(I)$, Linear Algebra Appl. 486 (2015) 295-316.
- [14] M. Ljubenović, D. S. Djordjević, Linear preservers of weak majorization on $\ell^p(I)^+$, when $p \in (1, \infty)$, Linear Algebra Appl. 497 (2016) 181–198.
- [15] M. Ljubenović, D. S. Djordjević, Weak supermajorization and families as doubly superstochastic operators on $\ell^p(I)$, Linear Algebra Appl. 532 (2017) 312–346.
- [16] M.Z. Ljubenović, D.S. Rakić, D.S. Djordjević, Linear preservers of DSS-weak majorization on discrete Lebesgue space $\ell^1(I)$, when I is an infinite set, Linear Multilinear Algebra 69(14) (2021) 2657–2673.
- [17] M.Z. Ljubenović, D.S. Rakić, Submajorization on $\ell^p(I)^+$ determined by increasable doubly substochastic operators and its linear preservers, Banach J. Math. Anal. 15 60 (2021).
- [18] A. W. Marshall, I. Olkin, B.C. Arnold, Inequalities: Theory of majorization and its applications, second ed., Springer, 2011.
- [19] S.M. Manjegani, S. Moein, Quasi doubly stochastic operator on ℓ^1 and Nielsen's theorem, J. Math. Phys. 60 103508 (2019).
- [20] M. A. Nielsen, An introduction of majorization and its applications to quantum mechanics, Lecture Notes, Department of Physics, University of Queensland, Australia; 2002. Available at http://michaelnielsen.org/blog/talks/2002/maj/book.ps.
- [21] A. Neumann, An infinite-dimensional generalization of the Schur-Horn convexity theorem, J. Funct. Anal. 161(2) (1999) 418–451.
- [22] R. Pereira, S. Plosker, Extending a characterisation of majorization to infinite dimensions, Linear Algebra Appl. 468 (2015) 80–86.