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Closedness of the set of all linear preservers of DSS-weak majorization
on ℓp(I)
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Abstract. It is provided that the set of all linear preservers of DSS-weak majorization on ℓp(I), p ∈ [1,∞) is
closed under the norm topology, where I is an arbitrary non-empty set.

1. Introduction

Theory of majorization is a nice tool for developing new mathematical inequalities [1, 8, 10, 18] and
it plays an important role in various branches of science [9] especially in quantum mechanics [19, 20]. In
recent years, there is a big progress towards developing extensions of the most important majorization
relations on sequence spaces [12, 21, 22] and discrete Lebesgue spaces [2, 5–7, 13, 15]. Also, linear preserver
problems of majorization relations are discussed in [4, 11, 14, 16, 17].

DSS-weak majorization relations on ℓp(I) and their linear preservers are studied in [4, 16]. The aim of
the paper is to present the constructive proof that the set of all linear preservers of DSS-weak majorization
(≺≺w) is norm-closed in the set of all bounded linear operators on ℓp(I), where I is an arbitrary not-empty set
and p ∈ [1,∞). When I is finite, this conclusion will be obtained using the compactness of DSS(ℓp(I)). When
I is an infinite set, Example 2.2 shows that DSS(ℓp(I)) is not compact. Closedness in this case will be proved
using Theorem 2.3.

In the sequel, the set I will be an arbitrary not-empty set and p ∈ [1,∞), unless otherwise stated. The
Banach space ℓp(I) contains all functions f : I −→ R that satisfy

∑
i∈I | f (i)|p < ∞ and it is equipped with

standard p-norm. The positive cone of the Banach space ℓp(I) is defined by

ℓp(I)+ :=
{
f ∈ ℓp(I) : f (i) ≥ 0,∀i ∈ I

}
.

The support of the function f ∈ ℓp(I) is a subset of I defined by

supp( f ) := {i ∈ I | f (i) , 0},
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which is clearly at most a countable set. We recall that each function f ∈ ℓp(I) may be represented in the
following form f =

∑
i∈I f (i)ei using Kronecker delta functions δi j, where ei( j) = δi j, i ∈ I and ei : I −→ R.

We will consider operators defined on discrete Lebesgue spaces ℓp(I), where p ∈ [1,∞). A bounded
linear operator A : ℓp(I) → ℓp(I) may be represented by a matrix [ai j]i, j∈I which may be finite or infinite
depends on cardinality of the set I. If we define matrix elements with ai j = ⟨Ae j, ei⟩, ∀i, j ∈ I, where the
map ⟨·, ·⟩ : ℓp(I) × ℓq(I) −→ R defined by ⟨ f , 1⟩ =

∑
i∈I

f (i)1(i) is called the dual pairing, we get the matrix

representation of the operator A in the following way:

A f (i) =
∑
j∈I

ai j f ( j), ∀i ∈ I, (1)

that is,

A f =
∑
i∈I

∑
j∈I

ai j f ( j)

 ei.

Definition 1.1. [2, Definition 2.1][13, Definition 3.1] Let A : ℓp(I) −→ ℓp(I), p ∈ [1,∞) be a bounded linear operator,
where I is a non-empty set. The operator A is called:

• positive, if A f ∈ ℓp(I)+, for each f ∈ ℓp(I)+;

• doubly stochastic, if A is positive,

∀i ∈ I
∑
j∈I

⟨Ae j, ei⟩ = 1, and ∀ j ∈ I
∑
i∈I

⟨Ae j, ei⟩ = 1;

• doubly substochastic, if A is positive,

∀i ∈ I
∑
j∈I

⟨Ae j, ei⟩ ≤ 1, and ∀ j ∈ I
∑
i∈I

⟨Ae j, ei⟩ ≤ 1;

• a permutation, if there exists a bijection θ : I −→ I for which Ae j = eθ( j), for each j ∈ I;

• partial permutation for sets I1 ⊆ I and I2 ⊆ I, if there exists a bijection θ : I1 −→ I2 such that

Ae j =

{
eθ( j), j ∈ I1,

0, otherwise.

The set of all doubly substochastic operators and the set of all partial permutations on ℓp(I) we will
denote by DSS(ℓp(I)) and pP(ℓp(I)), respectively.

Definition 1.2. [4, Definition 2.1] Let f , 1 ∈ ℓp(I). Function f is DSS-weakly majorized by 1, which is denoted by
f ≺≺w 1, if f = D1 for some doubly substochastic operator D ∈ DSS(ℓp(I)). Similarly, function f is majorized by 1,
which is denoted by f ≺ 1, if f = D1 for some doubly stochastic operator D ∈ DS(ℓp(I)).

Definition 1.3. [4, 16] A bounded linear map T : ℓp(I)→ ℓp(I), p ∈ [1,∞) is said to preserve DSS-weak majorization
if for arbitrary chosen functions f , 1 ∈ ℓp(I) relation f ≺≺w 1 implies T f ≺≺w T1. The set of all bounded linear preservers
of DSS-weak majorization on ℓp(I) we will denote by Pdw(ℓp(I)).

Theorem 1.4. [4, Theorem 2.9] Let I be an infinite set and let f , 1 ∈ ℓp(I), p ∈ [1.∞). The following conditions
are equivalent:

i) f ≺≺w 1 and 1 ≺≺w f ;
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ii) There are two partial permutations P1,P2 ∈ pP(ℓp(I)) for sets supp( f ) and supp(1) such that f = P11

and 1 = P2 f .

In the sequel, we will consider the map Pθ : ℓp(I)→ ℓp(I) defined by

Pθ( f ) :=
∑
k∈I

f (k)eθ(k), f ∈ ℓp(I), (2)

where θ : I → I is a one-to-one function and I is an infinite set. Obviously, Pθ is a bounded linear operator
on ℓp(I) with norm ∥Pθ∥ = 1. Moreover, if θ is a surjective, then Pθ is a permutation.

Let I be an infinite set. The shape of linear preserves of standard majorization (≺) is presented in [2,
Theorem 4.9.] The result [4, Theorem 3.6] states that set of all linear preservers of standard majorization (≺)
and DSS-weak majorization (≺≺w) coincide when p ∈ (1,∞). Linear preservers of DSS-weak majorization
(≺≺w), when p = 1 are characterized in [16, Theorem 2.3]. All these results are collected and presented in the
next theorem.

Theorem 1.5. [2, 4, 16] Let I be an infinite set and let p ∈ [1,∞). Suppose that T : ℓp(I)→ ℓp(I) is a bounded linear
operator. The following statements are equivalent:

i) T ∈ Pdw(ℓp(I));

ii) Te j ≺≺w Tek and Tek ≺≺w Te j, ∀k, j ∈ I, and for each i ∈ I there is at most one j ∈ I such that ⟨Te j, ei⟩ , 0;

iii) T =
∑

k∈I0

λkPθk , where I0 ⊆ I is at most countable, (λk)k∈I0 ∈ ℓ
p(I0), and for all k ∈ I0, θk belongs to the family

Θ = {θi : I→ I | i ∈ I0} of one-to-one maps with mutually disjoint images (θi(I)∩θ j(I) = ∅ for all i, j ∈ I0 with
i , j).

Corollary 1.6. [14, Corollary 4.1] Let I be an arbitrary finite non-empty set and let p ∈ [1,∞). The set
DSS(ℓp(I)) is a compact set.

We may prove Corollary 1.6 using the different approach in regards to the original proof of this result.
Namely, when I is finite set, the unit ball of bounded linear operators on ℓp(I) is compact, hence the closed
subset DSS(ℓp(I)) is compact, too.

2. Closedness of Pdw(ℓp(I))

Theorem 2.1. Let I be a finite set and let p ∈ [1,∞). The set Pdw(ℓp(I)) is a norm-closed subset of the set of all
bounded linear operators on ℓp(I).

Proof. Let (Tn)n∈N be a sequence of operators Tn ∈ Pdw(ℓp(I)). Suppose that this sequence converges in norm
to a bounded linear map T : ℓp(I)→ ℓp(I). Let f ≺≺w 1. Then Tn f ≺≺w Tn1, ∀n ∈N. It follows that there exists
a sequence (Dn)n∈N, Dn ∈ DSS(ℓp(I)), such that

DnTn1 = Tn f . (3)

Since the set DSS(ℓp(I)) is compact by Corollary 1.6, we get that there exists a subsequence (Dn j ) j∈N,
Dn j ∈ DSS(ℓp(I)) and there is D ∈ DSS(ℓp(I)) such that

lim
j→∞

Dn j = D.

Clearly, Dn j Tn j1 = Tn j f , ∀ j ∈N by (3). Therefore,

T f = lim
j∈N

Tn j f = lim
j∈N

Dn j Tn j1 = DT1,

which implies T f ≺≺w T1.
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When I is an infinite set the next example shows that DSS(ℓp(I)) is not compact set.

Example 2.2. Let Dn = {dn
ij ∈ R : i, j ∈ N}, n ∈ N be a sequence of families (i.e. infinite matrices) of real

numbers defined by

dn
ij :=
{

1
2 , i = j ≤ n,
0, otherwise.

For each n ∈N the familyDn satisfies

sup
j∈N

∑
i∈N

|dn
ij| =

1
2
< ∞ and sup

i∈N

∑
j∈N

|dn
ij| =

1
2
< ∞

then using [15, Corollary 3.1] (when I = N) these families may be considered as bounded linear operators
on ℓp(N) for every p ∈ [1,∞) defined by

Dn f :=
∑
i∈N

∑
j∈N

dn
ij f ( j)

 ei. (4)

Since, above supremums are equal 1
2 , then using [15, Theorem 3.4] we get that

∥Dn∥ ≤ max{sup
j∈N

∑
i∈N

|dn
ij|, sup

i∈N

∑
j∈N

|dn
ij|} =

1
2
.

On the other hand, Dnen =
1
2 en implies ∥Dn∥ ≥

1
2 . Hence, ∥Dn∥ =

1
2 . Similarly if k > m than

∥(Dk −Dm)ek∥ =
1
2
.

Clearly, the sequence (Dn)n∈N is not convergent in norm and there is no convergent subsequence of (Dn)n∈N.
It follows that DSS(ℓp(I)) is not compact.

Thus, the closedness of the setPdw(ℓp(I)) cannot be provided using above approach presented in Theorem
2.1 when I is an infinite set. We claim thatPdw(ℓp(I)) is closed and it will be proved using different technique
presented below.

Theorem 2.3. Let I be an infinite set, let p ∈ [1,∞). Suppose that ( fn)n∈N, fn ∈ ℓp(I) and (1n)n∈N, 1n ∈ ℓp(I) are two
convergent sequences such that

lim
n→∞

fn = f ∈ ℓp(I) and lim
n→∞
1n = 1 ∈ ℓ

p(I).

If fn ≺≺w 1n and 1n ≺≺w fn, ∀n ∈ N, then there exists a partial permutation P ∈ pP(ℓp(I)) for sets supp( f ) and
supp(1), such that

f = P1.

Moreover,
f ≺≺w 1 and 1 ≺≺w f .

Proof. Since f , 1 ∈ ℓp(I), we have card( supp( f )) ≤ ℵ0 and card( supp(1)) ≤ ℵ0 which implies card(| f (I)|) ≤ ℵ0
and card(|1(I)|) ≤ ℵ0 (where | f (J)| := {| f ( j)| : j ∈ J}, for some J ⊆ I). Because of this, we may define a (strictly)
decreasing sequence (ln)n∈N0 of non-negative real numbers which converge to zero defined by

l0 > sup
i∈I
{| f (i)|, |1(i)| | i ∈ I} and ln < | f (I)| ∪ |1(I)|, n ∈N. (5)
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For any h ∈ ℓp(I), we define sets In
h := {i ∈ I : ln < |h(i)| < ln−1}, ∀n ∈ N. It is easy to conclude that all sets

In
h are finite, mutually disjoint and

⋃
n∈N In

h = supp(h).
Choose an arbitrary m ∈N. We claim that there is N f ∈N such that Im

f = Im
fn

, for each n > N f .
There exists a real number δ > 0 such that

lm < lm + δ < | f ( j)| < lm−1 − δ < lm−1

for each j ∈ Im
f , because the set Im

f is finite. Using lim
n→∞

fn = f and

∥ f − fn∥p =
∑
i∈I

| f (i) − fn(i)|p ≥ | f ( j) − fn( j)|p for each j ∈ Im
f

we obtain that there is a n1 ∈N such that | f ( j) − fn( j)| ≤ ∥ f − fn∥ < δ, ∀n > n1, ∀ j ∈ Im
f . Now, we obtain

lm < | f ( j)| − δ < | fn( j)| < | f ( j)| + δ < lm−1

for each j ∈ Im
f . Thus, j ∈ Im

fn
, so Im

f ⊆ Im
fn

, ∀n > n1.
Similarly as above, since all sets Im

f are finite and using (5), we get that there exists a real number ϵ > 0
such that

(lm − ϵ, lm−1 + ϵ)
⋂∣∣∣∣ f ( supp f \ Im

f

)∣∣∣∣ = ∅.
Also, there is a n2 ∈N such that fn(i) ∈ ( f (i) − ϵ/2, f (i) + ϵ/2), ∀i ∈ I, ∀n > n2. Hence, we conclude

(lm, lm−1)
⋂∣∣∣∣ fn ( supp f \ Im

f

)∣∣∣∣ = ∅,
whenever n > n2. Therefore, if i ∈ Im

fn
that is | fn(i)| ∈ (lm, lm−1), then using the above fact we obtain

i < supp f \ Im
f , that is i ∈ Im

f . Thus, for each n > n2 we have Im
fn
⊆ Im

f . Finally,

Im
fn
= Im

f , ∀n > N f := max{n1,n2}.

Analogously, there exists N1 ∈N such that Im
1n
= Im
1 , ∀n > N1. Therefore,

Im
fn
= Im

f and Im
1n
= Im
1 , for every n >M := max{N f ,N1}. (6)

Fix n > M such that | fn(k) − f (k)| < ξ/2 and |1n(k) − 1(k)| < ξ/2, ∀k ∈ I. Since, fn ≺≺w 1n and 1n ≺≺w fn
we get that there are two partial permutations P1,P2 ∈ pP(ℓp(I)) for sets supp( fn) and supp(1n) such that
fn = P11n and 1n = P2 fn, by Theorem 1.4. Hence, there exists a bijection

ω : supp( fn)→ supp(1n)

such that fn(i) = 1n(ω(i)), for each i ∈ supp( fn). Using above argument, we have 1n(ω(k)) = fn(k) ∈ (lm, lm−1),
∀k ∈ Im

fn
= Im

f . Hence, ω(k) ∈ Im
1n
= Im
1 . If we assume that i = ω−1( j) ∈ supp( fn) \ Im

fn
for some j ∈ Im

1 = Im
1n

, then
fn(i) < (lm, lm−1), so fn(i) , 1n(ω(i)) which is a contradiction with definition of ω. Using above argumments,
the map

ωm : Im
f → Im

1

defined by ωm(i) := ω(i), ∀i ∈ Im
f is a bijection from Im

f to Im
1 . If f (k) = 1( j) holds ∀k ∈ Im

f and ∀ j ∈ Im
1 , it is clear

that f (k) = 1(ωm(k)), ∀k ∈ Im
f . Suppose that f (k) , 1( j) for some k ∈ Im

f and j ∈ Im
1 and let

ξ := min{| f (k) − 1( j)| : k ∈ Im
f , j ∈ Im

1 , f (k) , 1( j)} > 0. (7)



M. Ljubenović / FAAC 16 (3) (2024), 13–19 18

Using definitions of the maps ω and ωm we have fn(k) = 1n(ω(k)) = 1n(ωm(k)) for every k ∈ Im
f , therefore

| f (k) − 1(ωm(k))| ≤ | f (k) − fn(k)| + | fn(k) − 1(ωm(k))|
= | f (k) − fn(k)| + |1n(ωm(k)) − 1(ωm(k))| < ξ.

Hence, f (k) = 1(ωm(k)), ∀k ∈ Im
f , by (7).

We recall that the above argument is true for each m ∈ N. The sets Im
f are mutually disjoint and⋃

m∈N Im
f = supp( f ), hence that the map Ω : supp( f )→ supp(1) defined by Ω(k) := ωm(k), whenever k ∈ Im

f
is a bijection and f (k) = 1(Ω(k)), ∀k ∈ supp( f ). Therefore, there exists a partial permutation P ∈ pP(ℓp(I)) for
sets supp( f ) and supp(1), corresponding to Ω, such that

f = P1.

In the similar way we may provide that there is a partial permutation Q for sets supp( f ) and supp(1)
to be 1 = Q f . Clearly, f ≺≺w 1 and 1 ≺≺w f by Theorem 1.4.

Theorem 2.4. Let I be an infinite set, and let p ∈ [1,∞). The set Pdw(ℓp(I)) is a norm-closed subset of the set of all
bounded linear operators on ℓp(I).

Proof. Let p ∈ [1,∞), and let (Tk)k∈N be a sequence of maps Tk ∈ Pdw(ℓp(I)), which converges in norm to a
bounded linear map T : ℓp(I) → ℓp(I). Clearly, Tkei ≺≺w Tke j and Tke j ≺≺w Tkei. Since, lim

k→∞
Tkei = Tei and

lim
k→∞

Tke j = Te j we get

Tei ≺≺w Te j and Te j ≺≺w Tei,

by Theorem 2.3.
Suppose that ⟨Te j1 , ei⟩ , 0 and ⟨Te j2 , ei⟩ , 0 for some i, j1, j2 ∈ I. Since Tk → T, we get ⟨Tme j1 , ei⟩ , 0 and

⟨Tme j2 , ei⟩ , 0, for some m ∈ N, which is in contradiction with Tm ∈ Pdw(ℓp(I)), by Theorem 1.5. Thus, for
every i ∈ I there is at most one j ∈ I such that ⟨Te j, ei⟩ , 0. Thus, T ∈ Pdw(ℓp(I)), by Theorem 1.5.

Summary 2.5. Thus, in this paper we provide the constructive proof that the set Pdw(ℓp(I)) of all linear preservers of
DSS-weak majorization (≺≺w) is a norm-closed subset of the set of all bounded linear operators on ℓp(I), where p ∈]1,∞).
We recall that for each p ∈ (1,∞) linear preservers of standard majorization (≺) and DSS-weak majorization (≺≺w)
coincide when I is an infinite set, by [4, Theorem 3.6]. Also, in this case, the set of all linear preservers of standard
majorization (≺) is norm-closed by [3, Theorem 2.4], therefore closedness of the set Pdw(ℓp(I)) follows directly as a
corollary. However, when p = 1, the above fact do not hold because linear preservers of DSS-weak majorization (≺≺w)
on ℓ1(I) do not have the same form as preservers of standard majorization (≺) or weak majorization relations (≺w)
and (≺w), when I is an infinite set. Thus, in this case, Theorem 2.4 cannot be obtained as a consequence of previously
published results.
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