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ρ-Almost periodic ultradistributions in Rn
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Abstract. In this paper, we introduce and analyze ρ-almost periodic type ultradistributions in Rn

with values in complex Banach spaces. We investigate the basic properties of ρ-almost periodic type
ultradistributions and provide some structural results about them.

1. Introduction and preliminaries

The class of almost periodic functions was introduced by the Danish mathematician H. Bohr around
1924-1926 and later generalized by many other authors (see the research monographs [3], [8], [9], [11], [15],
[16] and [22] for further information concerning almost periodic functions and their applications). Suppose
that (X, ∥ · ∥) is a complex Banach space and F : Rn → X is a continuous function (n ∈ N). Then we say
that the function F (·) is almost periodic if for each ϵ > 0 there exists l > 0 such that for each t0 ∈ Rn there
exists τ ∈ B(t0, l) ≡ {t ∈ Rn : |t− t0| ≤ l} with∥∥F (t+ τ)− F (t)

∥∥ ≤ ϵ, t ∈ Rn;

here, | · − · | denotes the Euclidean distance in Rn and τ is usually called an ϵ-almost period of F (·). Any
trigonometric polynomial in Rn is almost periodic and a continuous function F (·) is almost periodic if and
only if there exists a sequence of trigonometric polynomials in Rn which converges uniformly to F (·).

The notion of a bounded distribution and the notion an almost periodic distribution were introduced in
the pioneering papers by L. Schwartz (see, e.g., [26]), where the author analyzed the scalar-valued case. The
bounded and almost periodic distributions with values in general Banach spaces were introduced by I. Cio-
ranescu in [6] (1990); see also [1]-[2]. Further on, the class of scalar-valued almost periodic ultradistributions
was introduced by I. Cioranescu [7] (1992) and the class of vector-valued almost periodic ultradistributions
was introduced in [18] (2018).

In this paper, we consider various classes of ρ-almost periodic type ultradistributions in Rn; for more
details about one-dimensional almost periodic ultradistributions, we also refer the reader to the list of
references quoted in [15]. In such a way, we continue the research study of ρ-almost periodic type distributions
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in Rn (see [21] for more details in this direction) as well as the research studies [19] and [20] (a joint work
with S. Pilipović, D. Velinov and V. Fedorov), where we have analyzed some classes of one-dimensional
c-almost periodic (ultra-)distributions.

Concerning our topic, we would like to recall that the scalar-valued almost periodic ultradistributions in
Rn was analyzed by M.C. Gómez-Collado in [10] within the theory of ω-ultradistributions (2000); further-
more, all structural results established in [10] holds in the vector-valued setting. The main result of this
research article, [10, Theorem 4.2], holds for the almost periodic ultradistributions of (Mp)-class and the
almost periodic ultradistributions of {Mp}-class, provided that (Mp) is a sequence of positive real numbers
satisfying M0 = 1 as well as the conditions (M.1), (M.2) and (M.3) clarified below. Our main results are
formulated within the Komatsu theory of ultradistributions, in the concrete situation in which the sequence
(Mp) does not necessarily satisfy (M.3) but a slightly weaker condition (M.3’).

We need the following notion (cf. [17, Definition 2.1.1] and [17, Section 2.1] for more details about Bohr
(I ′, ρ)-almost periodic type functions):

Definition 1.1. Suppose that ∅ ≠ I ′ ⊆ Rn, ∅ ≠ I ⊆ Rn, F : I → X is a continuous function, ρ is a binary
relation on X and I + I ′ ⊆ I. Then we say that:

(i) F (·; ·) is Bohr (I ′, ρ)-almost periodic if and only if for every ϵ > 0 there exists l > 0 such that for each
t0 ∈ I ′ there exists τ ∈ B(t0, l) ∩ I ′ such that, for every t ∈ I, there exists an element yt ∈ ρ(F (t))
such that∥∥F (t+ τ)− yt

∥∥ ≤ ϵ.

(ii) F (·; ·) is (I ′, ρ)-uniformly recurrent if and only if there exists a sequence (τk) in I
′ such that

limk→+∞ |τk| = +∞ and that, for every t ∈ I, there exists an element yt ∈ ρ(F (t)) such that

lim
k→+∞

sup
t∈I

∥∥F (t+ τk)− yt
∥∥ = 0.

Denote by API′,ρ(I : X) [URI′,ρ(I : X)] the collection of all Bohr (I ′, ρ)-almost periodic functions
[(I ′, ρ)-uniformly recurrent functions]; if I ′ = I, then we omit the term “I ′” from the notation and, if ρ = I,
which stands for the identity operator on X here and hereafter, then we omit the term “ρ” from the notation.

1.1. Vector-valued ultradistributions

Let (Mp) be a sequence of positive real numbers satisfying M0 = 1 and the following conditions:

(M.1): M2
p ≤Mp+1Mp−1, p ∈ N,

(M.2): Mp ≤ AHp sup0≤i≤pMiMp−i, p ∈ N, for some A, H > 1,

(M.3’):
∑∞

p=1
Mp−1

Mp
<∞.

Any use of the condition

(M.3): supp∈N
∑∞

q=p+1
Mq−1Mp+1

pMpMq
<∞,

which is slightly stronger than (M.3′), will be explicitly emphasized. If s > 1, then we know that the Gevrey
sequence (p!s) satisfies the above conditions. The space of Beurling, resp., Roumieu ultradifferentiable

functions, is defined by D(Mp)(Rn) := indlimK⋐⋐RnD(Mp)
K , resp., D{Mp}(Rn) := indlimK⋐⋐RnD{Mp}

K , where

D(Mp)
K := projlimh→∞DMp,h

K , resp., D{Mp}
K := indlimh→0D

Mp,h
K ,

DMp,h
K :=

{
ϕ ∈ C∞(Rn) : suppϕ ⊆ K, ∥ϕ∥Mp,h,K <∞

}
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and

∥ϕ∥Mp,h,K := sup

{
h|α||ϕ(α)(t)|

M|α|
: t ∈ K, α ∈ Nn

0

}
.

The asterisk ∗ is used to denote both, the Beurling case (Mp) or the Roumieu case {Mp}. The space
consisted of all continuous linear functions from D∗(Rn) into X, denoted by D′∗(Rn : X), is said to be the
space of n-dimensional X-valued ultradistributions of ∗-class.

We say that the operator of infinite differentiation P (D) =
∑

α∈Nn
0
aαD

α is an ultradifferential operator

of class (Mp), resp., of class {Mp}, if there exist l > 0 and C > 0, resp., for every l > 0 there exists a
constant C > 0, such that |aα| ≤ Cl|α|/M|α|, α ∈ Nn

0 ; see [12] for further information. We introduce the
space E∗(Rn : X) and the convolution of an n-dimensional X-valued ultradistribution of ∗-class and an
n-dimensional scalar-valued ultradifferentiable function in the same way as on pages 671 and 685 in [14]. If
T ∈ D′∗(Rn : X) and φ ∈ D∗(Rn), then we define (T ∗ φ)(t) := ⟨T, φ(t − ·)⟩, t ∈ Rn; then we know that
T ∗ φ ∈ E∗(Rn : X). Set also ⟨Tt, φ⟩ := ⟨T, φ(· − t)⟩ for t ∈ Rn.

The tempered ultradistributions of Beurling, resp., Roumieu type, are defined by S. Pilipović [25] as
duals of the corresponding test spaces

S(Mp)(Rn) := projlimh→∞SMp,h(Rn), resp., S{Mp}(Rn) := indlimh→0SMp,h(Rn),

where

SMp,h(Rn) :=
{
ϕ ∈ C∞(Rn) : ∥ϕ∥Mp,h <∞

}
(h > 0),

∥ϕ∥Mp,h := sup

{
h|α|+|β|

M|α|M|β|
(1 + |t|2)|β|/2|ϕ(α)(t)| : t ∈ Rn, α, β ∈ Nn

0

}
.

A continuous linear mapping S(Mp)(Rn) → X, resp., S{Mp}(Rn) → X, is said to be an n-dimensional
X-valued tempered ultradistribution of Beurling, resp., Roumieu type.

For any h > 0, we define

DL1

(
Rn, (Mp), h

)
:=

{
f ∈ C∞(Rn : X) ; f (α) ∈ L1(Rn : X) for all α ∈ Nn

0 and

∥f∥1,h := sup
α∈Nn

0

h|α|∥f (α)∥1
M|α|

<∞

}
,

where ∥ · ∥1 denotes the norm in L1(Rn). Then (DL1(Rn, (Mp), h), ∥ · ∥1,h) is a Banach space and the space
of all n-dimensional X-valued bounded Beurling ultradistributions of class (Mp), resp., n-dimensional X-
valued bounded Roumieu ultradistributions of class {Mp}, is defined as the space consisting of all linear
continuous mappings from DL1(Rn, (Mp)), resp., DL1(Rn, {Mp}), into X, where

DL1

(
Rn, (Mp)

)
:= projlimh→+∞DL1

(
Rn, (Mp), h

)
,

resp.,

DL1

(
Rn, {Mp}

)
:= indlimh→0+DL1

(
Rn, (Mp), h

)
.

We can simply prove that the statement of [7, Lemma 1] continues to hold in the higher-dimensional setting,
even if the condition (M.3) is neglected; see also [10, Proposition 2.4]. Furthermore, we can simply prove
that the restriction of any n-dimensional X-valued bounded ultradistribution of ∗-class to the space S∗(Rn)
is an n-dimensional X-valued tempered ultradistribution of ∗-class.
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For our further work, we will introduce the following spaces of vector-valued bounded ultradistributions
of ∗-class. For any h > 0, we define

DL1

(
Rn, (Mp), h, s

)
:=

{
f ∈ C∞(Rn : X) ; sup

s∈B(·,1)

∣∣∣f (α)(s)∣∣∣ ∈ L1(Rn : X) for all α ∈ Nn
0 and

∥f∥1,h,s := sup
α∈Nn

0

h|α|
∣∣∣sups∈B(·,1)

∣∣f (α)(s)∣∣∣∣∣
1

M|α|
= sup

α∈Nn
0

h|α|
∫
Rn

∣∣∣sups∈B(x,1)

∣∣f (α)(s)∣∣∣∣∣ dx
M|α|

<∞

}
.

Then (DL1(Rn, (Mp), h, s), ∥ · ∥1,h,s) is a Banach space which is continuously embedded into
(DL1(Rn, (Mp), h), ∥ ·∥1,h) for all h > 0. The space of all n-dimensional X-valued strongly bounded Beurling
ultradistributions of class (Mp), resp., n-dimensional X-valued strongly bounded Roumieu ultradistributions
of class {Mp}, is defined as the space consisting of all linear continuous mappings from DL1(Rn, (Mp), s),
resp., DL1(Rn, {Mp}, s), into X, where

DL1

(
Rn, (Mp), s

)
:= projlimh→+∞DL1

(
Rn, (Mp), h, s

)
,

resp.,

DL1

(
Rn, {Mp}, s

)
:= indlimh→0+DL1

(
Rn, (Mp), h, s

)
.

As above, we assume that these spaces are equipped with the strong topologies; we denote them by
D′

L1(Rn, (Mp), s : X) and D′
L1(Rn, {Mp}, s : X), respectively. It is completely without scope of this pa-

per to further analyze the topological properties and the structural theorems for the spaces DL1(Rn, ∗, s)
and their duals here; cf. also [24]. We will only note that a very simple argumentation shows that S∗(Rn)
is a linear subspace of DL1(Rn, ∗, s).

The space of all continuous linear mappings from DL1(Rn, ∗) into X, equipped with the topology of
unform convergence over bounded subsets of DL1(Rn, ∗, s), will be denoted by D′

L1,s(R
n, ∗ : X). This space

is locally convex since the family of seminorms (supφ∈B ∥⟨·, φ⟩∥)B∈Bd, where Bd denotes the collection of
all bounded subsets of D′

L1(Rn, ∗, s : X), satisfies the conditions 1. and 2. from [23, Lemma 22.4], as easily
approved; cf. also [23, Lemma 22.5]. It is not clear whether the spaces D′

L1,s(R
n, ∗ : X) and D′

L1(Rn, ∗) are
topologically equivalent.

We refer the reader to [12]-[14] for more details about the theory of ultradistributions.

2. Multi-dimensional ρ-almost periodic type ultradistributions in Rn

We start this section by introducing the following notion (cf. [21, Definition 2.1] for the distributional
analogue):

Definition 2.1. Suppose that I ′ ⊆ Rn, ρ is a binary relation on X and T ∈ D′∗(Rn : X). Then we say
that T is an (I ′, ρ)-almost periodic ultradistribution of ∗-class [(I ′, ρ)-uniformly recurrent ultradistribution
of ∗-class], if T ∗ φ ∈ API′,ρ(Rn : X) for all φ ∈ D∗(Rn) [T ∗ φ ∈ URI′,ρ(Rn : X) for all φ ∈ D∗(Rn)].
If I ′ = I and ρ = I, then we also say that T is an almost periodic ultradistribution of ∗-class [uniformly
recurrent ultradistribution of ∗-class].

It is clear that the structural characterizations of Bohr (I ′, ρ)-almost periodic functions [(I ′, ρ)-uniformly
recurrent functions] can be used to provide certain results about (I ′, ρ)-almost periodic ultradistributions
of ∗-class [(I ′, ρ)-uniformly recurrent ultradistributions of ∗-class]. For example, using [17, Corollary 2.1.4],
we can immediately clarify the following result:

Proposition 2.2. Suppose that I ′ ⊆ Rn and ρ : X → X. If T is an (I ′, ρ)-almost periodic ultradistribution
of ∗-class [(I ′, ρ)-uniformly recurrent ultradistribution of ∗-class], then T is an (I ′ − I ′, I)-almost periodic
ultradistribution of ∗-class [(I ′ − I ′, I)-uniformly recurrent ultradistribution of ∗-class].
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We will omit such results in the sequel. Now we will reconsider the result established in [21, Theorem
2.2]:

Theorem 2.3. Suppose that ρ = A ∈ L(X), ∅ ≠ I ′ ⊆ Rn, there exist an integer k ∈ N and (I ′, A)-almost
periodic ((I ′, A)-uniformly recurrent) functions Fj : Rn → X (0 ≤ j ≤ k) such that the function

t 7→ F (t) ≡
(
F0(t), · · ·, Fk(t)

)
, t ∈ Rn (2.1)

is (I ′, Ak+1)-almost periodic ((I ′, Ak+1)-uniformly recurrent), where Ak+1 ∈ L(Xk+1) is given by
Ak+1(x0, x1, ..., xk) := (Ax0, Ax1, ..., Axk), (x0, x1, ..., xk) ∈ Xk+1. Set

T :=

k∑
j=0

∑
α∈Nn

0

aα,jF
(α)
j

and suppose that there exist l > 0 and C > 0, resp., for every l > 0 there exists a constant C > 0, such that
|aα,j | ≤ Cl|α|/M|α| for all α ∈ Nn

0 and 0 ≤ j ≤ k. Then T is an (I ′, ρ)-almost periodic ultradistribution of
∗-class [(I ′, ρ)-uniformly recurrent ultradistribution of ∗-class].

Proof. We will provide all details of proof in the case of consideration of (I ′, ρ)-almost periodic ultradistri-
bution of Beurling class. First of all, [14, Theorem 7.7] implies that T ∈ D′∗(Rn : X); further on, for each
φ ∈ D∗(Rn) and t ∈ Rn we have:

(T ∗ φ)(t) = ⟨T, φ(t− ·)⟩ =
k∑

j=0

∑
α∈Nn

0

∫
Rn

φ(α)(t− v)Fj(v) dv

=

k∑
j=0

∑
α∈Nn

0

∫
Rn

φ(α)(v)Fj(t− v) dv.

Let ε > 0 be given. Then there exists l > 0 such that for each t0 ∈ I ′ there exists τ ∈ B(t0, l) ∩ I ′ such
that, for every t ∈ Rn, we have∥∥Fj(t+ τ)−AFj(t)∥Y ≤ ϵ, 0 ≤ j ≤ k.

Supopose that φ ∈ D∗(Rn) and suppφ ⊆ K. Then there exists h > l such that∫
Rn

∣∣∣φ(α)(v)
∣∣∣ dv =

∫
K

∣∣∣φ(α)(v)
∣∣∣ dv ≤ m(K)∥φ∥Mp,h,K

M|α|

h|α|
, α ∈ Nn

0 .

Therefore, for every t ∈ Rn, we have:

∥(T ∗ φ)(t+ τ)−A(T ∗ φ)(t)∥

≤
k∑

j=0

∑
α∈Nn

0

∫
Rn

∣∣∣φ(α)(v)
∣∣∣ · ∥∥Fj(t+ τ − v)−AFj(t− v)

∥∥ dv
≤ ε

k∑
j=0

∑
α∈Nn

0

l|α|

M|α|

∫
Rn

∣∣∣φ(α)(v)
∣∣∣ dv ≤

k∑
j=0

∑
α∈Nn

0

l|α|

M|α|
m(K)∥φ∥Mp,h,K

M|α|

h|α|
,

which simply implies the required statement.

As already mentioned in the introductory part, if the sequence (Mp) additionally satisfies (M.3), A = I
and T is an almost periodic ultradistribution of ∗-class, then there exist two almost periodic functions
F : Rn → X, G : Rn → X and an ultradifferential operator P (D) of ∗-class such that T = P (D)F + G;
see the formulation of [10, Theorem 4.2] and the statements of [10, Corollary 2.6] and [24, Lemma 5], which
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are the main auxiliary results needed for the proof of this result. Unfortunately, it is not clear how one can
prove an analogue of this result for c-almost periodic ultradistributions of ∗-class (i.e., ρ-almost periodic
ultradistributions of ∗-class with ρ = cI for some c ∈ C \ {0}); see also [19, p. 18] for more details given in
the one-dimensional setting.

Suppose now that I ′ = I and ρ = I. Then the requirements of Theorem 2.3 imply that the following
condition holds:

(BC) The set of all translations {Tt : t ∈ Rn} is relatively compact in D′
L1(Rn, ∗).

Furthermore, the validity of (BC) implies that T is an almost periodic ultradistribution of ∗-class; see the
proofs of [7, Theorem 2] and [10, Theorem 4.2].

Define now

E∗
I′,ρ,AP (Rn : X) := E∗(Rn : X

)
∩API′,ρ

(
Rn : X

)
and

E∗
I′,ρ,UR(Rn : X) := E∗(Rn : X

)
∩ URI′,ρ

(
Rn : X

)
.

If φ : Rn → C, then we define φ̌(x) := φ(−x), x ∈ Rn; furthermore, by (e1, ..., en) we denote the standard
basis of Rn. We continue by stating the following result:

Theorem 2.4. Suppose that T is an n-dimensional X-valued bounded ultradistribution of ∗-class, I ′ ⊆ Rn,
ρ is a binary relation on X, D(ρ) is a closed subset of Y and ρ is continuous in the following sense:

(Cρ) For each ϵ > 0 there exists δ > 0 such that, for every y1, y2 ∈ Y with ∥y1 − y2∥Y < δ, we have
∥z1 − z2∥Y < ϵ/3 for every z1 ∈ ρ(y1) and z2 ∈ ρ(y2).

Then T is an (I ′, ρ)-almost periodic ultradistribution of ∗-class [(I ′, ρ)-uniformly recurrent ultradistribution
of ∗-class] if and only if there exists a sequence (ψk)k∈N in E∗

I′,ρ,AP (Rn : X) [E∗
I′,ρ,UR(Rn : X)] such that

limk→+∞ ψk = T for the topology of D′
L1,s(R

n, ∗ : X).

Proof. We will consider the (I ′, ρ)-almost periodic ultradistributions of {Mp}-class, only. Suppose that
there exists a sequence (ψk)k∈N in E∗

I′,ρ,AP (Rn : X) with the prescribed properties. First of all, we will prove

that for each fixed test function φ ∈ D{Mp} the set of all translations {φ(· − t) : t ∈ Rn} is bounded in
DL1(Rn, {Mp}, s : X). We know that there exist a compact set K ⊆ Rn and two real numbers h > 0 and
c > 0 such that |φ(α)(x)| ≤ cM|α|/h

|α| for all α ∈ Nn
0 and x ∈ Rn. Let K1 denotes the compact set in Rn

given by K1 = K +B(0, 1). Then we have

sup
t∈Rn;α∈Nn

0

h|α|
∫
Rn sups∈B(x,1)

∣∣φ(α)(s− t)
∣∣ dx

M|α|
≤ sup

t∈Rn;α∈Nn
0

h|α|
∫
Rn sups∈B(x−t,1)

∣∣φ(α)(s)
∣∣ dx

M|α|

= sup
t∈Rn;α∈Nn

0

h|α|
∫
t+K1

cM|α|/h
|α| dx

M|α|
= cm

(
K1

)
.

Keeping in mind this fact, the required conclusion almost immediately from the argumentation contained
in the first part of proof of [4, Proposition 7], since we have assumed that D(ρ) is a closed subset of Y
and ρ satisfies (Cρ); cf. also [17, Theorem 2.1.12(v)]. Assume now that T is an (I ′, ρ)-almost periodic
ultradistribution of ∗-class. Let (δk)k∈N be a sequence of infinitely ultradifferentiable functions of {Mp}-
class such that supp δk ⊆ [−(1/k), 1/k]n and

∫
Rn δk(t) dt = 1 for all k ∈ N. Set ψk := T ∗ δk for all k ∈ N.

Then (ψk)k∈N is a sequence in E∗
I′,ρ,AP (Rn : X) and we only need to prove that limk→+∞ ψk = T for the

topology of D′
L1,s(R

n, {Mp} : X). Let B ∈ Bd be fixed. Then there exists h > 0 such that B is contained and

bounded in DL1

(
Rn, (Mp), h0H, s) for all h0 ∈ (0, h], where H denotes the constant from (M.2). We may

assume without loss of generality that there exists c > 0 such that ∥⟨T, φ⟩∥ ≤ c∥φ∥1,h, φ ∈ DL1(Rn, (Mp), h).
Now we will estimate the term ∥[ψ̌k ∗ φ − φ](α)∥L1(Rn) (k ∈ N, α ∈ Nn

0 ). The mean value theorem implies
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that for each x ∈ Rn and y ∈ Rn there exists a constant cx,y ∈ (0, 1) such that, for every k ≥ 1 +
√
n, we

have ∥∥∥[ψ̌k ∗ φ− φ
](α)∥∥∥

L1(Rn)
=

∫
Rn

∣∣∣∣∣
∫
Rn

ψ̌k(y)
[
φ(α)(x− y)− φ(α)(x)

]
dy

∣∣∣∣∣ dx
≤

∫
Rn

ψ̌k(y)

∫
Rn

∣∣∣φ(α)(x− y)− φ(α)(x)
∣∣∣ dx dy ≤

n∑
i=1

∫
Rn

∣∣yi∣∣ψ̌k(y)

∫
Rn

∣∣∣φ(α+ei)
(
x− y + cx,yy

)∣∣∣ dx dy
≤

n∑
i=1

∫
Rn

∣∣yi∣∣ψ̌k(y)

∫
Rn

sup
s∈[x−y,x]

∣∣∣φ(α+ei)(s)
∣∣∣ dx dy ≤ n

k

n∑
i=1

∫
Rn

sup
s∈[x−y,x]

∣∣∣φ(α+ei)(s)
∣∣∣ dx

≤ n

k

∫
Rn

sup
s∈B(x,1)

∣∣∣φ(α+ei)(s)
∣∣∣ dx,

where we have also used the Fubini theorem. Hence, we have the following:

sup
φ∈B

∥∥∥〈T ∗ ψk − T, φ
〉∥∥∥ = sup

φ∈B

∥∥∥〈T, ψ̌k ∗ φ− φ
〉∥∥∥ ≤ cd sup

φ∈B
sup
α∈Nn

0

h|α|
∥∥∥[ψ̌k ∗ φ− φ

](α)∥∥∥
L1(Rn)

M|α|

≤ cnd

k
sup
φ∈B

sup
α∈Nn

0

h|α|
∑n

i=1

∫
Rn sups∈B(x,1)

∣∣∣φ(α+ei)(s)
∣∣∣ dx

M|α|

≤ nc

kh
AM1 sup

α∈Nn
0

(hH)|α|+1
∑n

i=1

∫
Rn sups∈B(x,1)

∣∣∣φ(α+ei)(s)
∣∣∣ dx

M|α|+1

≤ cn2d

kh
AM1 sup

φ∈B
∥φ∥1,hH,s,

which simply completes the proof.

Remark 2.5. The argumentation contained in the second part of the proof of [4, Proposition 7] (cf. also [18,
Lemma 1], where we have made the same mistake, and [5, Proposition 10]) is a little bit misleading since
the equality∫

Rn

∣∣∣φ(α+ei)
(
x− y + cx,yy

)∣∣∣ dx =

∫
Rn

∣∣∣φ(α+ei)(x)
∣∣∣ dx (2.2)

is not true because the value of cx,y strongly depends on x, y ∈ Rn and it is not a constant so that the
change of variable x 7→ x− y+ cx,yy cannot be done without further information on the Jacobian of cx,y for
fixed y ∈ Rn. Moreover, the inequality∫

Rn

∣∣∣φ(α)(x− y)− φ(α)(x)
∣∣∣ dx ≤

n∑
i=1

∣∣yi∣∣ ∫
Rn

∣∣∣φ(α+ei)(x)
∣∣∣ dx (2.3)

can be wrong, as the following counterexample shows: Suppose that b > a > 0, y > 0, n = 1, α = 0 and
f(x) = x2, x ≥ 0. Then∫ b

a

|f(x+ y)− f(y)| dx =

∫ b

a

[
y2 + 2xy

]
dx = y

∫ b

a

[
y + 2x

]
dx

= (b3 − a3)/3 + y

∫ b

a

2x dx =
(
b3 − a3

)
/3 + y

∫ b

a

∣∣f ′(x)∣∣ dx > y

∫ b

a

∣∣f ′(x)∣∣ dx.
For the test functions, we can consider the sequence of smooth functions which sufficiently good approximates
the function f(·) in the Sobolev space W 1,1((a, b+ y)).
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Supppose now that there exists a sequence (ψk)k∈N in E∗
I′,ρ,AP (Rn : X) such that limk→+∞ ψk = T for

the topology of D′
L1(Rn, ∗ : X). Then T is an (I ′, ρ)-almost periodic ultradistribution of ∗-class [(I ′, ρ)-

uniformly recurrent ultradistribution of ∗-class]; especially, in the case that I ′ = I and ρ = I, then T is an
almost periodic ultradistribution of ∗-class [uniformly recurrent ultradistribution of ∗-class] and it can be
approximated by trigonometric polynomials in the space of bounded X-valued ultradistributions of ∗-class,
which has been used in [7] and [18] for the definition of an almost periodic ultradistribution of ∗-class. If
the last condition holds, then we have T ∗φ ∈ AP (Rn : X) , resp. T ∗φ ∈ UR(Rn : X), for all φ ∈ D∗(Rn);
see the proof of implication (i) ⇔ (iii) in [7, Theorem 2]. We can similarly reformulate the statements of
[18, Theorem 1] and [18, Theorem 2] for almost periodic ultradistributions of ∗-class in Rn. The statement
of [19, Theorem 2.2] can be simply reformulated for c-almost periodic ultradistributions of ∗-class in Rn by
replacing the space D′

L1,s(R
n, ∗ : X) in its formulation with the space D′

L1(Rn, ∗ : X); the same modification
has to be done in the one-dimensional setting.

We will omit here all details concerning the existence of Bohr-Fourier coefficients of almost periodic
ultradistributions of ∗-class; cf. [10] and the final part of [18, Section 2] for further information in this
direction.

3. Conclusions and final remarks

In this paper, we have introduced and analyzed ρ-almost periodic type ultradistributions in Rn with
values in complex Banach spaces. We have presented several structural results and useful remarks about
the introduced classes of ρ-almost periodic type ultradistributions.

If ∅ ̸= A ⊆ C∞(Rn : X), let us denote by B′∗
A (Rn : X) the space of all vector-valued ultradistributions

T ∈ D′∗(Rn : X) such that T ∗ φ ∈ A for all φ ∈ D∗(Rn). The interested reader may try to reconsider
the statements established in [18, Section 3] in the higher-dimensional setting. We close the paper with
the observation that it could be also interesting to introduce and analyze the Colombeau ρ-almost periodic
generalized functions in Rn and the Fourier ρ-almost periodic hyperfunctions in Rn. The corresponding
classes of almost automorphic generalized functions, with ρ = I, can be also investigated.

References
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