
Functional Analysis,
Approximation and
Computation
16 (3) (2024), 21–37

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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aUMR Espace-Dev, Université de Guyane, Campus de Troubiran 97300 Cayenne Guyane (FWI)
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Abstract. In this paper, we give sufficient conditions for the existence and uniqueness of S -Asymptotically
ω-periodic solutions for a nonlinear differential equation with generalized type argument (EGTA) in a
Banach space. This is done using the Banach fixed point Theorem.

1. Introduction

This work is concerned with the existence of asymptotically ω-periodic and S asymptotically ω-periodic
solutions, valued in a Banach space X, to the following differential equation of generalized type argument
(EGTA):{

x′(t) = Ax(t) +
∑N

j=1 A jx(φ j(t)) + f (t, x(φN+1(t)));
x(0) = c0.

(1)

Here, c0 ∈ X, f is a continuous function on R+ × X, A generates a semi-group exponentially stable and for
j = 1, ...,N + 1, φ j(t) is a measurable real function and Aj is a bounded linear operator. Moreover each
function φ j is subject to the functional relation: φ j(t+ s) = φ j(t)+ rs; (t, s) ∈ R× S j, where S j is a subset of R
and r is a positive integer.
The existence of almost periodic, almost automophic ([5, 15]), asymptotically ω-periodic ([7, 10, 12, 23–25])
and S asymptoticallyω-periodic fonctions ([3, 6, 8, 9, 11]) is one of the most attracting topics in the qualitative
theory of differential equations, due both to its mathematical interest and to the applications. The study
of differential equations with piecewise constant argument (EPCA) is an important subject because these
equations have the structure of continuous dynamical systems in intervals of unit length. Therefore they
combine the properties of both differential and difference equations. Application of these equation to the
problems of biology can be found in [1, 2, 4].
There have been many papers studying EPCA, see for instance [13, 18–22] and the references therein.
However, to the best of the authors’s knowledge, the theory of differential equation with generalized type
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argument who generalises the concept of differential equation with piecewise constant argument is recent,
and there is no paper dealing with the existence of S asymptoticallyω-periodic solution of these differential
equations. In this paper, we give sufficient conditions for the existence of asymptotically ω-periodic and S
asymptotically ω-periodic solution of (1) considering asymptotically ω-periodic functions in the Stepanov
sense, S asymptotically ω-periodic functions in the Stepanov sense and the Banach fixed point theorem.
This paper is organized as follows. In Section 2, we recall the concepts of asymptotically ω-periodic
functions, asymptoticallyω-periodic functions in the Stepanov sense, S asymptoticallyω-periodic functions,
S asymptotically ω-periodic functions in the Stepanov sense and their basic properties. In Section 3,
we present some results showing the existence of functions wich are not asymptotically ω-periodic but
asymptotically ω-periodic in the Stepanov sense. In section 4, we study the existence and uniqueness of
asymptotically ω-periodic and S asymptotically ω-periodic solution of the equation (1).

2. Preliminaries

Let X be a Banach space. We denote by BC(R+,X) the space of the continuous bounded functions from R+

into X. Endowed with the norm ∥ f ∥∞ := supt≥0 ∥ f (t)∥, BC(R+,X) is a Banach space. Set C0(R+,X) = { f ∈
BC(R+,X) : limt→∞ f (t) = 0} and Pω(R+,X) = { f ∈ BC(R+,X) : f is ω-periodic}.

Definition 2.1. A function f ∈ BC(R+,X) is said to be asymptotically ω-periodic if it can be expressed as f = 1+ h,
where 1 ∈ Pω(R+,X) and h ∈ C0(R+,X). The collection of such functions will be denoted by APω(R+,X).

Theorem 2.2. [23] Let f ∈ BC(R+,X) and ω > 0. Then the following statements are equivalent:

(i) f ∈ APω(R+,X)
(ii) 1(t) = limn→∞ f (t + nω) uniform on R+;

(iii) 1(t) = limn→∞ f (t + nω) uniformly on compact subset of R+;
(iv) 1(t) = limn→∞ f (t + nω) is well defined for each t ∈ R+ and 1(t) = limn→∞ f (t + nω) uniformly on [0, ω].

Let p ∈ [1,∞[. The space BSp(R+,X) of all Stepanov bounded functions, with the exponent p, consists of all
measurable functions f : R+ → X such that f b

∈ L∞(R,Lp([0, 1];X)), where f b is the Bochner transform of f
defined by f b(t, s) := f (t + s), t ∈ R+, s ∈ [0, 1]. Then BSp(R+,X) is a Banach space with the norm

∥ f ∥Sp = ∥ f b
∥L∞(R+,Lp) = sup

t∈R+

( ∫ t+1

t
∥ f (τ)∥pdτ

)
Obviously, if p ≥ q ≥ 1 we have Lp(R,X) ⊂ BSp(R,X) ⊂ Lp

loc(R,X) and BSp(R,X) ⊂ BSq(R,X) . Define the
subspaces of BSp(R+,X) by

SpPω(R+,X) =
{ f ∈ BSp(R+,X) :

∫ t+1

t ∥ f (s + ω) − f (s)∥pds = 0, t ≥ 0}

and
BSp

0(R+,X) = { f ∈ BSp(R+,X) : limt→∞
∫ t+1

t ∥ f (s)∥pds = 0}.

Definition 2.3. [23] A function f ∈ BSp(R+,X) is called asymptoticallyω-periodic in the Stepanov sense if it can be
expressed as f = 1+ h, where 1 ∈ SpPω(R+,X) and h ∈ BSp

0(R+,X). The collection of such functions will be denoted
by SpAPω(R+,X).

Definition 2.4. [23] A function f ∈ BSp(R+×X) with f (t, x) ∈ Lp
loc(R

+,X) for each x ∈ X is said to be asymptotically
ω-periodic in the Stepanov sense uniformly on bounded sets of X if there exists a function 1 : R+ × X → X with
1(t, x) ∈ SpPω(R+,X) for each x ∈ X such that for every bounded set K ⊂ X we have( ∫ t+1

t
∥ f (s + nω, x) − 1(s, x)∥pds

) 1
p
→ 0

as n→∞ pointwise onR+ uniformly for x ∈ K. The collection of such functions will be denoted by SpAPω(R+ ×X).
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Theorem 2.5. [23] Let f ∈ Lp
loc(R

+,X) and ω > 0. Then the following statements are equivalent:

(i) f ∈ SpAPω(R+,X);

(ii) There exists a function 1 ∈ SpPω(R+,X) such that
∫ t+1

t ∥ f (s + nω) − 1(s)∥pds → 0 as n → ∞ uniformly for
t ∈ R+;

(iii) There exists a function 1 ∈ SpPω(R+,X) such that
∫ t+1

t ∥ f (s + nω) − 1(s)∥pds → 0 as n → ∞ pointwise for
t ∈ R+.

Lemma 2.6. [23] Suppose f ∈ SpAPω(R+,X), f = 1 + h where 1 ∈ SpPω(R+,X) and h ∈ BSp
0(R+,X). Let

ω = n0 + θ, where n0 ∈N and θ ∈ (0, 1). Then the following statements are true.

(i)
∫ t+ω

t ∥ f (s)∥ds ≤ (n0 + 1)∥ f ∥Sp for each t ∈ R+;

(ii)
∫ t+ω

t ∥1(s +mω) − 1(s)∥ds = 0 for each t ∈ R+ and any m ∈N;

(iii) lim
n→∞

∫ t+ω

t
∥h(s + n)∥ds = 0 uniformly for t ∈ R+.

Proposition 2.7. [7] Let u ∈ APω(R+,X) where ω ∈ N∗. Then the function t 7→ u([t + k]), where k ∈ N is
Asymptotically ω-periodic in the Stepanov sense but is not Asymptotically ω-periodic.

Theorem 2.8. [7] Let ω ∈N∗. Let f : R ×X→ X be a continuous function such that:

(i) ∀ (t, x) ∈ R ×X, f (t + ω, x) = f (t, x);
(ii) ∃L f > 0, ∀(t, x) ∈ R ×X

∥ f (t, x) − f (t, y)∥ ≤ L f ∥x − y∥.

If u ∈ APω(R+,X), then the function t 7→ f (t,u([t])) is Asymptotically ω-periodic in the Stepanov sense but is not
Asymptotically ω-periodic.

Lemma 2.9. [7] Let ω ∈ N∗. Assume that f ∈ SpAPω(R+ ×X,X) and assume that f satisfies a Lipschitz condition
in X uniformly in t ∈ R+:

∥ f (t, x) − f (t, y)∥ ≤ L∥x − y∥

for all x, y ∈ X and t ∈ R+, where L is a positive constant. Let u ∈ APω(R+,X). Then the function F : R+ → X
defined by F(t) = f (t,u([t])) is asymptotically ω-periodic in the Stepanov sense.

Now, we give the definition of S Asymptotically ω-periodic functions.

Definition 2.10. ([11]) A function f ∈ BC(R+,X) is called S-asymptotically ω periodic if there exists ω such that
lim
t→∞

( f (t + ω) − f (t)) = 0. In this case we say that ω is an asymptotic period of f and that f is S-asymptotically ω

periodic. The set of all such functions will be denoted by SAPω(R+,X).

Definition 2.11. ([11]) A continuous function f : R+ ×X→ X is said to be uniformly S-asymptotically ω-periodic
on bounded sets if for every bounded set K∗ ⊂ X, the set { f (t, x) : t ≥ 0, x ∈ K∗} is bounded and

lim
t→∞

( f (t, x) − f (t + ω, x)) = 0

uniformly in x ∈ K∗.

Definition 2.12. ([11]) A continuous function f : R+ ×X→ X is said to be asymptotically uniformly continuous
on bounded sets if for every ε > 0 and every bounded set K∗, there exist Lε,K∗ > 0 and δε,K∗ > 0 such that
∥ f (t, x) − f (t, y)∥ < ε for all t ≥ Lε,K∗ and all x, y ∈ K∗ with ∥x − y∥ < δε,K∗ .

Lemma 2.13. ([3]) LetX andY be two Banach spaces, and denote by B(X,Y), the space of all bounded linear operators
from X into Y. Let A ∈ B(X,Y). Then when f ∈ SAPω(R+,X), we have A f := [t 7→ A f (t)] ∈ SAPω(R+,Y).
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Lemma 2.14. ([11]) Let f : R+ ×X→ X be a function which is uniformly S-asymptotically ω-periodic on bounded
sets and asymptotically uniformly continuous on bounded sets. Let u : R+ → X be a S-asymptotically ω-periodic
function. Then the Nemytskii operator ϕ(·) := f (·,u(·)) is a S-asymptotically ω-periodic function.

Lemma 2.15. ([25]) Assume f : R+ × X → X be a function which is uniformly S-asymptotically ω periodic on
bounded sets and satisfies the Lipschitz condtion, that is, there exists a constant L > 0 such that

∥ f (t, x) − f (t, y)∥ ≤ L∥x − y∥,∀t ≥ 0,∀x, y ∈ X.

If u ∈ SAPω(R+,X), then the function f (t,u(t)) belongs to SAPω(R+,X).

Let p ∈ [0,∞[. The space BSp(R+,X) of all Stepanov bounded functions, with the exponent p, consists of all
measurable functions f : R+ → X such that f b

∈ L∞(R,Lp([0, 1];X)), where f b is the Bochner transform of
f defined by f b(t, s) := f (t + s), t ∈ R+, s ∈ [0, 1]. It is well-known that BSp(R+,X) is a Banach space with the
norm

∥ f ∥Sp = ∥ f b
∥L∞(R+,Lp) = sup

t∈R+

( ∫ t+1

t
∥ f (τ)∥pdτ

) 1
p
.

It is obvious that Lp(R+,X) ⊂ BSp(R+,X) ⊂ Lp
loc(R

+) and BSp(R+,X) ⊂ BSq(R+,X) for p ≥ q ≥ 1. We denote

by BSp
0(R+) the subspace of BSp(R+,X) consisting of functions f such that

∫ t+1

t ∥ f (s)∥pds→ 0 when t→∞.
Now we give the definition of S-asymptotically ω-periodic functions in the Stepanov sense.

Definition 2.16. [12] A function f ∈ BSp(R+,X) is called S-asymptotically ω-periodic in the Stepanov sense (or
Sp-S-asymptotically ω-periodic) if

lim
t→∞

∫ t+1

t
|| f (s + ω) − f (s)||pds = 0.

Denote by SpSAPω(R+,X) the set of such functions.

Remark 2.1. It is easy to see that SAPω(R+,X) ⊂ SpSAPω(R+,X).

Definition 2.17. [12] A function f : R+ ×X→ X is said to be uniformly S-asymptotically ω-periodic on bounded
sets in the Stepanov sense if for every bounded set B ⊂ X, there exist positive functions 1b ∈ BSp(R+,R) and
hb ∈ BSp

0(R+,R) such that f (t, x) ≤ 1b(t) for all t ≥ 0, x ∈ B and ∥ f (t + ω, x) − f (t, x)∥ ≤ hb(t) for all t ≥ 0, x ∈ B.

Denote by SpSAPω(R+ ×X,X) the set of such functions.

Definition 2.18. [12] A function f : R+ × X → X is said to be asymptotically uniformly continuous on bounded
sets in the Stepanov sense if for every ε > 0 and every bounded set B ⊂ X, there exist tε ≥ 0 and δε > 0 such that∫ t+1

t
∥ f (s, x) − f (s, y)∥pds ≤ εp,

for all t ≥ tε and all x, y ∈ B with ∥x − y∥ ≤ δε.

Lemma 2.19. [12] Assume that f ∈ SpSAPω(R+ × X,X) is an asymptotically uniformly continuous on bounded
sets in the Stepanov sense function. Let u ∈ SAPω(R+,X), then v(.) = f (.,u(.)) ∈ SpSAPω(R+ ×X,X).

Corollary 2.20. [8] Let u ∈ SAPω(R+,X) whereω ∈N∗, then the function t 7→ u([t]) is S-asymptoticallyω-periodic
in the Stepanov sense but is not S-asymptotically ω-periodic.

Lemma 2.21. [8] Let ω ∈ N∗. Assume f : R+ × X → X be a function which is uniformly S-asymptotically ω
periodic on bounded sets and satisfies the Lipschitz condition, that is, there exists a constant L > 0 such that

∥ f (t, x) − f (t, y)∥ ≤ L∥x − y∥,∀t ≥ 0,∀x, y ∈ X.

If u ∈ SAPω(R+,X), then
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(1) the bounded piecewise continuous function t 7→ f (t,u(
[
t
]
)) satisfies

lim
t→∞

( f (t + ω,u(
[
t + ω

]
)) − f (t,u(

[
t
]
)) = 0.

(2) the function t 7→ f (t,u(
[
t
]
)) belongs to SpSAPω(R+,X).

(3) the function t 7→ f (t,u(
[
t
]
)) does not belongs to SAPω(R+,X).

Lemma 2.22. [8] Let ω ∈N∗. Assume that f : R+ ×X→ X is uniformly S-asymptotically ω-periodic on bounded
sets in the Stepanov sense and asymptotically uniformly continuous on bounded sets in the Stepanov sense. Let
u : R+ → X be a function in SAPω(R+,X), and let v(t) = f (t,u([t])). Then v ∈ SpSAPω(R+,X).

Lemma 2.23. [23] Let {S(t)}t≥0 ⊂ B(X) be a strongly family of bounded and linear operators such that ∥S(t)∥ ≤
ϕ(t), t ∈ R+, where ϕ ∈ L1(R+) is nonincreasing. Let f ∈ SpAPω(R+,X), then u(t) =

∫ t

0 S(t − s) f (s)ds ∈
APω(R+,X).

Lemma 2.24. [24] Let {S(t)}t≥0 ⊂ B(X) be a strongly family of bounded and linear operators such that ∥S(t)∥ ≤
ϕ(t), t ∈ R+, where ϕ ∈ L1(R+) is nonincreasing. Let f ∈ SpSAPω(R+,X), then u(t) =

∫ t

0 S(t − s) f (s)ds ∈
SAPω(R+,X).

3. Main Results

Definition 3.1. A solution of (1) on R+ is a function x(t) that satisfies the conditions:

(1) x(t) is continuous on R+.
(2) The derivative x′(t) exists at each point t ∈ R+, with the possible exception of the points tn ∈ R+ where one-sided

derivatives exists.
(3) The equation (1) is satisfied on each interval [tn, tn+1[ with n ∈N.

We assume that A generates a semi-group (T(t)) in X. Then the function 1 defined by 1(s) = T(t − s)x(s),
where x is a solution of (1), is differentiable for t ≥ 0 and we have:

d1(s)
ds

= −AT(t − s)x(s) + T(t − s)
d x(s)

ds
= −AT(t − s)x(s) + T(t − s)Ax(s)

+

N∑
j=0

T(t − s) A jx(φ j(s)) + T(t − s) f (s, x(φ(s)))

which gives

d1(s)
ds
=

N∑
j=0

T(t − s) A jx(φ j(s)) + T(t − s) f (s, x(φ(s))). (2)

The functions x(φ j(s)) are a step functions. Therefore for all j = 0, ...,N, T(t − s) A0x(φ j(s)) is integrable
on [0, t[. By (H1), f (s, x(φ(s))) is piecewise continuous. Therefore f (s, x(φ(s))) is integrable on [0, t] where
t ∈ R+. Integrating (2) on [0, t] we obtain that

x(t) − T(t)c0 =

N∑
j=0

∫ t

0
T(t − s) A jx(φ j(s))ds +

∫ t

0
T(t − s) f (s, x(φ(s)))ds.

Therefore, we define
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Definition 3.2. We assume (H1) is satisfied and that A generates a semi-group T(t)) inX. The continuous function
x given by

x(t) = T(t)c0 +

N∑
j=0

∫ t

0
T(t − s) A jx(φ j(s))ds +

∫ t

0
T(t − s) f (s, x(φ(s)))ds

is called the mild solution of equation (1).

Now we make the following hypothesis.

(H1): A generates an exponentially stable semi-group T(t) in X:

(1) T(0) = I for all t ≥ 0 where I is the identity operator.
(2) T(t + s) = T(t)T(s) for all t ≥ s ≥ 0.
(3) The map t 7→ T(t)x is continuous for every fixed x ∈ X.
(4) There exist K > 0 and a > 0 such that ∥T(t)∥ ≤ Ke−at for t ≥ 0.

Let S denote a subset of R which is not void and {0}. For every non zero real number r we consider the
function θr : R→ R such that for every (t, s) ∈ R × S:

θr(t + s) = θr(t) + rs. (3)

In particular for all s ∈ S, we have:
θr(s) = rs + θr(0).

Definition 3.3. A subset of R is said to be r-stable if it is invariant under the homothety of ratio r and center 0.

We give an example of a subset S of R which is r-stable with an associated function θr.

Example 3.4. Let S be a discrete subgroup of R. Then there exists a non negative real α such that S = αZ which
shows that S is r-stable for all non zero integer r. Set θr(t) = [rt/α]α + c whith [.] the integer part function and c is
some constant. Then it is easily seen that (3) is satisfied.

Definition 3.5. A function f : R→ X is be said to be S-continuous if it is continuous inR \ S, which is refered as a
S-continuous function.

The set of all S-continuous function f : R+ → X will be denoted by SC(R+,X) and those that are bounded
will be denoted by SCb(R+,X).
Now we make the following hypothesis, where j ∈ {1, ...,N + 1}:

(H2j): φ j is an increasing function such that for every (t, s) ∈ R × S j, φ j(t + s) = φ j(t) + rs, where r ∈N∗.

(H3j): φ j is an increasing function such that for every (t, s) ∈ R × S j, φ j(t + s) = φ j(t) + s.

(H4) f ∈ SpAPω(R+ ×X,X) and f satisfies a Lipschitz condition in X uniformly in t ∈ R+:

∥ f (t, x) − f (t, y)∥ ≤ L∥x − y∥

for all x, y ∈ X and t ∈ R+, where L is a positive constant.

(H5) f : R+ ×X→ X is uniformly S-asymptotically ω-periodic on bounded sets in the Stepanov sense and
asymptotically uniformly continuous on bounded sets in the Stepanov sense.

Lemma 3.6. Assume that φ is an increasing function which satisfies φ(t + s) = φ(t) + rs for (t, s) ∈ R × S, where
r > 0. We assume also that for all s ∈ S, for all p ∈ Z, ps ∈ S. Then limφ(t) = +∞ as t→ +∞.
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Proof. Let s ∈ S \ {0}. Take t > 0 and set p = [t/|s|] where [·] denotes the integer part function. Then, we
have p|s| ≤ t < (p + 1)|s| and since φ is increasing it follows that φ(p|s|) ≤ φ(t) ≤ φ((p + 1)|s|) which means
that:

φ(0) + pr|s| ≤ φ(t) ≤ φ(0) + (p + 1)r|s|.

Therefore, since p→ +∞ as t→ +∞, it follows that limt→+∞ φ(t) = +∞. □

Proposition 3.7. Let ω ∈ S and u ∈ APω(R+,X). Assume that for every (t, s) ∈ R × S, φ(t + s) = φ(t) + rs, where
r ∈ N∗. Furthermore, assume that φ a measurable function such that limt→+∞ φ(t) = +∞. Then the function u ◦ φ
is asymptotically ω-periodic in the Stepanov sense.

Proof. Since u ∈ APω(R+,X), we can write u = v + h, where v ∈ Pω(R+,X) and h ∈ C0(R+,X). We observe
that:

v(φ(t + ω)) = v(φ(t) + rω)
= v(φ(t)).

The function v ◦ φ is then ω-periodic and since φ is a measurable function, then v ◦ φ is also a measurable
function, thus v ◦ φ ∈ SpPω(R+,X). Since h ∈ C0(R+,X) then we can write:

(∀ε > 0,∃T > 0, t > T) =⇒ (∥h(t)∥ < ε).

Using limt→+∞ φ(t) = +∞, there exists t0 > 0 such that φ(t) > T if t > t0. It follows that ∥h(φ(t))∥ < ε for t > t0
which shows that lim

t→+∞
h(φ(t)) = 0. Therefore h ◦ φ ∈ BSp

0(R+,X) which proves the proposition.

The following corollary is a straightforward consequence of Lemma 3.6.

Lemma 3.8. Let ω ∈ S and u ∈ APω(R+,X). We assume that B is a limear bounded operator and for every
(t, s) ∈ R × S, φ(t + s) = φ(t) + rs, where r ∈ N∗. φ is increasing function. Then the function t 7→ Bu(φ(t)) is
Asymptotically ω-periodic in the Stepanov sense.

Remark 3.9. The proof of this lemma is similar to the proof of the proposition 3.7

Proposition 3.10. Let ω ∈ S and ϕ ∈ SAPω(R+,X). We assume that for every (t, s) ∈ R × S, φ(t + s) = φ(t) + s.
Furthermore limφ(t) = +∞ as t → +∞. Then the function t 7→ ϕ(φ(t)) is S-asymptotically ω-periodic in the
Stepanov sense.

Proof. We have that lim
t→∞
∥ϕ(t + ω) − ϕ(t)∥ = 0.

Therefore:
(∀ε > 0, ∃ T0

ε ∈ R
+,∀ t > T0

ε)⇒ (∥ϕ(t + ω) − ϕ(t)∥ < ε).

Since φ is increasing function of real numbers and limφ(t) = +∞ as t → +∞, then there exists T > 0 such
that if t > T then φ(t) > T0

ε . We deduce so that

(∀ε > 0, ∃T ∈ R+,∀ t > T)⇒ (∥ϕ(φ(t) + ω) − ϕ(φ(t))∥ < ε).

Since ω ∈ S , we observe that

(∀ε > 0, ∃T ∈ R+,∀ t > T)⇒ (∥ϕ(φ(t + ω)) − ϕ(φ(t))∥ < ε).

We have showed that lim
t→∞

ϕ(φ(t + ω)) − ϕ(φ(t)) = 0. Therefore, we can write

(∀ε1/p > 0, ∃T > 0; t ≥ T)⇒ (∥ϕ(φ(t + ω)) − ϕ(φ(t))∥ < ε1/p).
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The function t 7→ ϕ(φ(t)) is measurable on R+. Then for t ≥ T, we have∫ t+1

t
∥ϕ(φ(s + ω)) − ϕ(φ(s))∥p ≤

∫ t+1

t
εds

≤ ε.

Therefore the function t 7→ ϕ(φ(t)) is S-asymptotically ω-periodic in the Stepanov sense.

Example 3.11. Let α ∈ R+ and fα : [0,∞[→ R by fα(t) = ln(α + t), t ∈ [0,∞[. Then for any ω > 0, fα is
S-asymptotically ω-periodic but is not asymptotically ω-periodic. In fact, since fα(t + ω) − fα(t) = ln(1 + ω

t+α ) then
fα ∈ SAPω(R+,R). We assume that fα ∈ APω(R+,R). Then there exist 1 ∈ Pω(R,R) and h ∈ C0(R+,R) such that
fα(t) = 1(t)+ h(t), t ∈ R+. Since 1(t) = fα(t)− h(t), we deduce so that limt→+∞ 1(t) = +∞. Show that for all t ∈ R+,
1(t) = 0. Let t0 ∈ R+ such that 1(t0) = c , 0. Let A > |c|. Then there exists T > 0 such that 1(t) > A for every t > T.
There exist n ∈N such that t0 + nω > T. Therefore 1(t0 + nω) > A > c. Since 1(t0 + nω) = 1(t0), then c > c.

Example 3.12. Let α ∈ R+ and lα : [0,∞[→ R by lα(t) =
√
α + t, t ∈ [0,∞[. Then for any ω > 0, lα is S-

asymptotically ω-periodic but is not asymptotically ω-periodic. In fact, since lα(t + ω) − lα(t) = ω
√
α+t+ω+

√
α+t

then
vα ∈ SAPω(R+,R). We show that lα < APω(R+,X) with the same method that in the last example.

Example 3.13. Let α > 0 and vα : [0,∞[→ R by vα(t) = 1
(t+α)n , t ∈ [0,∞[. Then for any ω > 0, lα is S-

asymptotically ω-periodic but is not asymptotically ω-periodic. We observe that

vα(t + ω) − vα(t) =
(t + α)n

− (t + α + ω)n

(t + α + ω)n(t + α)n

=
(t + α)n

−
∑n

k=0
(n

k
)
(t + α)n−kωk

(t + α + ω)n(t + α)n

=
−
∑n

k=1
(n

k
)
(t + α)n−kωk

(t + α + ω)n(t + α)n

= −

n∑
k=1

(n
k
)
ωk

(t + α + ω)n(t + α)k

and we deduce so that vα ∈ SAPω(R+,R). We show that lα < APω(R+,X) with the same method that in the remark
2.7 of [16].

Corollary 3.14. For all ω > 0, there exist an infinity of function in SAPω(R+,R) wich are not in APω(R+,R).

Proof. We have showed in the last examples that for all α > 0, fα, lα and vα are S-asymptotically ω-periodic
but are not asymptotically ω-periodic

Example 3.15. ([7],[8]) Let ω ∈ N∗ and f an asymptoticallly ω-periodic function (resp. S asymptoticallly ω-
periodic function). Then the function t → f ([t]) is an asymptoticallly ω-periodic function in the Stepanov sense
(resp.S asymptoticallly ω-periodic function in the Stepanov sense). We have in this example that φ(t) = [t] and
S =N∗.

Example 3.16. We consider S = αhN, where α > 0 and h > 0. We consider also

φ(t) = [
t
αh

]αh − iαh,

where i ∈ N. Let ω ∈ αhN. If f is an asymptoticallly ω-periodic function (resp. S asymptoticallly ω-periodic
function) then the function t 7→ f ([ t

αh ]αh − iαh.) is an asymptoticallly ω-periodic function in the Stepanov sense
(resp.S asymptoticallly ω-periodic function in the Stepanov sense) .
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Proof. The function φ(t) = [ t
αh ]αh − iαh is constant on every interval [nαh, (n + 1)αh[. Let s = αhn, where

n ∈N. We have

φ(t + s) = φ(t + αhn)

=
[ t + αhn

αh

]
αh − iαh

=
[ t
αh

]
αh − iαh + αhn

= φ(t) + s.

Now, show that the function φ is increasing. Assume that t0 < t1. If there exists n such that t0, t1 ∈ [nαh, (n+
1)αh[, then φ(t0) = φ(t1). Otherwise there are n0 and n1 such that t0 ∈ [n0αh, (n0+1)αh[, t1 ∈ [n1αh, (n1+1)αh[
with n0 < n1. Then φ(t0) = (n0 − i)αh, φ(t1) = (n1 − i)αh and φ(t0) < φ(t1).

Example 3.17. The article [16] shows that the function f : [0,∞[→ R by f (t) = e−t, t ∈ [0,∞[ is for any
ω > 0, S-asymptotically ω-periodic but is not asymptotically ω-periodic. Consider the function mc : [0,∞[→ R
by mc(t) = e−[ t

ω ]ω−c, where c is a real. Since f ∈ SAPω(R+,X), then mc ∈ SpSAPω(R+,X). The function mc
is not continuous in n, where n ∈ N. In fact, limt→ωn− mc(t) = e−(n−1)ω−c and limt→ωn+ mc(t) = e−nω−c. If
e−(n−1)ω−c = e−nω−c, then ω = 0. Then the function mc is a piecewise constinuous function and can’t belong to
SAPω(R+,R). We deduce that for all c ∈ R, the function mc is in SPSAPω(R+,R) but is not in SAPω(R+,R).

Example 3.18. The article [17] shows that the function f : [0,∞[→ R by f (t) = sin ln(t + 1), t ∈ [0,∞[ is for any
ω > 0, S-asymptotically ω-periodic but is not asymptotically ω-periodic. Consider now the function 1c : [0,∞[→ R
by 1c(t) = sin ln([ t

ω ]ω + c + 1),, where c is a real. Since f ∈ SAPω(R+,X), then 1c ∈ SpSAPω(R+,X). Show that
1c < SAPω(R+,X).
We observe that

lim
t→nω−

sin ln([
t
ω

]ω + c + 1) = sin ln((n − 1)ω + c + 1)

where n is an enteger and

lim
t→nω+

sin ln([
t
ω

]ω + c + 1) = sin ln(nω + c + 1).

we have that
sin ln((n − 1)ω + c + 1) = sin ln(nω + c + 1)

if and only if ln(nω+c+1) = ln((n−1)ω+c+1)+2Kπwith K ∈ Z or ln(nω+c+1) = π− ln((n−1)ω+c+1)+2K′π
with K′ ∈ Z.

First case: ln(nω + c + 1) = ln((n − 1)ω + c + 1) + 2Kπ with K ∈ Z .

If ln(nω+c+1) = ln((n−1)ω+c+1)+2Kπ then nω+c+1
(n−1)ω+c+1 = e2Kπ. Consider the following equation X+ω

X = e2Kπ. We
have that for allK ∈ Z∗, the equation X+ω

X = e2Kπ has an unique solution −ω
1−e2Kπ . For K = 0, the equation X+ω

X = e2Kπ

has not solution. For any enteger n0, we deduce that if c ∈ R/{ −ω1−e2Kπ − (n0 − 1)ω − 1,K ∈ Z∗} then for all K ∈ Z

ln(n0ω + c + 1) , ln((n0 − 1)ω + c + 1) + 2Kπ.

Second case:ln(nω + c + 1) = π − ln((n − 1)ω + c + 1) + 2K′π with K′ ∈ Z.

If ln(nω+c+1) = π− ln((n−1)ω+c+1)+2K′π then (nω+c+1)((n−1)ω+c+1) = eπ+2K′π. Consider the following
equation (X + ω)X = eπ+2K′π. We observe that the equation (X + ω)X = eπ+2K′π have two solutions −ω−

√

ω2+4eπ+2K′π

2

and −ω+
√

ω2+4eπ+2K′π

2 .

For any entger n0, we deduce that if for all K′ ∈ Z, c , −ω−
√

ω2+4eπ+2K′π

2 − (n0 − 1)ω − 1 and c , −ω+
√

ω2+4eπ+2K′π

2 −

(n0 − 1)ω − 1 then for all K′ ∈ Z

ln(n0ω + c + 1) , π − ln((n0 − 1)ω + c + 1) + 2K′π.
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Considering the first and second case, we deduce that if c is a real such that for all K ∈ Z∗ c , −ω
1−e2Kπ − (n0 − 1)ω − 1,

such that for all K′ ∈ Z c , −ω−
√

ω2+4eπ+2K′π

2 − (n0 − 1)ω − 1 and c , −ω+
√

ω2+4eπ+2K′π

2 − (n0 − 1)ω − 1 then

sin ln((n0 − 1)ω + c + 1) , sin ln(n0ω + c + 1).

Therefore for all real c such that for all K ∈ Z∗ c , −ω
1−e2Kπ − (n0 − 1)ω − 1, such that for all K′ ∈ Z c ,

−ω−
√

ω2+4eπ+2K′π

2 − (n0 − 1)ω − 1 and c , −ω+
√

ω2+4eπ+2K′π

2 − (n0 − 1)ω − 1 then the function 1c is not continuous
in ωn0. Therefore for all real c such that for all K ∈ Z∗ c , −ω

1−e2Kπ − (n0 − 1)ω − 1, such that for all K′ ∈ Z

c , −ω−
√

ω2+4eπ+2K′π

2 − (n0 − 1)ω − 1 and c , −ω+
√

ω2+4eπ+2K′π

2 − (n0 − 1)ω − 1 then 1c < SAPω(R+,X).

Example 3.19. Let α ∈ R+ and wα : [0,∞[→ R by wα(t) = ln(α + [ t
ω ]ω), t ∈ [0,∞[. We have that wα ∈

SpSAPω(R+,R). For all n ∈N, wα is not continuous in nω. Therefore wα < SAPω(R+,R).

Example 3.20. Let α ∈ R+ and qα : [0,∞[→ R by

qα(t) =

√
α + [

t
ω

]ω, t ∈ [0,∞[.

We have that qα ∈ SpSAPω(R+,R). For all n ∈N, qα is not continuous in nω. Therefore qα < SAPω(R+,R).

Corollary 3.21. For all ω > 0, there exist an infinity of function in SpSAPω(R+,R) wich are not in SAPω(R+,R).

Proof. For all α ∈ R+, wα and qα are in SpSAPω(R+,R) but are not in SAPω(R+,R).

Proposition 3.22. Let ω ∈ S and u ∈ SAPω(R+,X). We assume that for every (t, s) ∈ R× S, φ(t+ s) = φ(t)+ s and
that B is a linear bounded operator such that ∥B∥ , 0. Then the function t 7→ Bu(φ(t)) is S-asymptotically ω-periodic
in the Stepanov sense.

Proof. Since ϕ ∈ SAPω(R+,X), according to the proof of the proposition 3.10 we have:

(∀ε > 0, ∃T ∈ R+,∀ t > T)⇒ (∥ϕ(φ(t + ω)) − ϕ(φ(t))∥ < ε).

Let ε > 0. Since ε
∥B∥ > 0, then

(∃T1 ∈ R
+,∀ t > T1)⇒ (∥ϕ(φ(t + ω)) − ϕ(φ(t))∥ <

ε
∥B∥

).

Observing that
∥Bϕ(φ(t + ω)) − Bϕ(φ(t))∥ ≤ ∥B∥ ∥ϕ(φ(t + ω)) − ϕ(φ(t))∥,

we deduce so that if t > T1, then

∥Bϕ(φ(t + ω)) − Bϕ(φ(t))∥ < ∥B∥ ε
∥B∥

< ε

We have showed that lim
t→∞
||Bϕ(φ(t + ω)) − Bϕ(φ(t))|| = 0. Therefore, we can write:

(∀ε1/p > 0, ∃T > 0; t ≥ T)⇒ (∥Bϕ(φ(t + ω)) − Bϕ(φ(t))∥ < ε1/p).

The function t→ Bu(φ(t)) is measurable on R+. Then for t ≥ T, we have∫ t+1

t
||Bu(φ(s + ω)) − Bu(φ(s))||p ≤

∫ t+1

t
εds

≤ ε.

Therefore the function t 7→ Bu(φ(t)) is S-asymptotically ω-periodic in the Stepanov sense.
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Lemma 3.23. Let ω ∈ S. Assume that f ∈ SpAPω(R+ ×X,X) and assume that f satisfies a Lipschitz condition inX
uniformly in t ∈ R+:

∥ f (t, x) − f (t, y)∥ ≤ L∥x − y∥

for all x, y ∈ X and t ∈ R+, where L is a positive constant. We assume also that u ∈ APω(R+,X) and that for every
(t, s) ∈ R × S, φ(t + s) = φ(t) + rs, where r ∈ N∗. Furthermore limφ(t) = +∞ as t → +∞. Then the function
F : R+ → X defined by F(t) = f (t,u(φ(t))) is asymptotically ω-periodic in the Stepanov sense.

Proof. Since u ∈ APω(R+,X), we can write u = v + l, where v ∈ Pω(R+,X) and l ∈ C0(R+,X). The
function u(φ(t)) = v(φ(t)) + l(φ(t)) ∈ SpAPω(R+,X) according to the proposition 3.7. In particular, we
have t 7→ u(φ(t)) ∈ SpPω(R+,X) and t 7→ l(φ(t)) ∈ BSp

0(R+,X). By theorem 2.5, we obtain∫ t+1

t
∥u(φ(s + nω)) − v(φ(s))∥pds→ 0

as n→∞ pointwise on R+.
Denote K = {v(φ(t)) : t ∈ R+}; K is a bounded set. Since f is asymptotically ω-periodic in the Stepanov sense
uniformly on bounded sets of X, there exists a function 1 : R+ ×X→ X with 1(t, x) ∈ SpPω(R+,X) for each
x ∈ X such that for every bounded set K ⊂ Xwe have

( ∫ t+1

t
∥ f (s + nω, x) − 1(s, x)∥p

) 1
p
→ 0

as n→∞ pointwise on R+ uniformly for x ∈ K.
We observe that( ∫ t+1

t
∥ f (s + nω,u(φ(s + nω)) − 1(s, v(φ(s)))∥pds

) 1
p

≤

( ∫ t+1

t
∥ f (s + nω,u(φ(s + nω))) − f (s + nω, v(φ(s)))∥pds

) 1
p

+
( ∫ t+1

t
∥ f (s + nω, v(φ(s))) − 1(s, v(φ(s)))∥pds

) 1
p

≤ L
( ∫ t+1

t
∥u(φ(s + nω)) − v(φ(s))∥pds

) 1
p

+
( ∫ t+1

t
∥ f (s + nω, v(φ(s))) − 1(s, v(φ(s)))∥pds

) 1
p

Hence, we deduce so that ( ∫ t+1

t
∥ f (s + nω,u(φ(s + nω))) − 1(s, v(φ(s)))∥pds

) 1
p
→ 0

as n→∞ pointwise on R+. By Theorem 2.5, we deduce that F ∈ SpAPω(R+,X).

Lemma 3.24. Let ω ∈ S. Assume that f : R+ ×X → X is uniformly S-asymptotically ω-periodic on bounded sets
in the Stepanov sense and asymptotically uniformly continuous on bounded sets in the Stepanov sense.We assume
also that for every (t, s) ∈ R × S, φ(t + s) = φ(t) + s. Furthermore limφ(t) = +∞ as t→ +∞. Let u : R+ → X be a
function in SAPω(R+,X), and let v(t) = f (t,u(φ(t))). Then v ∈ SpSAPω(R+,X).

Proof. Set B =: R(u) = {u(φ(t)), t ≥ 0} ⊂ X.
Since f is uniformly S-asymptoticallyω-periodic on bounded sets in the Stepanov sense, there exist functions
1B ∈ BSp(R+,X) and hB ∈ BSp

0(R+,X) satisfying the properties involved in Definition 2.17 in relation with
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the set B = R(u).
The function v belongs to BSp(R+,X) because∫ t+1

t
∥v(τ)∥pdτ =

∫ t+1

t
∥ f (τ,u(φ(τ)))∥pdτ

≤

∫ t+1

t
∥1B(τ)∥pdτ

≤ sup
t≥0

( ∫ t+1

t
∥1B(τ)∥pdτ

)
.

Therefore
∥vb
∥L∞(R+,Lp) ≤ ∥1B∥Sp .

We have for all t ≥ 0 : ∫ t+1

t
∥ f (s + ω,u(φ(s + ω))) − f (s,u(φ(s + ω)))∥pds

≤

∫ t+1

t
∥hB(s)∥pds.

Note that hB ∈ BSp
0(R+,R); this implies that for ε > 0 there exist t′ε > 0 such that for all t ≥ t′ε we have∫ t+1

t
∥hB(s)∥pds ≤ εp/2.

Thus ∫ t+1

t
∥ f (s + ω,u(φ(s + ω)) − f (s,u(φ(s + ω)))∥pds

≤ εp/2 for all t ≥ t′ε(∗).

Furthermore since f is asymptotically uniformly continuous on bounded sets in the Stepanov sense, thus
for all ε > 0, there exists tε ≥ 0 and δε > 0 such that∫ t+1

t
∥ f (s,u(φ(s + ω)) − f (s,u(φ(s)))∥pds

≤ εp/2 for all t ≥ tε (∗∗)

because
∥u(φ(s + ω)) − u(φ(s))∥ ≤ δε.

The estimates (∗) and (∗∗) lead to∫ t+1

t
∥v(s + ω) − v(s)∥pds

=

∫ t+1

t
∥ f (s + ω,u(φ(s + ω))) − f (s,u(φ(s))∥pds

≤

∫ t+1

t
∥ f (s + ω,u(φ(s + ω))) − f (s,u(φ(s + ω)))∥pds

+

∫ t+1

t
∥ f (s,u(φ(s + ω))) − f (s,u(φ(s))∥pds

≤ εp/2 + εp/2 = εp.



William Dimbour, Vincent Valmorin / FAAC 16 (3) (2024), 21–37 33

Therefore for all ε > 0 there exists Tε =Max(tε, t′ε) > 0 such that for all t ≥ Tε we have

( ∫ t+1

t
∥v(s + ω) − v(s)∥pds

)1/p
≤ ε.

We conclude that v ∈ SpSAPω(R+,X).

Lemma 3.25. Let j ∈ {1, ...,N} and ω ∈ S j. We assume that the hypothesis (H1) and (H2j) are satisfied. We assume
that A j is a bounded linear operator. Then

(∧ j ϕ)(t) =
∫ t

0
T(t − s)A jϕ(φ j(s)ds

maps APω(R+,X) into itself.

Proof. According to the lemma 3.8, t→ A jϕ(φ j(t)) is an asymptotically ω-periodic function in the Stepanov
sense. Therefore, considering Lemma 2.23, we deduce so that the operator ∧ j maps APω(R+,X) into
itself.

Lemma 3.26. Let ω ∈ S. We assume also that the hypothesis (H1), (H4) and (H2N+1) are satisfied. Then

(∧ ϕ)(t) =
∫ t

0
T(t − s) f (s, ϕ(φN+1(s))ds

maps APω(R+,X) into itself.

Proof. According to the proposition (3.7), s → ϕN+1(φ(s)) is asymptotically ω-periodic function in the
Stepanov sense. According to the lemma 3.23, t→ f (t, ϕN+1(φ(t)) is an asymptoticallyω-periodic function in
the Stepanov sense.Therefore, considering Lemma (2.23), we deduce so that the operator∧maps APω(R+,X)
into itself.

Lemma 3.27. Let j ∈ {1, ...,N} and ω ∈ S j. We assume that the hypothesis (H1) and (H3j) are satisfied. We assume
that A j is a bounded linear operator. Then

(∧ j ϕ)(t) =
∫ t

0
T(t − s)A jϕ(φ j(s)ds

maps SAPω(R+,X) into itself.

Proof. According to Proposition (3.22), s → A jϕ(φ j(t)) is an S-asymptotically ω-periodic function in the
Stepanov sense. Therefore, considering Lemma (2.24), we deduce so that the operator∧ j maps SAPω(R+,X)
into itself.

Lemma 3.28. Let ω ∈ SN+1. We assume also that the hypothesis (H1), (H3N+1) and (H5) are satisfied. Then

(∧ ϕ)(t) =
∫ t

0
T(t − s) f (s, ϕ(φN+1(s))ds

maps SAPω(R+,X) into itself.

Proof. According to the proposition 3.10, s→ ϕ(φ(s) is S-asymptoticallyω-periodic function in the Stepanov
sense. According to the lemma 3.24, t → f (t, ϕN+1(φ(t)) is an S asymptotically ω-periodic function in the
Stepanov sense. Therefore, considering Lemma (2.24), we deduce so that the operator ∧maps SAPω(R+,X)
into itself.
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Theorem 3.29. Letω ∈ ∩N+1
j=1 S j and assume that the hypothesis (H1) and (H4) (resp. (H5)) are satisfied. We assume

also that for all j ∈ {1, ...,N + 1}, the hypothesis (H2j) (resp. (H3j)) are satisfied and that A j is a linear bounded
operator. Then (1) has a unique Asymptoticallyω-periodic (resp. S-Asymptoticallyω-periodic) mild solution provided

Θ :=
M
(∑N

j=0 ||A j||∞ + L
)

a
< 1.

Proof. We define the nonlinear operator Γ by the expression

(Γϕ)(t) = T(t)c0 +

N∑
j=1

∫ t

0
T(t − s)A j ϕ(φ j(s))ds

+

∫ t

0
T(t − s) f (s, ϕ(φN+1(s)))ds

= T(t)c0 +

N∑
j=1

(∧ jϕ)(t) + (∧ϕ)(t).

Here the operators ∧ j and ∧ are defined as

(∧ jϕ)(t) =
∫ t

0 T(t − s)A j ϕ(φ j(s))ds
and

(∧ϕ)(t) =
∫ t

0 T(t − s) f (s, ϕ(φN+1(s)))ds.

According to the hypothesis (H.1), we have ||T(t)|| ≤Me−at and therefore lim
t→∞
||T(t)|| = 0.

It follows from lemma 3.23 that the function t→ f (t, ϕ(φ(t))) belongs to SpAPω(R+,X). Finally Lemma 3.26

shows that the operator ∧maps APω(R+,X) into itself. Similarly, considering Lemma 3.25, we deduce that
for all j ∈ {1, ...,N}, the operators ∧ j map APω(R+,X) into itself. Therefore the operator Γmaps APω(R+),X
into itself.
According to the lemma 3.24 the function t→ f (t, ϕ(φ(t))) belongs to SpSAPω(R+,X). According to Lemma
3.28 the operator ∧ maps SAPω(R+,X) into itself. Similarly, considering Lemma 3.27, we deduce that for
all j ∈ {1, ...,N}, the operators ∧ j maps SAPω(R+,X) into itself. Therefore the operator Γmaps SAPω(R+,X)
into itself.
Now we have

||(Γϕ)(t) − Γψ)(t)|| ≤

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

N∑
j=1

∫ t

0
T(t − s)A j

(
ϕ(φ j(s)) − ψ(φ j(s))

)
ds

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
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+

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ t

0
T(t − s)

(
f (s, ϕ(φN+1(s))) − f (s, ψ(φN+1(s)))

)
ds

∣∣∣∣∣∣
∣∣∣∣∣∣

≤

N∑
j=0

∫ t

0
||T(t − s)|| ||A j|| ||ϕ(φ j(s)) − ψ(φ j(s))||ds

+

∫ t

0
||T(t − s)|| || f (s, ϕ(φN+1(s))) − f (s, ψ(φN+1(s)))||ds

≤

N∑
j=0

||A j||∞M
∫ t

0
e−a(t−s)

||ϕ(φ j(s)) − ψ(φ j(s))||ds

+ LM
∫ t

0
e−a(t−s)

||ϕ(φN+1(s)) − ψ(φN+1(s))||ds

≤

N∑
j=0

||A j||∞M
∫ t

0
e−a(t−s)

||ϕ − ψ||∞ds

+ LM
∫ t

0
e−a(t−s)

||ϕ − ψ||∞ds

≤

N∑
j=0

∥A j∥∞M
1 − e−at

a
∥ϕ − ψ∥∞ + LM

1 − e−at

a
∥ϕ − ψ∥∞

≤

M
(∑N

j=0 ∥A j∥∞ + L
)

a
∥ϕ − ψ∥∞.

Hence we have :
∥Γϕ − Γψ∥∞ ≤ ∥ϕ − ψ∥∞

which proves that Γ is a contraction and we conclude that Γ has a unique fixed point in APω (resp. SAPω).
The proof is complete.

4. Application

Consider the following heat equation with Dirichlet conditions:{
∂u(t,x)
∂t =

∂2u(t,x)
∂x2 − 2u(t, x) + αu(φ1(t), x) + f (t,u(φ2(t), x)),

u(t, 0) = u(t, π) = 0, t ∈ R.
(4)

where f satisfies the hypothesis (H4) (resp. (H5)). We assume also that for j = 1, 2, the hypotheses (H2j)
(resp.(H3j) are satisfied.
Take X = L2[0, π] with norm ∥ · ∥ and inner product (·, ·)2. Define

D(A) = {u(·) ∈ X : u′′ ∈ X,u′ ∈ Xis absolutely continuous on

[0, π],u(0) = u(π) = 0}

and A : D(A) ⊂ X→ X by

Au =
∂2u(x)
∂x2 − 2u

It is well known that A is self-adjoint, with compact resolvent and is the infinitesimal generator of an
analytic semigroup {T(t)}t≥0 on X satisfying

∥T(t)∥ ≤ e−3t for t > 0,



William Dimbour, Vincent Valmorin / FAAC 16 (3) (2024), 21–37 36

see [14]. Then (4) can be reformulated as the asbtract problem (1). φ1 is subject to the functional relation
φ1(t + s) = φ1(t) + s; (t, s) ∈ R × S, where S is a subset of R. Considering Theorem 3.29, we claim that

Theorem 4.1. If L + |α| < 3 then the equation (4) admits a unique mild solution u(t) ∈ APω(R+) (resp. u(t) ∈
SAPω(R+)).
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