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Closedness of the set of all linear preservers of DSS-weak majorization
on £F(I)

Martin Ljubenovié®

?Faculty of Mechanical Engineering, Department of Mathematics, University of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia.

Abstract. It is provided that the set of all linear preservers of DSS-weak majorization on &(I), p € [1, o) is
closed under the norm topology, where I is an arbitrary non-empty set.

1. Introduction

Theory of majorization is a nice tool for developing new mathematical inequalities [1, 8, 10, 18] and
it plays an important role in various branches of science [9] especially in quantum mechanics [19, 20]. In
recent years, there is a big progress towards developing extensions of the most important majorization
relations on sequence spaces [12, 21, 22] and discrete Lebesgue spaces [2, 5-7, 13, 15]. Also, linear preserver
problems of majorization relations are discussed in [4, 11, 14, 16, 17].

DSS-weak majorization relations on ¢7(I) and their linear preservers are studied in [4, 16]. The aim of
the paper is to present the constructive proof that the set of all linear preservers of DSS-weak majorization
(=) is norm-closed in the set of all bounded linear operators on ¢#(I), where [ is an arbitrary not-empty set
and p € [1, 00). When [ is finite, this conclusion will be obtained using the compactness of DSS(£7(I)). When
I'is an infinite set, Example 2.2 shows that DSS(£7(1)) is not compact. Closedness in this case will be proved
using Theorem 2.3.

In the sequel, the set I will be an arbitrary not-empty set and p € [1, o), unless otherwise stated. The
Banach space ¢(I) contains all functions f : I — R that satisfy ). |f())l < oo and it is equipped with
standard p-norm. The positive cone of the Banach space ¢*(I) is defined by

N ={felf(): fi)y>0,Viel}.
The support of the function f € €7(I) is a subset of I defined by

supp(f) := {i € I'| f(i) # 0},
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which is clearly at most a countable set. We recall that each function f € {/(I) may be represented in the
following form f = ¥, f(i)e; using Kronecker delta functions 6;j, where ¢;(j) = 0;j,i € Iand ¢; : | — R.
We will consider operators defined on discrete Lebesgue spaces ¢¥(I), where p € [1,00). A bounded
linear operator A : {*(I) — ¢#(I) may be represented by a matrix [a;;]; o which may be finite or infinite
depends on cardinality of the set I. If we define matrix elements with a;; = (Aej, e;), ¥i,j € I, where the
map (-,-) : /() X £9(I) — R defined by (f, g) = ). f(i)g(i) is called the dual pairing, we get the matrix
i€l

representation of the operator A in the following way:
Af(y =Y agf(j), Viel, (1)
jel
that is,
Af =Y | Y af ()|
iel \ jel

Definition 1.1. [2, Definition 2.1][13, Definition 3.1] Let A : £/(I) — €P(I), p € [1, oo0) be a bounded linear operator,
where I is a non-empty set. The operator A is called:

e positive, if Af € ¢P(I)*, for each f € €P(I)*;

doubly stochastic, if A is positive,

viel Y (Age)=1, and Vjel ) (Aee)=1;

jel i€l

doubly substochastic, if A is positive,

Viel Z(Ae]-,e,-) <1, and Vjel Z(Aej,e,-) <1

jel i€l

a permutation, if there exists a bijection 0 : I — I for which Ae; = eq;), for each j € I;

partial permutation for sets Iy C I and I, C I, if there exists a bijection 0 : I — I, such that

_Jeep, jeh,
Aej _{ 0, otherwise.

The set of all doubly substochastic operators and the set of all partial permutations on *(I) we will
denote by DSS(¢¥(1)) and pP(£P(I)), respectively.

Definition 1.2. [4, Definition 2.1] Let f, g € tP(I). Function f is DSS-weakly majorized by g, which is denoted by
f <w g, if f = Dg for some doubly substochastic operator D € DSS(¢P(l)). Similarly, function f is majorized by g,
which is denoted by f < g, if f = Dg for some doubly stochastic operator D € DS({F(I)).

Definition 1.3. [4, 16] A bounded linear map T : €P(I) — €P(I), p € [1, o0) is said to preserve DSS-weak majorization
if for arbitrary chosen functions f, g € {*(I) relation f <, gimplies Tf <, Tg. The set of all bounded linear preservers
of DSS-weak majorization on €P(I) we will denote by P 4,(€P(I)).

Theorem 1.4. [4, Theorem 2.9] Let I be an infinite set and let f, g € ¢7(I), p € [1.00). The following conditions
are equivalent:

i) f<wgand g <y f;
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ii) There are two partial permutations P;, P, € pP({P(I)) for sets supp(f) and supp(g) such that f = P1g

and g = P»f.
In the sequel, we will consider the map Py : {7(I) — ¢7(I) defined by
Po(f) =) f0eow, fe (D), 2)
kel

where 0 : I — [ is a one-to-one function and I is an infinite set. Obviously, Py is a bounded linear operator
on {*(I) with norm ||Pg|| = 1. Moreover, if 0 is a surjective, then Py is a permutation.

Let I be an infinite set. The shape of linear preserves of standard majorization (<) is presented in [2,
Theorem 4.9.] The result [4, Theorem 3.6] states that set of all linear preservers of standard majorization (<)
and DSS-weak majorization (<) coincide when p € (1, 0). Linear preservers of DSS-weak majorization
(<w), when p = 1 are characterized in [16, Theorem 2.3]. All these results are collected and presented in the
next theorem.

Theorem 1.5. [2, 4, 16] Let I be an infinite set and let p € [1, 00). Suppose that T : £F(I) — (¥(I) is a bounded linear
operator. The following statements are equivalent:

i) T € Pap(tP());
it) Tej <y Tex and Tey <, Tej, Yk, j € I, and for each i € I there is at most one j € I such that (Tej,e;) # 0;

iit) T = Y, AyPg,, where Iy C I is at most countable, (Ax)ker, € €¥(lo), and for all k € Iy, Oy belongs to the family

kely
© ={0; : I - I|1i € Iy} of one-to-one maps with mutually disjoint images (0;(I) N 0;(I) = 0 for all i, j € Iy with
i %))

Corollary 1.6. [14, Corollary 4.1] Let I be an arbitrary finite non-empty set and let p € [1,00). The set
DSS(¢P(I)) is a compact set.

We may prove Corollary 1.6 using the different approach in regards to the original proof of this result.
Namely, when [ is finite set, the unit ball of bounded linear operators on {*(I) is compact, hence the closed
subset DSS(¢F(I)) is compact, too.

2. Closedness of P 4, (£7 (1))

Theorem 2.1. Let [ be a finite set and let p € [1,00). The set Pa,(€P(I)) is a norm-closed subset of the set of all
bounded linear operators on £P(I).

Proof. Let (T,)nen be a sequence of operators T, € Py, (£7(I)). Suppose that this sequence converges in norm
to abounded linear map T : {P(I) — ¢7(I). Let f < g. Then T, f <, Tg, Vn € IN. It follows that there exists
a sequence (D,),en, D, € DSS(€P(I)), such that

D,T,g = T, f. 3)

Since the set DSS(£#(I)) is compact by Corollary 1.6, we get that there exists a subsequence (Dy,)jen,
Dy; € DSS(£#(I)) and there is D € DSS({P(I)) such that

lim D,,, = D.

j—>oo
Clearly, Dy Tyg = Ty, f,¥jeNby (3). Therefore,

Tf=limTf = inDy Ty =DTy,

which implies Tf <, Tg. O
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When [ is an infinite set the next example shows that DSS(¢*(I)) is not compact set.

Example 2.2. Let D, = {d;?j € R:i,j € N}, n € N be a sequence of families (i.e. infinite matrices) of real
numbers defined by

1 . e
dn — )3 1= ] < n,
7710, otherwise.

For each n € N the family D, satisfies
supz |d%| = 1 < oo and supZ|d'?,| - 1 < oo
1] 2 N jE]N 1] 2

then using [15, Corollary 3.1] (when I = IN) these families may be considered as bounded linear operators
on {*(IN) for every p € [1, o) defined by

Duf=) [Z d:;f(j)]ei. (4)

i€IN \ jeN

Since, above supremums are equal 1, then using [15, Theorem 3.4] we get that

1
1Dl < max{sup }" 5], sup Y 5]} = >

JjeN jeN €N jeN
On the other hand, D,e, = %en implies [|Dy|| > % Hence, ||D,|| = % Similarly if k > m than

1
(s = Duerl = 5.

Clearly, the sequence (D;),en is not convergent in norm and there is no convergent subsequence of (D,)nenN.
It follows that DSS(¢£P(1)) is not compact.

Thus, the closedness of the set £, (¢ (I)) cannot be provided using above approach presented in Theorem
2.1 when [ is an infinite set. We claim that P4, ({*(I)) is closed and it will be proved using different technique
presented below.

Theorem 2.3. Let I be an infinite set, let p € [1, 00). Suppose that (fu)nen, fu € €F(I) and (gn)nen, gn € ¥ (I) are two
convergent sequences such that

lim f, = f € €P() and lim g, = g € £P(]).

If fu <w gnand g, <w fo, Y1 € N, then there exists a partial permutation P € pP(£/(I)) for sets supp(f) and
supp(g), such that
f=Pyg.

Moreover,
f<wg and g <y f.

Proof. Since f, g € €7(I), wehave card(supp(f)) < 8gand card(supp(g)) < No whichimplies card(|f(I)]) < No
and card(lg(I)|) < 8o (Where |f(J)| :== {If(j)| : j € ]}, for some ] C I). Because of this, we may define a (strictly)
decreasing sequence ()N, of non-negative real numbers which converge to zero defined by

Io > sup{lf@), lg@)|i€l} and I, ¢ |f(DIV|g()l, neN. )

iel
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For any h € {(I), we define sets I = liel:l, <|h()| <l,-1}, Yn € N. It is easy to conclude that all sets

I} are finite, mutually disjoint and (e I} = supp(h).
Choose an arbitrary m € IN. We claim that there is N¢ € IN such that Iy =T, for each n > Ny.

There exists a real number 6 > 0 such that
Ly <Ly + 06 <|f(l <lp-1 =0 <Ilpa

for each j € I, because the set I}” is finite. Using lim f, = f and
n—oo

If = full” = Z 1f@) = fu@OF 2 |f(j) = fu()F" foreach je Iy

i€l
we obtain that there is a 71 € IN such that |f(j) = fu()I < IIf = full <6,V >m, Vj € [7. Now, we obtain

L <If(DI =0 < Ifa(DI <If DI+ < Lna

foreach j e I}”. Thus, j € I}”, SO I}” - I}", Vn > ny.
Similarly as above, since all sets I;’f are finite and using (5), we get that there exists a real number € > 0
such that

(e =€l + &) () |f (supp £\ 17)| = 0.

Also, there is a n, € N such that f£,(i) € (f(i) — €/2, f(i) + €/2), Vi € I, Yn > ny. Hence, we conclude

(lm/ m—1 ﬂ fn(SuPPf\Im)| =
whenever n > n,. Therefore, if i € Ifm that is |f,())] € (In,ln-1), then using the above fact we obtain
i¢ supp f\I?, thatisi € 17,1. Thus, for each n > n, we have I}’f c Ifm. Finally,
I;',l, = IJC”, ¥n > Ny := max{ny, np}.

Analogously, there exists N; € N such that I}} = I}/, ¥n > N,. Therefore,

IZ = I? and Ig) = I}, forevery n>M :=max{Ns, Ng}. (6)

Fix n > M such that |f,(k) — f(k)| < £/2 and |g,.(k) — g(k)| < &£/2, Yk € I. Since, f, < gn and g, < fu
we get that there are two partial permutations P;, P, € pP(¢{F(I)) for sets supp(f,) and supp(g,) such that
fu = P1g, and g,, = P> f,, by Theorem 1.4. Hence, there exists a bijection

w : supp(fu) = supp(gs)
such that f,(i) = g.(w(i)), for each i € supp(f,). Using above argument, we have g,(w(k)) = fu(k) € (I, ln-1),
Vk e Ij’f = ny Hence, w(k) € I}} = I}'. If we assume thati = w7 1(j) € supp(fy) \ I”’ for some j € Ij = I/, then
fu(@) & (I, In—1), 50 fu(i) # g (a)(l)) wh1ch is a contradiction with definition of w. Usmg above argumments,

the map

Wy T — I;I

f
defined by w,,(7) := w(i), Vi € I;? is a bijection from Ifm to I7". If f(k) = g(j) holds Vk € 17' and Vj € I", it is clear
that f(k) = g(wm(k)), Yk € I’”. Suppose that f(k) # g(j) for some k € I}’f and j € I} and let

&=minf|f(k) - g(j)l : k € I, j € I/, f(k) # g(j)} > (7)
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Using definitions of the maps w and w,, we have f,(k) = g,(w(k)) = gu(wm(k)) for every k € I'?, therefore
[f (k) = glwm()l < [f(k) = fulO)l + | fu(k) = gl@wmK))]
[f(k) = fu(R) + |gn(wm(k)) — glwm(K))] < <.

Hence, f(k) = g(wm(k)), Yk € I}, by (7).
We recall that the above argument is true for each m € IN. The sets [' are mutually disjoint and

Unen I;l = supp(f), hence that the map Q : supp(f) — supp(g) defined by Q(k) := w,,(k), whenever k € IJT

is a bijection and f(k) = g(Q(k)), Yk € supp(f). Therefore, there exists a partial permutation P € pP(¢F(I)) for
sets supp(f) and supp(g), corresponding to Q, such that

f=Pyg.

In the similar way we may provide that there is a partial permutation Q for sets supp(f) and supp(g)
tobe g = Qf. Clearly, f <, g and g <, f by Theorem 1.4.
O

Theorem 2.4. Let I be an infinite set, and let p € [1, 00). The set P 4,,(£P(I)) is a norm-closed subset of the set of all
bounded linear operators on £P(I).

Proof. Let p € [1,00), and let (Ti)rew be a sequence of maps Ty € Puy,(€P(I)), which converges in norm to a
bounded linear map T : {F(I) — (¥(I). Clearly, Tye; <y Tiej and Tie; < Tie;. Since, I}im Tre; = Te; and
lim Tre; = Te; we get

k—o0
Te; <y Tej and Tej <y Te;,

by Theorem 2.3.

Suppose that (Te;,, ¢;) # 0 and (Tej,, ¢;) # 0 for some i, jy, jo € I. Since Ty — T, we get (Tej,, e;) # 0 and
(Tmej,, e;) # 0, for some m € IN, which is in contradiction with T, € #4,({’(I)), by Theorem 1.5. Thus, for
every i € [ there is at most one j € I such that (Te;, e;) # 0. Thus, T € Py, (¢(I)), by Theorem 1.5. [J

Summary 2.5. Thus, in this paper we provide the constructive proof that the set P, (€7 (1)) of all linear preservers of
DSS-weak majorization (<) is a norm-closed subset of the set of all bounded linear operators on {F(I), wherep €]1, 00).
We recall that for each p € (1, co) linear preservers of standard majorization (<) and DSS-weak majorization (<)
coincide when I is an infinite set, by [4, Theorem 3.6]. Also, in this case, the set of all linear preservers of standard
majorization (<) is norm-closed by [3, Theorem 2.4], therefore closedness of the set Pa,(€7(I)) follows directly as a
corollary. However, when p = 1, the above fact do not hold because linear preservers of DSS-weak majorization (<)
on (X(I) do not have the same form as preservers of standard majorization (<) or weak majorization relations (<)
and (<*), when I is an infinite set. Thus, in this case, Theorem 2.4 cannot be obtained as a consequence of previously
published results.
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