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Common solutions to a system of variational inequality problems
coupled with compostion of multivalued and single-valued

mappings in Banach spaces and its application to nonconvex
constrained optimization problem

T.M.M. Sowa

aAmadou Mahtar Mbow, Senegal

Abstract. In this paper, we develop a new fixed points technique for characterizing fixed point set
of composition involving multivalued and single-valued mappings in Banach spaces without commuting
assumption. We use our new result as tool to obtain the strong convergence of the sequence generated
by a modified Krasnoselskii-Mann algorithm for finding a common solutions to a system of variational
inequalities and common fixed point problems in q-uniformly smooth and p-uniformly convex Banach
spaces with q > 1, p > 1. Finally, our theorems are applied to nonconvex constrained optimization
problem.

1. Introduction

Let E be a Banach space with norm ∥ · ∥ and dual E∗. For any x ∈ E and x∗ ∈ E∗, ⟨x∗, x⟩ is used to refer
to x∗(x). Let φ : [0,+∞) → [0,∞) be a strictly increasing continuous function such that φ(0) = 0 and
φ(t) → +∞ as t → ∞. Such a function φ is called gauge. Associed to a gauge a duality map Jφ : E → 2E

∗

defined by:

Jφ(x) := {x∗ ∈ E∗ : ⟨x, x∗⟩ = ||x||φ(||x||), ||x∗|| = φ(||x||)}. (1)

If the gauge is defined by φ(t) = t, then the corresponding duality map is called the normalized duality map
and is denoted by J . Hence the normalized duality map is given by

J(x) := {x∗ ∈ E∗ : ⟨x, x∗⟩ = ||x||2 = ||x∗||2}, ∀x ∈ E.

Notice that

Jφ(x) =
φ(||x||)
||x||

J(x), x ̸= 0.
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Let E be a real normed space and let S := {x ∈ E : ∥x∥ = 1}. E is said to be smooth if

lim
t→0+

∥x+ ty∥ − ∥x∥
t

exists for each x, y ∈ S. E is said to be uniformly smooth if it is smooth and the limit is attained uniformly
for each x, y ∈ S.

The modulus of smoothness of E is the function ρE : [0,∞) → [0,∞) defined by

ρE(τ) := sup

{
∥x+ y∥+ ∥x− y∥

2
− 1 : ∥x∥ = 1, ∥y∥ = τ

}
; τ > 0.

It is known that a normed linear space E is uniformly smooth if

lim
τ→0

ρE(τ)

τ
= 0.

If there exists a constant c > 0 and a real number q > 1 such that ρE(τ) ≤ cτ q, then E is said to be
q-uniformly smooth. Typical examples of such spaces are the Lp, ℓp and Wm

p spaces for 1 < p < ∞ where,

Lp (or lp) or Wm
p is

{
2− uniformly smooth and p− uniformly convex if 2 ≤ p < ∞;
2− uniformly convex and p− uniformly smooth if 1 < p < 2.

(2)

Let Jq denote the generalized duality mapping from E to 2E
∗
defined by

Jq(x) :=
{
f ∈ E∗ : ⟨x, f⟩ = ∥x∥q and ∥f∥ = ∥x∥q−1

}
.

J2 is called the normalized duality mapping and is denoted by J . It is known that E is smooth if and
only if each duality map Jφ is single-valued, that E is Frechet differentiable if and only if each duality
map Jφ is norm-to-norm continuous in E, and that E is uniformly smooth if and only if each duality map
Jφ is norm-to-norm uniformly continuous on bounded subsets of E. Following Browder [1], we say that a
Banach space has a weakly continuous normalized duality map if J is a single-valued and is weak-to-weak∗

sequentially continous, i.e., if (xn) ⊂ E, xn ⇀ x, then J(xn) ⇀ J(x) in E∗. Weak continuity of duality map
J plays an important role in the fixed point theory for nonlinear operators. Recall that a Banach space E
satisfies Opial property (see, e.g., [4]) if lim sup

n→+∞
∥xn − x∥ < lim sup

n→+∞
∥xn − y∥ whenever xn ⇀ x, x ̸= y. A

Banach space E that has a weakly continuous normalized duality map satisfies Opial’s property.

Let C ⊆ E be a nonempty set. An operator A : C → E is said to be accretive if there exists jq(x − y) ∈
Jq(x− y) such that

⟨Ax−Ay, jq(x− y)⟩ ≥ 0, ∀x, y ∈ C.

An operator A : C → E is said to be α-inverse strongly accretive if, for some α > 0,

⟨Ax−Ay, jq(x− y)⟩ ≥ α∥Ax−Ay∥q, ∀x, y ∈ C.

Let C be a nonemty subset of q-uniformly smooth Banach space E and A : C → E be a nonlinear opera-
tor. The variational inequality problem is to find a point x∗ ∈ C such that

⟨Ax∗, Jq(x− x∗)⟩ ≥ 0, ∀x ∈ C. (3)

The set of solutions of the variational inequality in Banach space is denoted by V Iq(C,A). If q = 2, then
V Iq(C,A) is reduced to V I(C,A), where V I(C,A) is the set of solutions of the generalized variational
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inequality in Banach spaces proposed by Aoyama et al., [5] in 2005. For solving V I(C,A), Aoyama et al.
[5] introduced an iterative algorithm:

xn+1 = αnxn + (1− αn)QC(I − λnA)xn n ≥ 0, (4)

{αn} ⊂ (0, 1) and {λn} ⊂ (0,∞) are two real number sequences. Aoyama et al. [5] proved the following
weak convergence theorem to a solution of V I(C,A).

Theorem 1.1. [5] Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly smooth
Banach space E. Let QC be a sunny nonexpansive retraction from E onto C. Let A : C → E be an α-inverse
strongly accretive operator with V I(C,A) ̸= ∅. If {λn} and {αn} are chosen so that λn ∈

[
a, α

K2

]
for some

a > 0 and αn ∈ [b, c] for some b, c with 0 < b < c < 1, then {xn} converges weakly to a solution of variational
inequality V I(C,A), where K is the 2-uniformly smoothness constant of E.

Recently, many authors studied the following convex feasibility problem (for short, CFP):

finding an x∗ ∈
m⋂
i=1

Ki (5)

where m ≥ 1 is an integer and each Ki is a nonempty closed convex subset of H. There is a considerable
investigation on the CFP in the setting of Hilbert spaces which captures applications in various disci-
plines such as image restoration [19, 21], computer tomography and radiation therapy treatment planning
[20]. Recently, iterative methods for single-valued nonexpansive mappings have been applied to solve fixed
points problems and variational inequality problems in Hilbert spaces, see, e.g.,[23, 24] and the references
therein. Recently, Censor, Gibali and Reich [16], proved the following weak convergence theorem for solving
system of variationnal inequality problem in a real Hilbert space.

Theorem 1.2. [16] Let H be a Hilbert space. For each 1 ≤ i ≤ N, let an operator hi : H → H and a

nonempty, closed and convex subset Ci ⊂ H be given. Assume that
⋂N

i=1 Ci ̸= ∅ and Ψ =
⋂N

i=1 V I(C,Ai) ̸= ∅
and that for each 1 ≤ i ≤ N, hi is αi-ism. Set α := min{αi} and take λ ∈ (0, 2α). Let {xn} be a sequence
generated by

xn+1 =

N∑
i=1

ωn,i(PCi
(I − λhi)xn), n ≥ 0, (6)

where

N∑
i=1

ωn,i = 1. Then the sequence {xn}converges weakly to a point z ∈ Ψ.

On the other hand, many problems arising in different areas of mathematics, such as Game Theory, Control
theory, Dynamic systems theory, Signal and image processing, Market Economy and in other areas of
mathematics, such as in Non-Smooth Differential Equations and Differential inclusions, Optimization theory
equations, can be modeled by the equation

x ∈ Tx, (7)

where T is a multivalued mapping.The solution set of this equation coincides with the fixed point set of
T.The Pompeiu Hausdorff metric on CB(K) is defined by:

H(A,B) = max
{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

for all A,B ∈ CB(K) (see, Berinde [2]). A multivalued mapping T : D(T ) ⊆ E → CB(E) is called β-
Lipschitzian if there exists β > 0 such that

H(Tx, Ty) ≤ β∥x− y∥ ∀x, y ∈ D(T ). (8)
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When β ∈ (0, 1), we say that T is a contraction, and T is called nonexpansive if β = 1. An element x ∈ K
is called a fixed point of T if x ∈ Tx. For single valued mapping, this reduces to Tx = x. The fixed point
set of T is denoted by Fix(T ) := {x ∈ D(T ) : x ∈ Tx}. A multivalued map T is called quasi-nonexpansive if

H(Tx, Tp) ≤ ∥x− p∥

holds for all x ∈ D(T ) and p ∈ Fix(T ).

Remark 1.3. It is easy to see that the class of mulivalued quasi-nonexpansive mappings properly includes
that of multivalued nonexpansive maps with fixed points.

During the last decades, the study of common fixed point problems involving multivalued and singlevalued
mappings has attracted, and continues to attract, the interest of several well known mathematicians (see, for
example, [1, 5]). Interest in such studies stems, perhaps, mainly from the usefulness of such fixed point theory
in real-world applications, such as in Game Theory and Market Economy and in other areas of mathematics,
such as in Non-Smooth Differential Equations and Differential Inclusions, Optimization theory.We describe
briefly the connection of fixed point theory for multivalued mappings with these applications.

1.1. Optimization problems with constraints

Let f : H → R ∪ {+∞} be a proper convex lower semicontinuous function and A : H → H be a
single-valued mapping.Consider the following optimization problem:

(P )

 min f(x)

Ax0.

It is known that the multivalued map, ∂f the subdifferential of f, is maximal monotone, where for x,w ∈ H,

w ∈ ∂f(x) ⇔ f(y)− f(x) ≥ ⟨y − x,w⟩, ∀ y ∈ H

⇔ x ∈ argmin(f − ⟨·, w⟩).

It is easily seen that, for x ∈ H with x is a solution of (P ) if and only if

x ∈ Fix(T1) ∩ Fix(T2),

with T1 := I − ∂f and T2 := I − A, where I is the identity map of H. Therefore, x is a solution of
(P ) if and only if x is a solution of common fixed point problem involving multivalued and single-valued
mappings. Recently, N. Tahat et al. [25], proved the following theorem for common fixed points problem
involving single-valued and multivalued maps in G-metric spaces.

Theorem 1.4. [25] Let (X,G) be a G-metric space. Set g : X → X and T : X → CB(X).Assume that
there exists a function a α[0,+∞) → [0, 1) satisfying lim sup

r→t
α(r) < 1 for every t ≥ 0 such that

HG(Tx, Ty, Tz) ≤ α(G(gx, gy, gz))G(gx, gy, gz),

for all x, y, z ∈ X. If for any x ∈ X,Tx ⊆ g(X) and g(X) is a G-complete subspace of X, then g and T have
a point of coincidence in X. Furthermore, if we assume that gp ∈ Tp and gq ∈ Tq implies G(gq, gp, gp) ≤
HG(Tq, Tp, Tp), then

1. g and T have a unique point of coincidence.

2. If in addition g and T are weakly compatible, then g and T have a unique common fixed point.

Remark 1.5. Most existing results for solving common fixed points problem require that the operators of
underlying operators must be commuting and also, the intersection of the fixed point sets Fix(T1)∩Fix(T2)
must be nonempty.
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Motivated and inspired by the recent research work going on in this field, we consider the problem of finding
a common solutions of systems of variational inequality and fixed point problems of composition involving
multivalued and single-valued maps in Banach space. Thus the CSVIFP is formulated as finding a point x∗

with the property

Problem 1.6.

x∗ ∈
( m⋂

i=1

V Iq(C,Ai)
)

and x∗ ∈ Fix(T1 ◦ T2),

Ai : C → E is αi-inverse strongly accretive for i = 1, 2, ...,m, T1 : C → C be a single-valued mapping
and T2 : C → CB(C) be a multivalued mapping.Note that, the set Fix(T2 ◦ T1) is in general larger
than the set Fix(T1)

⋂
Fix(T2), see for example [3]. It is well known that Krasnoselskii-Mann iteration of

nonexpansive mappings find application in many areas of mathematics and know to be weakly convergent
in the infinite dimensional setting. In this paper, we introduce and study an explicit iterative scheme by a
modified Krasnoselskii-Mann algorithm for approximating a solution to Problem 1.6 in q-uniformly smooth
and p-uniformly convex Banach spaces with p > 1, q > 1.There is no compactness assumption. The results
obtained in this paper are significant improvement on important recent results.

2. Preliminaries

Let C be a nonempty subsets of a smooth real Banach space E. A mapping QC : E → C is said to be sunny
if

QC(QCx+ t(x−QCx)) = QCx

for each x ∈ E and t ≥ 0. A mapping QC : E → C is said to be a retraction if QCx = x for each x ∈ C.

Lemma 2.1. [17] Let C and D be nonempty subsets of a smooth real Banach space E with D ⊂ C and
QD : C → D a retraction from C into D. Then QD is sunny and nonexpansive if and only if

⟨z −QDz, J(y −QDz)⟩ ≤ 0

for all z ∈ C and y ∈ D.

It is noted that Lemma 2.1 still holds if the normalized duality map is replaced by the general duality map
Jφ, where φ is gauge function.

Remark 2.2. If K is a nonempty, closed convex subset of a Hilbert space H, then the nearest point projection
PK from H to K is the sunny nonexpansive retraction.

Definition 2.3. Let E be real Banach space and T : D(T ) ⊂ E → 2E be a multivalued mapping. I − T
is said to be demiclosed at 0 if for any sequence {xn} ⊂ D(T ) such that {xn} converges weakly to p and
d(xn, Txn) converges to zero, then p ∈ Tp.

Lemma 2.4. [26] Let E be a real Banach space satisfying Opial’s property, K be a closed convex subset of
E, and T : K → K be a nonexpansive mapping such that Fix(T ) ̸= ∅. Then I − T is demiclosed

Definition 2.5. Let E be a smooth real Banach space and T : D(T ) ⊂ E → E, then T is said to be firmly
nonexpansive if for all x, y ∈ D(T ), we have

∥Tx− Ty∥p ≤ ⟨x− y, Jp(Tx− Ty)⟩. (9)

If p = 2, we have the important special version of 9 :

∥Tx− Ty∥2 ≤ ⟨x− y, J(Tx− Ty)⟩.
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Definition 2.6. (Chidume [15]). Let E be a real Banach space, which is reflexive, smooth, and strictly
convex. Define the following function ϕp : E × E → R defined by :

ϕp(x, y) = ∥x∥p − p⟨x, Jpy⟩+ (p− 1)∥y∥p. (10)

Lemma 2.7. [14] For p > 1, let E be a p-uniformly convex smooth real Banach space E. Then, there exists
dp > 0 such that :

dq∥x− y∥p ≤ ϕp(x, y), ∀x, y ∈ E.

Lemma 2.8 (Song and Cho [13]). Let K be a nonempty subset of a real Banach space and T : K →
P (K) be a multi-valued map. Then the following are equivalent:
(i) x∗ ∈ Fix(T );
(ii) PT (x

∗) = {x∗};
(iii) x∗ ∈ Fix(PT ).
Moreover, Fix(T ) = Fix(PT ).

The resolvent operator has the following properties:

Lemma 2.9. [3] For any r > 0,
(i) A is accretive if and only if the resolvent JA

r of A is single-valued and firmly nonexpansive;
(ii) A is m-accretive if and only if JA

r of A is single-valued and firmly nonexpansive and its domain is the
entire E;
(iii) 0 ∈ A(x∗) if and only if x∗ ∈ Fix(JA

r ), where Fix(JA
r ) denotes the fixed-point set of JA

r .

Lemma 2.10 (Xu, [12]). Assume that {an} is a sequence of nonnegative real numbers such that an+1 ≤
(1− αn)an + αnσn for all n ≥ 0, where {αn} is a sequence in (0, 1) and {σn} is a sequence in R such that

(a)

∞∑
n=0

αn = ∞, (b) lim sup
n→∞

σn ≤ 0 or

∞∑
n=0

|σnαn| < ∞. Then lim
n→∞

an = 0.

*

Lemma 2.11 ([11]). Assume that a Banach space E has a weakly continous duality mapping Jφ with jauge
φ.

φ(∥x+ y∥) ≤ φ(∥x∥+ ⟨y, Jφ(x+ y)⟩ (11)

for all x,y ∈ E where Φ(t) =
∫ t

0
φ(σ)dσ t ≥ 0. In particular, for the normilized duality mapping, we have the

important special version of 11:

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, J(x+ y)⟩.

Lemma 2.12 (Chang et al. [8]). Let E be a uniformly convex real Banach space. For arbitrary r > 0,
let B(0)r := {x ∈ E : ||x|| ≤ r}, a closed ball with center 0 and radius r > 0. For any given sequence

{u1, u2, ....., um} ⊂ B(0)r and for i = 1, 2, ...,m, any positive real numbers {λ1, λ2, ...., λm} with

m∑
k=1

λk = 1,

then there exists a continuous, strictly increasing and convex function

g : [0, 2r] → R+, g(0) = 0,

such that for any integer i, j with i < j,

∥
m∑

k=1

λkuk∥2 ≤
m∑

k=1

λk∥uk∥2 − λiλjg(∥ui − uj∥).
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Lemma 2.13. [18] Let tn be a sequence of real numbers that does not decrease at infinity in a sense that
there exists a subsequence tni of tn such that tni such that tni ≤ tni+1 for all i ≥ 0. For sufficiently large
numbers n ∈ N, an integer sequence {τ(n)} is defined as follows:

τ(n) = max{k ≤ n : tk ≤ tk+1}.

Then, τ(n) → ∞ as n → ∞ and
max{tτ(n), tn} ≤ tτ(n)+1.

Lemma 2.14. [10] Let C be a nonempty closed convex subset of q-uniformly smooth Banach space E.
Let QC be a sunny nonexpansive retraction from E onto C and let A : C → E be a mapping. Then
V Iq(C,A) = Fix(QC(I − λA)), for all λ > 0.

Lemma 2.15. Let C be a nonempty closed convex subset of a q-uniformly smooth Banach space E. Let

λ > 0 and let A be an α-inverse strongly accretive operator of C into E. If 0 < λ <
( qα
Cq

) 1
q−1

, where Cq is

the q-uniformly smooth constant of E.Then QC(I − λA) is a nonexpansive mapping.

Proof. Let x, y ∈ C, we have

∥QC(I − λA)x−QC(I − λA)y∥q = ∥(I − λA)x− (I − λA)y∥q

≤ ∥x− y∥q − qλ⟨Ax−Ay, Jq(x− y)⟩+ Cqλ
q∥Ax−Ay∥q

≤ ∥x− y∥q − qλα∥Ax−Ay∥q + Cqλ
q∥Ax−Ay∥q

≤ ∥x− y∥q − λ(qα− Cqλ
q−1)∥Ax−Ay∥q

≤ ∥x− y∥q.

Then QC(I − λA) is a nonexpansive mapping.

3. Main Results

We now state and prove the following result.

Lemma 3.1. For p > 1, let E be a p-uniformly convex smooth real Banach space and C be a nonempty
closed convex subset of E.Let T1 : C → C be a firmly nonexpansive mapping and T2 : C → CB(C) be
a multivalued quasi-nonexpansive mapping such that T2p = {p} ∀ p ∈ Fix(T2) and Fix(T2) ∩ Fix(T1) ̸=
∅.Then, Fix(T2) ∩ Fix(T1) = Fix(T2 ◦ T1) and T2 ◦ T1 is a multivalued quasi-nonexpansive mapping on C.

Proof. Clearly, we have Fix(T2)∩Fix(T1) ⊆ Fix(T2 ◦T1). Let p ∈ Fix(T2)∩Fix(T1) and q ∈ Fix(T2 ◦T1).
By using properties of T2, we have

∥q − p∥p ≤ H(T2 ◦ T1q, T2p)
p

≤ ∥T1q − p∥p. (12)

Using the fact that T1 is firmly nonexpansive, we have

∥T1q − p∥p ≤ ⟨q − p, Jp(T1q − p)⟩. (13)

Furthermore, using properties of function ϕp, we have

ϕp(q − p, T1q − p) = ∥q − p∥p − p⟨q − p, Jp(T1q − p)⟩+ (p− 1)∥T1q − p∥p.

Hence,

⟨q − p, Jp(T1q − p)⟩ = 1

p

(
∥q − p∥p + (p− 1)∥T1q − p∥p − ϕp(q − p, T1q − p)

)
. (14)
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Using 13 and 14, we obtain

∥T1q − p∥p ≤ ∥q − p∥p − ϕp(q − p, T1q − p). (15)

From 12, we have

ϕp(q − p, T1q − p) ≤ 0.

By lemma 2.7, we have ∥T1q − q∥ = 0 which implies that

q = T1q.

Using the fact that q ∈ Fix(T2 ◦ T1), we get

q = T1q ∈ T2 ◦ T1q = T2q.

Thus, q ∈ Fix(T2) ∩ Fix(T1). Hence,Fix(T2) ∩ Fix(T1) = Fix(T2 ◦ T1).
Next, we show T1 ◦ T1 is a quasi-nonexpansive mapping on C. Let x ∈ C and p ∈ Fix(T2 ◦ T1). Then,
p ∈ Fix(T2) ∩ Fix(T1) by step 1.We have,

H(T2 ◦ T1x, T2 ◦ T1p) = H(T2 ◦ T1x, T2p)

≤ ∥T1x− p∥
≤ ∥x− p∥.

This completes the proof.

We are now in a position to state and prove our main result.

Theorem 3.2. For p > 1, q > 1, let E be a p-uniformly convex and q-uniformly smooth real Banach space
having a weakly continuous duality map Jφ. Let C be a nonempty, closed convex cone of E and QC be a sunny
nonexpansive retraction from E onto C. Let Ai : C → E is αi-inverse strongly accretive for i = 1, 2, ...,m and

θi ∈
[
a,

(qαi

Cq

) 1
q−1

] for some a > 0.Let T1 : C → C be a firmly nonexpansive mapping and T2 : C → CB(C)

be a multivalued quasi-nonexpansive mapping such that Γ :=
(
V Iq(C,Ai)

)⋂
Fix(T2)

⋂
Fix(T1) ̸= ∅ and

T2p = {p}, for all p ∈ Γ. Let {xn} be a sequence defined as follows:

x0 ∈ C, choosen arbitrarily,

zn = βnxn + (1− βn)vn, vn ∈ T2 ◦ T1xn,

yn = γ0zn +

m∑
i=1

γiQC(I − θiAi)zn,

xn+1 = αn(λnxn) + (1− αn)yn,

(16)

where

m∑
i=0

γi = 1, βn ∈ [c, d] ⊂ (0, 1), {αn} ⊂ (0, 1) and {λn} ⊂ (0, 1). Assume that the above control

sequences satisfy the following conditions:

(i) lim
n→∞

αn = 0; (ii) lim
n→∞

λn = 1 and

∞∑
n=0

(1− λn)αn = ∞.

Assume that I − T2 ◦ T1 is demiclosed at the origin. Then, the sequence {xn} generated by (16) converges
strongly to x∗ ∈ Γ, where x∗ = QΓ(0).
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Proof. It is well known that if C is a closed and convex cone of a real Banach E,we have λx ∈ C for all
λ ∈ (0, 1) and x ∈ C. Therefore, the sequence {xn} generated by 16 is well defined. Fixing p ∈ Γ.We prove
that the sequence {xn} is bounded.Using (16) and Lemma 3.1, we have

∥zn − p∥ = ∥βnxn + (1− βn)vn − p∥
≤ βn∥xn − p∥+ (1− βn)∥vn − p∥
≤ βn∥xn − p∥+ (1− βn)H(T2 ◦ T1xn, T2 ◦ T1p)

≤ βn∥xn − p∥+ (1− βn)∥xn − p∥.

Hence,

∥zn − p∥ ≤ ∥xn − p∥. (17)

From (16), Lemmas 2.14 and 2.15, it follows that

∥yn − p∥ = ∥γ0zn +

m∑
i=1

γiQC(I − θiAi)zn − p∥

≤ γ0∥zn − p∥+
m∑
i=1

γi∥QC(I − θiAi)zn − p∥

≤ ∥zn − p∥.

Therefore, we have

∥yn − p∥ ≤ ∥zn − p∥ ≤ ∥xn − p∥. (18)

Hence,

∥xn+1 − p∥ = ∥αn(λnxn) + (1− αn)yn − p∥
≤ αnλn∥xn − p∥+ (1− αn)∥yn − p∥+ (1− λn)αn∥p∥
≤ αnλn∥xn − p∥+ (1− αn)∥xn − p∥+ (1− λn)αn∥p∥
≤ [1− (1− λn)αn]∥xn − p∥+ (1− λn)αn∥p∥
≤ max {∥xn − p∥, ∥p∥}.

By induction, it is easy to see that

∥xn − p∥ ≤ max {∥x0 − p∥, ∥p∥}, n ≥ 1.

Using Lemmas 2.12 and 3.1, we have

∥zn − p∥2 = ∥βnxn + (1− βn)vn − p∥2

≤ (1− βn)∥vn − p∥2 + βn∥xn − p∥2 − βn(1− βn)g(∥vn − xn∥)
≤ (1− βn)H(T2 ◦ T1xn, T2 ◦ T1p)

2 + βn∥xn − p∥2 − βn(1− βn)g(∥xn − vn∥)
≤ (1− βn)∥xn − p∥2 + βn∥xn − p∥2 − βn(1− βn)g(∥xn − vn∥).

Hence,

∥zn − p∥2 ≤ ∥xn − p∥2 − βn(1− βn)g(∥xn − vn∥). (19)



T.M.M. Sow / Funct. Anal. Approx. Comput. 17:1 (2025), 1–14 10

Therefore, by Lemma 2.11 and inequality 19, we have

∥xn+1 − p∥2 = ∥αn(λnxn) + (1− αn)yn − p∥2

= ∥αnλn

(
xn − p

)
+ (1− αn)

(
yn − p

)
− (1− λn)αnp∥2

≤ ∥αn

(
λnxn − λnp

)
+ (1− αn)

(
yn − p

)
∥2 + 2(1− λn)αn⟨p, J(p− xn+1)⟩

≤ αnλ
2
n∥xn − p∥2 + (1− αn)∥yn − p∥2 + 2(1− λn)αn⟨p, J(p− xn+1)⟩

≤ αnλn∥xn − p∥2 + (1− αn)
[
∥xn − p∥2 − βn(1− βn)g(∥xn − vn∥)]

+2(1− λn)αn⟨p, J(p− xn+1)⟩
≤ [1− (1− λn)αn]∥xn − p∥2 − (1− αn)βn(1− βn)g(∥xn − vn∥)

+2(1− λn)αn⟨p, J(p− xn+1)⟩.

Therefore,

(1− αn)βn(1− βn)g(∥xn − vn∥) ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + 2(1− λn)αn⟨p, J(p− xn+1)⟩. (20)

Since {xn} is bounded, then there exists a constant B > 0 sucht that

(1− λn)⟨p, J(p− xn+1)⟩ ≤ B, for all, n ≥ 0.

Hence,

(1− αn)βn(1− βn)g(∥xn − vn∥) ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + 2αnB. (21)

Now, we prove that {xn} converges strongly to x∗.
We divide the proof into two cases.
Case 1. Assume that the sequence {∥xn − p∥} is monotonically decreasing sequence. Then {∥xn − p∥} is
convergent. Clearly, we have

∥xn − p∥2 − ∥xn+1 − p∥2 → 0.

It then implies from 21 that

lim
n→∞

(1− αn)βn(1− βn)g(∥xn − vn∥) = 0. (22)

Using the fact that βn ∈ [a, b] ⊂ (0, 1) and property of g, we have

lim
n→∞

∥xn − vn∥ = 0. (23)

Hence,

lim
n→∞

d(xn, T2 ◦ T1xn) = 0. (24)

Now, observing that,

∥zn − xn∥ = ∥(1− βn)xn + βnvn − xn∥
= ∥(1− βn)xn + βnvn − βnxn − (1− βn)xn∥
≤ ∥vn − xn∥.

Therefore, from 23 we have

lim
n→∞

∥zn − xn∥ = 0. (25)

Next, we prove that lim sup
n→+∞

⟨x∗, Jφ(x
∗ − xn)⟩ ≤ 0. Since E is reflexive and {xn}n≥0 is bounded there exists

a subsequence {xnj} of {xn} such that xnj converges weakly to a in C and

lim sup
n→+∞

⟨x∗, Jφ(x
∗ − xn)⟩ = lim

j→+∞
⟨x∗, Jφ(x

∗ − xnj
)⟩.
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From 24 and I − T2 ◦ T1 is demiclosed, we obtain a ∈ Fix(T2 ◦ T1). From Lemma 2.12, the fact that
QC(I − θiAi) is nonexpansive and 18, we have

∥yn − p∥2 = ∥γ0zn +

m∑
i=1

γiQC(I − θiAi)zn − p∥2

≤ γ0∥zn − p∥2 +
m∑
i=1

γi∥QC(I − θiAi)zn − p∥2 − γ0γig(∥QC(I − θiAi)zn − zn∥)

≤ ∥xn − p∥2 − γ0γig(∥QC(I − θiAi)zn − zn∥).

Hence,

∥xn+1 − p∥2 = ∥αn(λnxn) + (1− αn)yn − p∥2

= ∥αnλn

(
xn − p

)
+ (1− αn)

(
yn − p

)
− (1− λn)αnp∥2

≤ ∥αn

(
λnxn − λnp

)
+ (1− αn)

(
yn − p

)
∥2 + 2(1− λn)αn⟨p, J(p− xn+1)⟩

≤ αnλ
2
n∥xn − p∥2 + (1− αn)∥yn − p∥2 + 2(1− λn)αn⟨p, J(p− xn+1)⟩

≤ αnλn∥xn − p∥2 + (1− αn)
[
∥xn − p∥2 − γ0γig(∥QC(I − θiAi)zn − zn∥)]

+2(1− λn)αn⟨p, J(p− xn+1)⟩
≤ [1− (1− λn)αn]∥xn − p∥2 − (1− αn)γ0γig(∥QC(I − θiAi)zn − zn∥)

+2(1− λn)αn⟨p, J(p− xn+1)⟩.

Since {xn} is bounded, then there exists a constant D > 0 sucht that

(1− αn)γ0γig(∥QC(I − θiAi)zn − zn∥) ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + αnD. (26)

Thus we have

lim
n→∞

g(∥QC(I − θiAi)zn − zn∥) = 0. (27)

Using property of g, we have

lim
n→∞

∥QC(I − θiAi)zn − zn∥ = 0. (28)

From 28 and Lemma 2.4, we obtain a ∈
m⋂
i=1

Fix(QC(I−θiAi)).Using Lemma 2.14, we have a ∈
⋂m

i=1 V Iq(C,Ai).

Therefore, a ∈ Γ. On the other hand, by using x∗ = QΓ(0) and the assumption that the duality mapping
Jφ is weakly continuous, we have,

lim sup
n→+∞

⟨x∗, Jφ(x
∗ − xn)⟩ = lim

j→+∞
⟨x∗, Jφ(x

∗ − xnj
)⟩

= ⟨x∗, Jφ(x
∗ − a)⟩ ≤ 0.

Finally, we show that xn → x∗. In fact, since Φ(t) =
∫ t

0
φ(σ)dσ, ∀t ≥ 0, and φ is a gauge function, then for

1 ≥ k ≥ 0, Φ(kt) ≤ kΦ(t). From 16 and Lemma 2.11, we get that

Φ(∥xn+1 − x∗∥) = Φ(∥αn(λnxn) + (1− αn)yn − x∗∥)
≤ Φ(∥αnλn(xn − x∗) + (1− αn)(yn − x∗)∥) + (1− λn)αn⟨x∗, Jφ(x

∗ − xn+1)⟩
≤ Φ(αnλn∥xn − x∗∥+ ∥(1− αn)(yn − x∗)∥) + (1− λn)αn⟨x∗, Jφ(x

∗ − xn+1)⟩
≤ Φ(αnλn∥xn − x∗∥+ (1− αn)∥xn − x∗∥) + (1− λn)αn⟨x∗, Jφ(x

∗ − xn+1)⟩
≤ Φ((1− (1− λn)αn)∥xn − x∗∥) + (1− λn)αn⟨x∗, Jφ(x

∗ − xn+1)⟩
≤ [1− (1− λn)αn]Φ(∥xn − x∗∥) + (1− λn)αn⟨x∗, Jφ(x

∗ − xn+1)⟩.
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From Lemma 2.10, its follows that xn → x∗.
Case 2. Assume that the sequence {∥xn−x∗∥} is not monotonically decreasing sequence. Set Bn = ∥xn−x∗∥
and τ : N → N be a mapping for all n ≥ n0 (for some n0 large enough) by τ(n) = max{k ∈ N : k ≤ n, Bk ≤
Bk+1}.
We have τ is a non-decreasing sequence such that τ(n) → ∞ as n → ∞ and Bτ(n) ≤ Bτ(n)+1 for n ≥ n0.
From 21, we have

(1− ατ(n))βτ(n)(1− βτ(n))g(∥xτ(n) − vτ(n)∥) ≤ 2ατ(n)B → 0 as n → ∞.

Hence,

lim
n→∞

∥xτ(n) − vτ(n)∥ = 0. (29)

By same argument as in case I, we can show that xτ(n) converges weakly in E and lim sup
n→+∞

⟨x∗, Jφ(x
∗ −

xτ(n))⟩ ≤ 0. We have for all n ≥ n0,

0 ≤ Φ(∥xτ(n)+1 − x∗∥)− Φ(∥xτ(n) − x∗∥) ≤
(
1− λτ(n)

)
ατ(n)[−Φ(∥xτ(n) − x∗∥) + ⟨x∗, Jφ(x

∗ − xτ(n)+1)⟩],

which implies that
Φ(∥xτ(n) − x∗∥) ≤ ⟨x∗, Jφ(x

∗ − xτ(n)+1)⟩.
Then, we have

lim
n→∞

Φ(∥xτ(n) − x∗∥) = 0.

Therefore,
lim
n→∞

Bτ(n) = lim
n→∞

Bτ(n)+1 = 0.

Thus, by Lemma 2.13, we conclude that

0 ≤ Bn ≤ max{Bτ(n), Bτ(n)+1} = Bτ(n)+1.

Therefore {xn} converges strongly to x∗ ∈ Γ.

Remark 3.3. In our theorem, we assume that C is a cone. But, in some cases, for example, if C is the
closed unit ball, we can weaken this assumption to the following: λx ∈ C for all λ ∈ (0, 1) and x ∈ C.
Therefore, in the case where E is a real Hilbert space or E = lp, 1 < p < ∞, our results can be used to
approximated fixed ponts of multivalued quasi-nonexpansive mappings from the closed unit ball to itself.

Remark 3.4. Many already studied algorithms for solving variational inequality problem coupled with com-
mon fixed points problem in the literature can be considered as special cases of this paper.

Now, using the similar arguments as in the proof of Theorem 3.2 and Lemma 2.8, we obtain the following
result by replacing T2 ◦ T1 by PT2

◦ T1 and removing the rigid restriction on Γ (T2p = {p}, ∀ p ∈ Γ) and
assumption that E has a weakly continuous duality map Jφ.

Theorem 3.5. Assume that E = lp, 1 < p < ∞ or E is a real Hilbert space. Let B be the closed unit ball of
E and QB be a sunny nonexpansive retraction from E onto B. Let Ai : B → E is αi-inverse strongly accretive
for i = 1, 2, ...,m.Let T1 : B → B be a firmly nonexpansive mapping and T2 : B → CB(B) be a multivalued

mapping such that PT2
is quasi-nonexpansive. Assume that Γ :=

(
V Ip(B, Ai)

)⋂
Fix(T2)

⋂
Fix(T1) ̸= ∅

and Assume that I − PT2
◦ T1 is demiclosed at the origin. Let {xn} be a sequence defined as follows:

x0 ∈ B, choosen arbitrarily,

zn = βnxn + (1− βn)vn, vn ∈ I − PT2 ◦ T1xn,

yn = γ0zn +

m∑
i=1

γiQB(I − θiAi)zn,

xn+1 = αn(λnxn) + (1− αn)yn,

(30)
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where

m∑
i=0

λi = 1, βn ∈ [c, d] ⊂ (0, 1), θi > 0, {αn} ⊂ (0, 1) and {λn} ⊂ (0, 1). Assume that the above

control sequences satisfy the following conditions:

(i) lim
n→∞

αn = 0; (ii) lim
n→∞

λn = 1 and

∞∑
n=0

(1 − λn)αn = ∞.Then, the sequence {xn} generated by (30)

converges strongly to x∗ ∈ Γ, where x∗ = QΓ(0).

4. Application to non-convex optimization problem

DC Programming and DCA were introduced by Pham Dinh Tao in 1985 in their preliminary form and
extensively developed by Le Thi Hoai An and Pham Dinh Tao since 1994 to become now classical, see
for example [22] and references therein. Their original key idea relies on the DC structure of the objective
function in nonconvex programs which are explored and exploited in a deep and suitable way.A DC program
is of the form :

inf{f(x) = g(x)− h(x) x ∈ H}. (31)

The complexity of DC programs resides on the lack of practical global optimality conditions. So the following
necessary local optimality conditions for 31 were developed:

∂g(x∗) ∩ ∂h(x∗) ̸= ∅,

such a point x∗ is called a critical point of g − h or for 31.We consider the following problem :

Problem 4.1.

find x∗ ∈ C such that ∂g(x∗) ∩ ∂h(x∗) ̸= ∅. (32)

We denote the set of solutions of Problem 4.1 by Ω1.
Problem 4.1 has many applications such as multicommodity network, image restoration processing, discrete
tomography, clustering and seems particularly well suited to model several nonconvex industrial problems
(portfolio optimization, fuel mixture, molecular biology, phylogenetic analysis ...), see for example [22].

Problem 4.2. We also consider the following common solutions of a system variational inequality problem
:

find x∗ ∈ C such that x∗ ∈
( m⋂

i=1

V I(C,Ai)
)
, (33)

We denote the set of solutions of Problem 4.1 by Ω2.

Theorem 4.3. Let H be a real Hilbert space and C be be a nonempty, closed convex cone of H.Let g, h be
two convex lower semicontinuous functions defined on C. Let Ai : C → H is αi-inverse strongly monotone
for i = 1, 2, ...,m. Assume that that Ω1 ∩ Ω2 ̸= ∅. Let {xn} be a sequence defined iteratively from arbitrary
x0 ∈ C by:

x0 ∈ C, choosen arbitrarily,

zn = βnxn + (1− βn)J
∂g
µ ◦ J∂h

µ xn,

yn = γ0zn +

m∑
i=1

γiPC(I − θiA)zn,

xn+1 = αn(λnxn) + (1− αn)yn,

(34)
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where

m∑
i=0

λi = 1, βn ∈ [c, d] ⊂ (0, 1), θi ∈
(
0, 2αi

]
, {αn} ⊂ (0, 1) and {λn} ⊂ (0, 1). Assume that the

above control sequences satisfy the following conditions:

(i) lim
n→∞

αn = 0; (ii) lim
n→∞

λn = 1 and

∞∑
n=0

(1−λn)αn = ∞.Then, the sequence {xn} generated by 34 converges

strongly to a critical point of f−g which is a common solution of a system of variational inequality problems.

Proof. Using properties of resolvent operators and Lemma 3.1, we have J∂g
r ◦ J∂h

r is nonexpansive on C
and ∂g−10 ∩ ∂h−10 = Fix(J∂g

r ◦ J∂h
r ) = Fix(J∂g

r ) ∩ Fix(J∂h
r ). Therefore, it follows Theorem 3.2 that {xn}

converges strongly to some point x∗ ∈ Fix(J∂g
r )

⋂
Fix(J∂h

r )
⋂( m⋂

i=1

V I(C,Ai)
)
⇐⇒ 0 ∈ ∂g(x∗) ∩ ∂h(x∗)

and x∗ ∈
( m⋂

i=1

V I(C,Ai)
)
, completing the proof.
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