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Some coupled fixed point results under contractive type conditions in
cone Sb-metric spaces
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Abstract. The goal of this paper is to prove some coupled fixed point results under contractive type
conditions in the setting of cone Sb-metric spaces. Also, we provide some consequences of the main results.
Furthermore, we give an illustrative example in support of the established result. Our results extend the
results of Sabetghadam et al. [18] (Fixed Point Theory Appl., Volume 2009, Article ID 125426, 8 pages) from
cone metric space to the setting of cone Sb-metric space.

1. Introduction

In 1922, the Polish mathematician Stephen Banach [3] established an important metric fixed point result
regarding a contraction mapping, known as the Banach contraction principle (in short BCP). This principle
is considered as one of the most remarkable results in analysis. It confirms the existence and uniqueness
of fixed point of certain self-maps on metric spaces. This result (BCP) has been generalized in various
directions. There is a great number of generalization of the Banach contraction principle. The underlying
metric space can be generalized in many ways. Bakhtin in [2] introduced the concept of b-metric spaces
as a generalization of metric spaces. He proved the contraction mapping principle in b-metric spaces that
generalized the well-known Banach contraction mapping principle in metric spaces. Huang and Zhang [8]
in 2007 introduced the concept of cone metric space by replacing the set of real numbers by a general Banach
space E which is partially ordered with respect to a cone P ⊂ E and proved some fixed point theorems for
contractive mappings in normal cone metric space.

In 2011, Hussain and Shah [9] introduced the concept of cone b-metric space as a generalization of
b-metric space and cone metric spaces. Also they improved some recent results about KKM mappings in
cone b-metric spaces. In the meantime, Guo and Lakshmikantham [7] introduced the concept of coupled
fixed point. Bhaskar and Lakshmikantham [4] introduced coupled fixed point for partially ordered metric
spaces. Later, a lot of authors such as Ciric and Lakshmikantham [5], Olaleru et al. [14], Samet [22], Loung
and Thuan [13] give different generalization of these theorems.

In 2009, Sabetghadam et al. [18] considered the corresponding definition of coupled fixed point for
mappings on cone metric spaces and established some coupled fixed point theorems.
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In 2011, Aydi [1] proved some coupled fixed point theorems via various contractive type conditions in
the setting of partial metric spaces. Recently, in the context of partial metric spaces, Kim et al. [11] proved
some general coupled fixed point theorems for weak compatible mappings (see, also [10], [20], [21]).

On the other hand, Sedghi et al. [23] generalized metric space to S-metric space. In addition, he has
proved that the results of d-metric spaces can be derived from SMS results if we consider d(u, v) = S(u,u, v).
Souayah and Mlaiki [27] introduced the concept of Sb-metric space. Dhamodharan and Krishnakumar [6]
also further extended S-metric space to cone S-metric space. In 2018, K. Anthony Singh and M. R. Singh
[25] generalized the notion of cone S-metric space to cone Sb-metric space and proved some fixed point
theorems. Recently, Saluja [19] proved some fixed point results under contractive type mappings in the
setting of cone Sb-metric spaces.

Motivated by the works of Sabetghadam et al. [18], we extend the results of [18] by defining coupled
fixed point to mappings on cone Sb-metric space and prove some coupled fixed point theorems on said
space. The results obtained in this paper extend and generalize several results from the existing literature.
Also, an example is given to validate the established result.

2. Preliminaries

The following definitions and properties will be needed in the sequel.

Definition 2.1. (see [8]) Let E be a real Banach space and P be a subset of E. Then P is called a cone if and only if
the following conditions hold:

(C1) P is closed, nonempty and P , {0};
(C2) a r + b s ∈ P for all r, s ∈ P where a, b are nonnegative real numbers;
(C3) P ∩ (−P) = {0}.

Definition 2.2. (see [8]) Let P be a cone in real Banach spaceE, we define a partial ordering ≤ inEwith respect to P
by a ≤ b⇔ b − a ∈ P. We shall write r < s to indicate that r ≤ s but r , s, while r≪ s will stand for s − r ∈ int (P).

Remark 2.3. (see [29]) If int (P) , ∅, then P is called a solid cone.

Definition 2.4. (see [8]) The cone P is called normal if there is a number K > 0 such that for all r, s ∈ P, 0 ≤ r ≤ s
implies ∥r∥ ≤ K∥s∥.

The least positive number K satisfying the inequality ∥r∥ ≤ K∥s∥ is called the normal constant of cone.
The cone P is called regular if every increasing sequence which is bounded from above is convergent,

that is, if {rn} is a sequence such that r1 ≤ r2 ≤ · · · ≤ rn ≤ · · · ≤ s for some s ∈ E, then there is r ∈ E such that
∥rn − r∥ → 0 as n → ∞. Equivalently, the cone P is regular if and only if every decreasing sequence which
is bounded from below is convergent. It is well known that a regular cone is a normal cone. Suppose E is
a Banach space, P is a cone in Ewith int(P) , ∅ and ≤ is partial ordering in Ewith respect to P.

Example 2.5. (see [12]) Let K > 1 be given. Consider the real vector space

E =
{
a r + b : a, b ∈ R; r ∈

[
1 −

1
K
, 1
]}

with supremum norm and the cone

P =
{
a r + b ∈ E : a ≥ 0, b ≥ 0

}
in E. The cone P is regular and so normal.

Definition 2.6. (see [8, 30]) Let Ξ , ∅ be a set. Suppose that the mapping d : Ξ × Ξ→ E satisfies:
(CM1) 0 ≤ d(p1, p2) for all p1, p2 ∈ Ξ with p1 , p2 and d(p1, p2) = 0 ⇔ p1 = p2;
(CM2) d(p1, p2) = d(p2, p1) for all p1, p2 ∈ Ξ;
(CM3) d(p1, p2) ≤ d(p1, p3) + d(p3, p2) for all p1, p2, p3 ∈ Ξ.
Then d is called a cone metric [8] on Ξ and (Ξ, d) is called a cone metric space [8] or simply CMS.
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The concept of a cone metric space is more general than that of a metric space, because each metric space
is a cone metric space where E = R and P = [0,+∞).

Lemma 2.7. (see [17]) Every regular cone is normal.

Example 2.8. (see [8]) Let E = R2, P = {(p1, p2) ∈ R2 : p1 ≥ 0, p2 ≥ 0}, Ξ = R and d : Ξ × Ξ → E defined by
d(p1, p2) = (|p1 − p2|, α|p1 − p2|), where α ≥ 0 is a constant. Then (Ξ, d) is a cone metric space with normal cone P
where K = 1.

Example 2.9. (see [16]) Let E = ℓ2, P = {{rn}n≥1 ∈ E : rn ≥ 0, for all n}, (Ξ,D) a metric space, and d : Ξ × Ξ→ E
defined by d(p1, p2) = {D(p1, p2)/2n

}n≥1. Then (Ξ, d) is a cone metric space.

Clearly, the above examples show that the class of cone metric spaces contains the class of metric spaces.

Definition 2.10. (see [15, 23]) LetΞ , ∅ be a set and S : Ξ3
→ [0,∞) be a function satisfying the following conditions

for all p1, p2, p3, t ∈ Ξ:
(S1) S(p1, p2, p3) ≥ 0;
(S2) S(p1, p2, p3) = 0 if and only if p1 = p2 = p3;
(S3) S(p1, p2, p3) ≤ S(p1, p1, t) + S(p2, p2, t) + S(p3, p3, t).
Then the function S is called an S-metric on Ξ and the pair (Ξ, S) is called an S-metric space or simply SMS.

Example 2.11. (1) (see [28]) Let Ξ be a nonempty set and d be the ordinary metric on Ξ. Then S(p1, p2, p3) =
d(p1, p3) + d(p2, p3) is an S-metric on Ξ.

(2) (see [23]) Let Ξ = Rn and ∥.∥ a norm on Ξ, then S(p1, p2, p3) = ∥p2+ p3− 2p1∥+ ∥p2− p3∥ is an S-metric on Ξ.
(3) (see [23]) Let Ξ = Rn and ∥.∥ a norm on Ξ, then S(p1, p2, p3) = ∥p1 − p3∥ + ∥p2 − p3∥ is an S-metric on Ξ.

Definition 2.12. (see [27]) Let Ξ be a nonempty set and b ≥ 1 be a given real number. A function Sb : Ξ3
→ [0,∞)

is said to be Sb-metric on Ξ if and only if for all u, v, z,m ∈ Ξ, the following conditions are satisfied:
(Sb1) Sb(u, v, z) = 0 if and only if u = v = z;
(Sb2) Sb(u, v, z) ≤ b

[
Sb(u,u,m) + Sb(v, v,m) + Sb(z, z,m)

]
.

The pair (Ξ, Sb) is called an Sb-metric space.

Remark 2.13. Note that the class of Sb-metric spaces is larger than the class of S-metric spaces. Indeed every S-metric
space is an Sb-metric space with b = 1. But, the converse need not be always true.

Example 2.14. (see [24]) Let (Ξ, S) be an S-metric space and S∗(u, v, z) =
{
S(u, v, z)

}p
, where p > 1 is a real number.

Then S∗ is an Sb-metric on Ξ with b = 22(p−1).

Example 2.15. (see [25]) Let Ξ = R and let the function S : Ξ3
→ R be defined as S(u, v, z) = |u− z|+ |v− z|. Then

S is an S-metric on Ξ. Therefore, the function Sb(u, v, z) =
{
S(u, v, z)

}2
=
{
|u− z|+ |v− z|

}2
is an Sb-metric on Ξ with

b = 22(2−1) = 4.

Definition 2.16. (see [6]) Suppose that E is a real Banach space, P is a cone in E with intP , ∅ and ≤ is partial
ordering with respect to P. Let Ξ be a nonempty set and let the function S : Ξ3

→ E satisfy the following conditions:
(CS1) S(u, v, z) ≥ 0;
(CS2) S(u, v, z) = 0 ⇔ u = v = z;
(CS3) S(u, v, z) ≤ S(u,u,m) + S(v, v,m) + S(z, z,m),∀u, v, z,m ∈ Ξ.

Then the function S is called a cone S-metric on Ξ and the pair (Ξ, S) is called a cone S-metric space or
simply CSMS.
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Example 2.17. (see [6]) Let E = R2, P = {(p1, p2) ∈ R2 : p1, p2 ≥ 0}, Ξ = R and d be the ordinary metric on Ξ.
Then the function S : Ξ3

→ E defined by S(u, v, z) =
(
d(u, z) + d(v, z), α(d(u, z) + d(v, z))

)
, where α > 0 is a cone

S-metric on Ξ.

Lemma 2.18. (see [6]) Let (Ξ, S) be a cone S-metric space. Then we have S(u,u, v) = S(v, v,u).

K. Anthony Singh and M. R. Singh [25] (2018) introduced the notion of cone Sb-metric space as follows:

Definition 2.19. (see [25]) Suppose that E is a real Banach space, P is a cone in E with intP , ∅ and ≤ is partial
ordering in E with respect to P. Let Ξ be a nonempty set and let the function S : Ξ3

→ E satisfy the following
conditions:

(CSb1) S(u1,u2,u3) ≥ 0;
(CSb2) S(u1,u2,u3) = 0 ⇔ u1 = u2 = u3;
(CSb3) S(u1,u2,u3) ≤ b

[
S(u1,u1, r) + S(u2,u2, r) + S(u3,u3, r)

]
;

for all u1,u2,u3, r ∈ Ξ, where b ≥ 1 is a constant. Then the function S is called a cone Sb-metric on Ξ and the
pair (Ξ,S) is called a cone Sb-metric space or simply CSbMS.

We note that cone Sb-metric spaces are generalizations of cone S-metric spaces since every cone S-metric
space is a cone Sb-metric space with b = 1.

Example 2.20. (see [25]) Let E = R2, the Euclidean plane and P = {(r, s) ∈ R2 : r, s ≥ 0}, a normal cone in E. Let
Ξ = R and S : Ξ3

→ E be such that S(u, v,w) =
(
α S0(u, v,w), β S0(u, v,w)

)
, where α, β > 0 are constants and S0 is

an Sb-metric on Ξ. Then S is a cone Sb-metric on Ξ.

In particular, the function S0(u, v,w) =
{
|u−w|+ |v−w|

}2
for all u, v,w ∈ Ξ is an Sb-metric on Ξwith b = 4.

Therefore, the function S(u, v,w) =
[(
|u − w| + |v − w|

)2
, 1

4

(
|u − w| + |v − w|

)2]
for all u, v,w ∈ Ξ is a cone

Sb-metric on Ξwith b = 4.

Definition 2.21. (see [25]) Let (Ξ,S) be a cone Sb-metric space.
(i) A sequence {un} in Ξ converges to u ∈ Ξ if and only if S(un,un,u)→ 0 as n→∞, that is, there exists n0 ∈ N

such that for all n ≥ n0, S(un,un,u)≪ ε for each ε ∈ E with 0≪ ε. We denote this by limn→∞ un = u or un → u as
n→∞.

(ii) A sequence {un} in Ξ is called a Cauchy sequence if S(un,un,um) → 0 as n,m → ∞, that is, there exists
n0 ∈ N such that for all n,m ≥ n0, S(un,un,um)≪ ε for each ε ∈ E with 0≪ ε.

(iii) The cone Sb-metric space (Ξ,S) is called complete if every Cauchy sequence is convergent.

Lemma 2.22. (see [25]) Let (Ξ,S) be a cone Sb-metric space, P be a normal cone with normal constant K. Then a
sequence {un} in Ξ converges to u if and only if S(un,un,u)→ 0 as n→∞.

Lemma 2.23. (see [25]) Let (Ξ,S) be a cone Sb-metric space, P be a normal cone with normal constant K. Let {un} be
a sequence in Ξ. If the sequence {un} converges to u1 and u2, then u1 = u2, that is, the limit of a convergent sequence
is unique.

Lemma 2.24. (see [25]) Let (Ξ,S) be a cone Sb-metric space, P be a normal cone with normal constant K. Then a
sequence {un} in Ξ is a Cauchy sequence if and only if S(un,un,um)→ 0 as n,m→∞.

Lemma 2.25. (see [25]) Let (Ξ,S) be a cone Sb-metric space, P be a normal cone with normal constant K. Let {un}

be a sequence in Ξ. If the sequence {un} converges to u, then {un} is a Cauchy sequence, that is, every convergent
sequence is a Cauchy sequence.

Lemma 2.26. (see [26]) Let (Ξ,S) be a cone Sb-metric space. Then we have
(1) S(u,u, v) ≤ bS(v, v,u),
(2) S(u,u, v) ≤ 2bS(u,u,m) + bS(v, v,m) ≤ 2bS(u,u,m) + b2

S(m,m, v) for all u, v,m ∈ Ξ.
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3. Main Results

Now, we are in a position to state and prove our main results.
First, we give the corresponding definition of coupled fixed point in cone Sb.metric space.

Definition 3.1. (see [1]) An element (u, v) ∈ Ξ×Ξ is said to be a coupled fixed point of the mapping f : Ξ×Ξ→ Ξ
if f (u, v) = u and f (v,u) = v.

Example 3.2. Let Ξ = [0,+∞) and f : Ξ × Ξ→ Ξ defined by f (u, v) = u+v
3 for all u, v ∈ Ξ. One can easily see that

f has a unique coupled fixed point (0, 0).

Example 3.3. Let Ξ = [0,+∞) and f : Ξ × Ξ→ Ξ defined by f (u, v) = u+v
2 for all u, v ∈ Ξ. Then we see that f has

two coupled fixed point (0, 0) and (1, 1), that is, the coupled fixed point is not unique.

Theorem 3.4. Let (Ξ,S) be a complete cone Sb-metric space with b ≥ 1 andP be a normal cone with normal constant
K. Suppose that the mapping F : Ξ × Ξ→ Ξ satisfies the following contractive condition:

S(F(p, q),F(p, q),F(u, v)) ≤ δH(p, q,u, v), (1)

where

H(p, q,u, v) = max
{
S(p, p,u),S(F(p, q),F(p, q), p),S(F(p, q),F(p, q),u),

S(F(u, v),F(u, v),u)
}
,

for all p, q,u, v ∈ Ξ and δ ∈
(
0, 1

b

)
is a constant. Then F has a unique coupled fixed point.

Proof. Let us take x0, y0 ∈ Ξ be arbitrary points and set

p1 = F(p0, q0), q1 = F(q0, p0), . . . , pn+1 = F(pn, qn), qn+1 = F(qn, pn).

If pn0 = pn0+1, qn0 = qn0+1 for some n0 ∈N, then

pn0 = pn0+1 = F(pn0 , qn0 ), qn0 = qn0+1 = F(qn0 , pn0 ).

Thus, (pn0 , qn0 ) is a coupled fixed point of F.
Now, we assume that either pn , pn+1 = F(pn, qn) or qn , qn+1 = F(qn, pn) for all n ∈N. Then, we have

S(F(pn−1, qn−1),F(pn−1, qn−1),F(pn, qn)) = S(pn, pn, pn+1) > 0, or
S(F(qn−1, pn−1),F(qn−1, pn−1),F(qn, pn)) = S(qn, qn, qn+1) > 0,

for all n ∈ N. Let Gn = S(pn, pn, pn+1) and Hn = S(qn, qn, qn+1). Then from equation (1) and using Lemma
2.26, we obtain

Gn = S(pn, pn, pn+1) = S(F(pn−1, qn−1),F(pn−1, qn−1),F(pn, qn))
≤ δH(pn−1, qn−1, pn, qn), (2)

where

H(pn−1, qn−1, pn, qn) = max
{
S(pn−1, pn−1, pn),S(F(pn−1, qn−1),F(pn−1, qn−1), pn−1),

S(F(pn−1, qn−1),F(pn−1, qn−1), pn),S(F(pn, qn),F(pn, qn), pn)
}

= max
{
S(pn−1, pn−1, pn),S(pn, pn, pn−1),S(pn, pn, pn),

S(pn+1, pn+1, pn)
}

= max
{
S(pn−1, pn−1, pn), bS(pn−1, pn−1, pn), 0, bS(pn, pn, pn+1)

}
= max

{
S(pn−1, pn−1, pn), bS(pn−1, pn−1, pn), bS(pn, pn, pn+1)

}
= max{Gn−1, bGn−1, bGn}.
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Now, we have the following cases.
Case(a) If max{Gn−1, bGn−1, bGn} = b Gn, then from equation (2), we obtain

Gn ≤ bδGn,

which is a contradiction, since δ < 1/b and b ≥ 1.
Case(b) If max{Gn−1, bGn−1, bGn} = b Gn−1, then from equation (2), we obtain

Gn ≤ bδGn−1, (3)

for all n ∈N.
Case(c) If max{Gn−1, bGn−1, bGn} = Gn−1, then from equation (2), we obtain

Gn ≤ δGn−1, (4)

for all n ∈N.
If we take β = max{bδ, δ}, then β < 1 since b ≥ 1 and δ < 1/b. Hence from equations (3) and (4), we obtain

Gn ≤ βGn−1, (5)

for all n ∈N.
Continuing in the same way, we obtain

0 ≤ Gn ≤ βGn−1 ≤ β
2 Gn−2 ≤ · · · ≤ β

nG0, (6)

for all n ∈N.
Similarly, one can obtain

0 ≤ Hn ≤ βHn−1 ≤ β
2 Hn−2 ≤ · · · ≤ β

nH0, (7)

for all n ∈N.
Let Ln = Gn +Hn, then from equations (6) and (7), we get

0 ≤ Ln ≤ βLn−1 ≤ β
2 Ln−2 ≤ · · · ≤ β

nL0, (8)

for all n ∈N.
If L0 = 0, then (p0, q0) is a coupled fixed point F. So, we assume that L0 > 0.
Then for any n,m ∈Nwith m > n, using Lemma 2.26 and condition (CSb3), we have

S(pn, pn, pm) ≤ b
[
2S(pn, pn, pn+1) + S(pm, pm, pn+1)

]
≤ 2bS(pn, pn, pn+1) + b2

S(pn+1, pn+1, pm)

≤ 2bS(pn, pn, pn+1) + 2b3
S(pn+1, pn+1, pn+2)

+ b4
S(pn+2, pn+2, pm)

≤ 2bS(pn, pn, pn+1) + 2b3
S(pn+1, pn+1, pn+2)

+ 2b5
S(pn+2, pn+2, pn+3) + . . .

+ b2(m−n−1)
S(pm−1, pm−1, pm)

≤ 2b
{
S(pn, pn, pn+1) + b2

S(pn+1, pn+1, pn+2)

+ b4
S(pn+2, pn+2, pn+3) + . . .

+ b2(m−n−1)
S(pm−1, pm−1, pm)

}
.
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Similarly, we have

S(qn, qn, qm) ≤ 2b
{
S(qn, qn, qn+1) + b2

S(qn+1, qn+1, qn+2)

+ b4
S(qn+2, qn+2, qn+3) + . . .

+ b2(m−n−1)
S(qm−1, qm−1, qm)

}
.

Therefore, we have

S(pn, pn, pm) + S(qn, qn, qm) ≤ 2b
{
S(pn, pn, pn+1) + S(qn, qn, qn+1)

+ b2[S(pn+1, pn+1, pn+2) + S(qn+1, qn+1, qn+2)] + . . .

+ b2(m−n−1)[S(pm−1, pm−1, pm) + S(qm−1, qm−1, qm)]
}

= 2b
{
Ln + b2Ln+1 + b4Ln+2 + · · · + b2(m−n−1)Lm−1

}
≤ 2b
{
βn + b2βn+1 + b4βn+2 + · · · + b2(m−n−1)βm−1

}
L0

≤ 2bβn
{
1 + b2β + b4β2 + · · · + b2(m−n−1)βm−n−1

}
L0

= 2bβn
{
1 + b2β + (b2β)2 + · · · + (b2β)m−n−1

}
L0

≤

( 2bβn

1 − b2β

)
L0.

This implies that

∥S(pn, pn, pm) + S(qn, qn, qm)∥ ≤
( 2bβnK
1 − b2β

)
∥L0∥ → 0 as n,m→∞,

since 0 < β < 1. Again, the above inequality implies that

S(pn, pn, pm)→ 0 and S(qn, qn, qm)→ 0 as n,m→∞.

This shows that {pn} and {qn} are Cauchy sequences in Ξ. Since by hypothesis (Ξ,S) is complete Sb-metric
space, so their exist p1, q1 ∈ Ξ such that pn → p1 and qn → q1 as n → ∞. Now, we show that (p1, q1) is a
coupled fixed point of F.

For this, using inequality (1), Lemma 2.26 and condition (CSb3), we have

S(F(p1, q1),F(p1, q1), p1) ≤ 2bS(F(p1, q1),F(p1, q1), pn+1) + bS(p1, p1, pn+1)
= 2bS(F(p1, q1),F(p1, q1),F(pn, qn)) + bS(p1, p1, pn+1)
≤ 2bδH(p1, q1, pn, qn) + bS(p1, p1, pn+1), (9)

where

H(p1, q1, pn, qn) = max
{
S(p1, p1, pn),S(F(p1, q1),F(p1, q1), p1),

S(F(p1, q1),F(p1, q1), pn),S(F(pn, qn),F(pn, qn), p1)
}

= max
{
S(p1, p1, pn),S(p1, p1, p1),S(p1, p1, pn),S(pn+1, pn+1, p1)

}
= max

{
S(p1, p1, pn), 0,S(p1, p1, pn),S(pn+1, pn+1, p1)

}
,

taking the limit as n→∞, we get

H(p1, q1, pn, qn)→ 0 as n→∞.
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Using this in inequality (9), we obtain

S(F(p1, q1),F(p1, q1), p1) ≤ 2bδ.0 + bS(p1, p1, pn+1)
= bS(p1, p1, pn+1).

This implies that

∥S(F(p1, q1),F(p1, q1), p1)∥ ≤ Kb∥S(p1, p1, pn+1)∥
→ 0 as n→∞.

Hence

∥S(F(p1, q1),F(p1, q1), p1)∥ = 0.

Thus,S(F(p1, q1),F(p1, q1), p1) = 0 and so F(p1, q1) = p1. Similarly, we can show that F(q1, p1) = q1. This shows
that (p1, q1) is a coupled fixed point of F.

Now, we show the uniqueness of the coupled fixed point of F. Assume that (p2, q2) is another coupled
fixed point of F such that (p1, q1) , (p2, q2). Then using equation (1) and Lemma 2.26, we have

S(p1, p1, p2) = S(F(p1, q1),F(p1, q1),F(p2, q2))
≤ δH(p1, q1, p2, q2), (10)

where

H(p1, q1, p2, q2) = max
{
S(p1, p1, p2),S(F(p1, q1),F(p1, q1), p1),

S(F(p1, q1),F(p1, q1), p2),S(F(p2, q2),F(p2, q2), p1)
}

= max
{
S(p1, p1, p2),S(p1, p1, p1),S(p1, p1, p2),S(p2, p2, p1)

}
= max

{
S(p1, p1, p2), 0,S(p1, p1, p2), bS(p1, p1, p2)

}
= max

{
S(p1, p1, p2), bS(p1, p1, p2)

}
.

The following two cases arise. If max
{
S(p1, p1, p2), bS(p1, p1, p2)

}
= bS(p1, p1, p2), then from equation (10),

we obtain

S(p1, p1, p2) ≤ bδS(p1, p1, p2),

which is a contradiction, since δ < 1/b and b ≥ 1.
Again, if max

{
S(p1, p1, p2), bS(p1, p1, p2)

}
= S(p1, p1, p2), then from equation (10), we obtain

S(p1, p1, p2) ≤ δS(p1, p1, p2),

which is again a contradiction, since δ < 1/b and b ≥ 1. Thus in both the cases, we get a contradiction.
Hence, we conclude that S(p1, p1, p2) = 0 and so by condition (CSb2), p1 = p2. By similar fashion, we can
show that q1 = q2. Consequently, (p1, q1) is the unique coupled fixed point of F.

Remark 3.5. Theorem 3.4 extends and generalizes the results of Sabetghadam et al. [18] from cone metric space to
the setting of cone Sb-metric space.

If we take

max
{
S(p, p,u),S(F(p, q),F(p, q), p),S(F(p, q),F(p, q),u),S(F(u, v),F(u, v),u)

}
= S(p, p,u)

in Theorem 3.4, then we have the following result.
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Corollary 3.6. Let (Ξ,S) be a complete cone Sb-metric space with b ≥ 1 andP be a normal cone with normal constant
K. Suppose that the mapping F : Ξ × Ξ→ Ξ satisfies the following contractive condition:

S(F(p, q),F(p, q),F(u, v)) ≤ δS(p, p,u), (11)

for all p, q,u, v ∈ Ξ and δ ∈ (0, 1/b) is a constant. Then F has a unique coupled fixed point.

Theorem 3.7. Let (Ξ,S) be a complete cone Sb-metric space with b ≥ 1 andP be a normal cone with normal constant
K. Suppose that the mapping F : Ξ × Ξ→ Ξ satisfies the following contractive condition:

S(F(p, q),F(p, q),F(u, v)) ≤ A(p, q,u, v), (12)

where

A(p, q,u, v) = c1S(p, p,u) + c2S(q, q, v) + c3S(F(p, q),F(p, q), p)
+c4S(F(p, q),F(p, q),u) + c5S(F(u, v),F(u, v),u)
+c6S(F(u, v),F(u, v), p),

for all p, q,u, v ∈ Ξ and c1, c2, c3, c4, c5, c6 are nonnegative constants such that c1 + c2 + c3b + c5b + c6b(2b + b2) < 1.
Then F has a unique coupled fixed point.

Proof. Let x0, y0 ∈ Ξ be arbitrary points and set

p1 = F(p0, q0), q1 = F(q0, p0), . . . , pn+1 = F(pn, qn), qn+1 = F(qn, pn).

Assume that pn , pn+1. Then from equation (12) and using Lemma 2.26 and condition (CSb3), we obtain

S(pn, pn, pn+1) = S(F(pn−1, qn−1),F(pn−1, qn−1),F(pn, qn))
≤ A(pn−1, qn−1, pn, qn), (13)

where

A(pn−1, qn−1, pn, qn) = c1S(pn−1, pn−1, pn) + c2S(qn−1, qn−1, qn)
+c3S(F(pn−1, qn−1),F(pn−1, qn−1), pn−1)
+c4S(F(pn−1, qn−1),F(pn−1, qn−1), pn)
+c5S(F(pn, qn),F(pn, qn), pn)
+c6S(F(pn, qn),F(pn, qn), pn−1)

= c1S(pn−1, pn−1, pn) + c2S(qn−1, qn−1, qn)
+c3S(pn, pn, pn−1) + c4S(pn, pn, pn)
+c5S(pn+1, pn+1, pn) + c6S(pn+1, pn+1, pn−1)

= c1S(pn−1, pn−1, pn) + c2S(qn−1, qn−1, qn)
+c3bS(pn−1, pn−1, pn) + c5bS(pn, pn, pn+1)
+c6bS(pn−1, pn−1, pn+1)

= (c1 + c3b)S(pn−1, pn−1, pn) + c5bS(pn, pn, pn+1)
+c6b[b(2S(pn−1, pn−1, pn) + bS(pn, pn, pn+1))]
+c2S(qn−1, qn−1, qn)

= (c1 + c3b + 2c6b2)S(pn−1, pn−1, pn)
+(c5b + c6b3)S(pn, pn, pn+1) + c2S(qn−1, qn−1, qn).

Using this in equation (13), we obtain

S(pn, pn, pn+1) ≤ (c1 + c3b + 2c6b2)S(pn−1, pn−1, pn) + (c5b + c6b3) ×
S(pn, pn, pn+1) + c2S(qn−1, qn−1, qn). (14)
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By similar fashion, we can have

S(qn, qn, qn+1) ≤ (c1 + c3b + 2c6b2)S(qn−1, qn−1, qn) + (c5b + c6b3) ×
S(qn, qn, qn+1) + c2S(pn−1, pn−1, pn). (15)

From equations (14) and (15), we obtain

S(pn, pn, pn+1) + S(qn, qn, qn+1) ≤ (c1 + c3b + 2c6b2)[S(pn−1, pn−1, pn) + S(qn−1, qn−1, qn)]
+(c5b + c6b3)[S(pn, pn, pn+1) + S(qn, qn, qn+1)]
+c2[S(pn−1, pn−1, pn) + S(qn−1, qn−1, qn)]. (16)

Let

ξn = S(pn, pn, pn+1) + S(qn, qn, qn+1).

Then from equation (16), we obtain

ξn ≤ (c1 + c3b + 2c6b2)ξn−1 + (c5b + c6b3)ξn + c2ξn−1.

This implies that

ξn ≤

(c1 + c2 + c3b + 2c6b2

1 − c5b − c6b3

)
ξn−1

= M ξn−1, (17)

for all n ∈N, where M =
(

c1+c2+c3b+2c6b2

1−c5b−c6b3

)
< 1, since by assumption c1 + c2 + c3b + c5b + c6b(2b + b2) < 1.

Continuing in the same way, we obtain

ξn ≤Mξn−1 ≤M2ξn−2 ≤ · · · ≤Mnξ0, (18)

for all n ∈N.
If ξ0 = 0, then (p0, q0) is a coupled fixed point F. So, we assume that ξ0 > 0.
Then for any n,m ∈ N with m > n, using Lemma 2.26 and condition (CSb3) , we obtain as in Theorem

3.4 that

S(pn, pn, pm) ≤ 2b
{
S(pn, pn, pn+1) + b2

S(pn+1, pn+1, pn+2)

+ b4
S(pn+2, pn+2, pn+3) + . . .

+ b2(m−n−1)
S(pm−1, pm−1, pm)

}
.

Similarly, we have

S(qn, qn, qm) ≤ 2b
{
S(qn, qn, qn+1) + b2

S(qn+1, qn+1, qn+2)

+ b4
S(qn+2, qn+2, qn+3) + . . .

+ b2(m−n−1)
S(qm−1, qm−1, qm)

}
.

Therefore, we have

S(pn, pn, pm) + S(qn, qn, qm) ≤
( 2bMn

1 − b2M

)
ξ0.

This implies that

∥S(pn, pn, pm) + S(qn, qn, qm)∥ ≤
( 2bMnK
1 − b2M

)
∥ξ0∥ → 0 as n,m→∞,
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since 0 <M < 1. Again, the above inequality implies that

S(pn, pn, pm)→ 0 and S(qn, qn, qm)→ 0 as n,m→∞.

This shows that {pn} and {qn} are Cauchy sequences in Ξ. Since by hypothesis (Ξ,S) is complete Sb-metric
space, so their exist s1, t1 ∈ Ξ such that pn → s1 and qn → t1 as n → ∞. Now, we show that (s1, t1) is a
coupled fixed point of F.

For this, using inequality (12), Lemma 2.26, conditions (CSb2) and (CSb3), we have

S(F(s1, t1),F(s1, t1), s1) ≤ 2bS(F(s1, t1),F(s1, t1), pn+1) + bS(s1, s1, pn+1)
= 2bS(F(s1, t1),F(s1, t1),F(pn, qn)) + bS(s1, s1, pn+1)
≤ 2bA(s1, t1, pn, qn) + bS(s1, s1, pn+1), (19)

where

A(s1, t1, pn, qn) = c1S(s1, s1, pn) + c2S(t1, t1, qn) + c3S(F(s1, t1),F(s1, t1), s1)
+c4S(F(s1, t1),F(s1, t1), pn) + c5S(F(pn, qn),F(pn, qn), pn)
+c6S(F(pn, qn),F(pn, qn), s1)

= c1S(s1, s1, pn) + c2S(t1, t1, qn) + c3S(F(s1, t1),F(s1, t1), s1)
+c4S(F(s1, t1),F(s1, t1), pn) + c5S(pn+1, pn+1, pn)
+c6S(pn+1, pn+1, s1),

taking the limit as n→∞, we get

A(s1, t1, pn, qn) = (c3 + c4)S(F(s1, t1),F(s1, t1), s1).

Using this in equation (19), we get

S(F(s1, t1),F(s1, t1), s1) ≤ 2b(c3 + c4)S(F(s1, t1),F(s1, t1), s1)
+bS(s1, s1, pn+1). (20)

Taking the limit as n→∞ in equation (20) and using condition (CSb2), we get

S(F(s1, t1),F(s1, t1), s1) ≤ 2b(c3 + c4)S(F(s1, t1),F(s1, t1), s1),

which is a contradiction, since 2b(c3 + c4) < 1. Hence, we conclude that S(F(s1, t1),F(s1, t1), s1) = 0 and so
F(s1, t1) = s1. Likewise, we can prove that F(t1, s1) = t1. Thus, (s1, t1) is a coupled fixed point of F.

Now, we show that the uniqueness of coupled fixed point. For this, assume that (s2, t2) is another coupled
fixed point of F such that (s1, t1) , (s2, t2). Now, from equation (12) and using Lemma 2.26, conditions (CSb2)
and (CSb3), we have

S(s1, s1, s2) = S(F(s1, t1),F(s1, t1),F(s2, t2))
≤ A(s1, t1, s2, t2), (21)

where

A(s1, t1, s2, t2) = c1S(s1, s1, s2) + c2S(t1, t1, t2) + c3S(F(s1, t1),F(s1, t1), s1)
+c4S(F(s1, t1),F(s1, t1), s2) + c5S(F(s2, t2),F(s2, t2), s2)
+c6S(F(s2, t2),F(s2, t2), s1)

= c1S(s1, s1, s2) + c2S(t1, t1, t2) + c3S(s1, s1, s1)
+c4S(s1, s1, s2) + c5S(s2, s2, s2) + c6S(s2, s2, s1)

= (c1 + c4)S(s1, s1, s2) + c6bS(s1, s1, s2) + c2S(t1, t1, t2)
= (c1 + c4 + c6b)S(s1, s1, s2) + c2S(t1, t1, t2).
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Using this in equation (21), we obtain

S(s1, s1, s2) ≤ (c1 + c4 + c6b)S(s1, s1, s2) + c2S(t1, t1, t2). (22)

By similar fashion, one can show that

S(t1, t1, t2) ≤ (c1 + c4 + c6b)S(t1, t1, t2) + c2S(s1, s1, s2). (23)

From equations (22) and (23), we obtain

S(s1, s1, s2) + S(t1, t1, t2) ≤ (c1 + c4 + c6b)[S(s1, s1, s2) + S(t1, t1, t2)]
+c2[S(s1, s1, s2) + S(t1, t1, t2)]

= (c1 + c2 + c4 + c6b)[S(s1, s1, s2) + S(t1, t1, t2)],

which is a contradiction, since c1 + c2 + c4 + c6b < 1. Hence, we conclude that S(s1, s1, s2) + S(t1, t1, t2) = 0.
Thus, S(s1, s1, s2) = 0 and S(t1, t1, t2) = 0 and so s1 = s2 and t1 = t2. Hence (s1, t1) is the unique coupled fixed
point of F. This completes the proof.

Remark 3.8. Theorem 3.7 also extends and generalizes the results of Sabetghadam et al. [18] from cone metric space
to the setting of cone Sb-metric space.

If we take c1 = k, c2 = l and c3 = c4 = c5 = c6 = 0 in Theorem 3.7, then we have the following result.

Corollary 3.9. Let (Ξ,S) be a complete cone Sb-metric space with b ≥ 1 andP be a normal cone with normal constant
K. Suppose that the mapping F : Ξ × Ξ→ Ξ satisfies the following contractive condition:

S(F(p, q),F(p, q),F(u, v)) ≤ kS(p, p,u) + lS(q, q, v), (24)

for all p, q,u, v ∈ Ξ, where k, l are nonnegative constants such that k+ l < 1. Then F has a unique coupled fixed point.

Remark 3.10. Corollary 3.9 extends Theorem 2.2 of Sabetghadam et al. [18] from cone metric space to the setting of
cone Sb-metric space.

If we take k = l = m, where m ∈ [0, 1
2 ) in Corollary 3.9, then we have the following result.

Corollary 3.11. Let (Ξ,S) be a complete cone Sb-metric space with b ≥ 1 and P be a normal cone with normal
constant K. Suppose that the mapping F : Ξ × Ξ→ Ξ satisfies the following contractive condition:

S(F(p, q),F(p, q),F(u, v)) ≤ m [S(p, p,u) + S(q, q, v)], (25)

for all p, q,u, v ∈ Ξ, where m ∈ [0, 1
2 ) is a constant. Then F has a unique coupled fixed point.

Remark 3.12. Corollary 3.11 extends Corollary 2.3 of Sabetghadam et al. [18] from cone metric space to the setting
of cone Sb-metric space.

If we take c1 = c2 = c4 = c6 = 0, c3 = k and c5 = l in Theorem 3.7, then we have the following result.

Corollary 3.13. Let (Ξ,S) be a complete cone Sb-metric space with b ≥ 1 and P be a normal cone with normal
constant K. Suppose that the mapping F : Ξ × Ξ→ Ξ satisfies the following contractive condition:

S(F(p, q),F(p, q),F(u, v)) ≤ kS(F(p, q),F(p, q), p) + lS(F(u, v),F(u, v),u), (26)

for all p, q,u, v ∈ Ξ, where k, l are nonnegative constants such that k + l ∈ (0, 1
b ). Then F has a unique coupled fixed

point.

Remark 3.14. Corollary 3.13 extends Theorem 2.5 of Sabetghadam et al. [18] from cone metric space to the setting
of cone Sb-metric space.
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If we take c1 = c2 = c3 = c5 = 0, c4 = k and c6 = l in Theorem 3.7, then we have the following result.

Corollary 3.15. Let (Ξ,S) be a complete cone Sb-metric space with b ≥ 1 and P be a normal cone with normal
constant K. Suppose that the mapping F : Ξ × Ξ→ Ξ satisfies the following contractive condition:

S(F(p, q),F(p, q),F(u, v)) ≤ kS(F(p, q),F(p, q),u) + lS(F(u, v),F(u, v), p), (27)

for all p, q,u, v ∈ Ξ, where k, l are nonnegative constants such that k + l ∈ [0, 1
b2(2+b) ). Then F has a unique coupled

fixed point.

Remark 3.16. Corollary 3.15 extends Theorem 2.6 of Sabetghadam et al. [18] from cone metric space to the setting
of cone Sb-metric space.

Remark 3.17. Our results also generalize the results of Singh and Singh [26] for more general contractive conditions.

If we set k = l = n, where n ∈ [0, 1
2b ) in Corollary 3.13, then we have the following result.

Corollary 3.18. Let (Ξ,S) be a complete cone Sb-metric space with b ≥ 1 and P be a normal cone with normal
constant K. Suppose that the mapping F : Ξ × Ξ→ Ξ satisfies the following contractive condition:

S(F(p, q),F(p, q),F(u, v)) ≤ n [S(F(p, q),F(p, q), p) + S(F(u, v),F(u, v),u)], (28)

for all p, q,u, v ∈ Ξ, where n ∈ [0, 1
2b ) is a constant. Then F has a unique coupled fixed point.

Remark 3.19. Corollary 3.18 extends Corollary 2.7 of Sabetghadam et al. [18] from cone metric space to the setting
of cone Sb-metric space.

If we set k = l = h, where h ∈ [0, 1
2b2(2+b) ) in Corollary 3.15, then we have the following result.

Corollary 3.20. Let (Ξ,S) be a complete cone Sb-metric space with b ≥ 1 and P be a normal cone with normal
constant K. Suppose that the mapping F : Ξ × Ξ→ Ξ satisfies the following contractive condition:

S(F(p, q),F(p, q),F(u, v)) ≤ h [S(F(p, q),F(p, q),u) + S(F(u, v),F(u, v), p)], (29)

for all p, q,u, v ∈ Ξ, where h ∈ [0, 1
2b2(2+b) ) is a constant. Then F has a unique coupled fixed point.

Remark 3.21. Corollary 3.20 extends Corollary 2.8 of Sabetghadam et al. [18] from cone metric space to the setting
of cone Sb-metric space.

Now, we illustrate an example in support of the result.

Example 3.22. Let E = R2, the Euclidean plane, P = {(u, v) ∈ R2 : u, v ≥ 0} a normal cone in E. Let Ξ = R and
the function S : Ξ3

→ E defined by S(u, v, z) =
(
|u − z| + |v − z|, |u − z| + |v − z|

)
for all u, v, z ∈ Ξ. Then (Ξ,S)

is a cone Sb-metric space with coefficient b = 1 and (Ξ,S) is a complete cone Sb-metric space. Now, we consider the
mapping F : Ξ × Ξ→ Ξ by F(u, v) = u+v

5 for all u, v ∈ Ξ. Let p, q,u, v ∈ Ξ. Then, we have

S(F(p, q),F(p, q),F(u, v)) = S

(p + q
5
,

p + q
5
,

u + v
5

)
=
(∣∣∣∣p + q

5
−

u + v
5

∣∣∣∣ + ∣∣∣∣p + q
5
−

u + v
5

∣∣∣∣,∣∣∣∣p + q
5
−

u + v
5

∣∣∣∣ + ∣∣∣∣p + q
5
−

u + v
5

∣∣∣∣)
=

2
5

(
|p + q − u − v|, |p + q − u − v|

)
≤

2
5

(
(|p − u|, |p − u|) + (|q − v|, |q − v|)

)
.
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S(p, p,u) =
(
|p − u| + |p − u|, |p − u| + |p − u|

)
= 2(|p − u|, |p − u|).

S(q, q, v) =
(
|q − v| + |q − v|, |q − v| + |q − v|

)
= 2(|q − v|, |q − v|).

And

S(p, p,u) + S(q, q, v) = 2[(|p − u|, |p − u|) + (|q − v|, |q − v|)].

Hence

S(F(p, q),F(p, q),F(u, v)) ≤
2
5

(
(|p − u|, |p − u|) + (|q − v|, |q − v|)

)
=

1
5

[
2
(
(|p − u|, |p − u|) + (|q − v|, |q − v|)

)]
= m

(
S(p, p,u) + S(q, q, v)

)
,

where m = 1
5 ∈ [0, 1

2 ). Thus all the conditions of Corollary 3.11 are satisfied. Hence by Corollary 3.11, F has a unique
coupled fixed point. In this case, (0, 0) is the unique coupled fixed point.

4. Conclusion

In this paper, we prove some coupled fixed point theorems via contractive type conditions in the
framework of complete cone Sb-metric spaces. Furthermore, we provide some consequences as corollaries
of the established results. Also, an illustrative example is given in support of the established result. The
results obtained in this paper extend, unify and generalize several results from the existing literature (see,
for example, [18], [26] and many others).
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