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Generalized ρ-almost periodic type sequences in locally convex
spaces and applications

Marko Kostić1
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Abstract. In this paper, we consider various classes of Weyl ρ-almost periodic type sequences, Doss
ρ-almost periodic type sequences and Besicovitch ρ-almost periodic type sequences with values in locally
convex spaces. We also investigate the existence and uniqueness of generalized ρ-almost periodic type
solutions for some classes of the abstract (fractional) difference inclusions in locally convex spaces.

1. Introduction and preliminaries

Suppose that (Y, ∥ · ∥) is a complex Banach space. Then we say that a sequence x : Zn → Y is (Bohr)
almost periodic if, for every ϵ > 0, there exists l > 0 such that for each t0 ∈ Zn there exists τ ∈ Zn∩B(t0, l),
where B(t0, l) = {t ∈ Rn : |t− t0| ≤ l}, such that∥∥F (t+ τ)− F (t)

∥∥ ≤ ϵ, t ∈ Zn.

Any almost periodic Y -valued sequence is bounded and its range is relatively compact in Y. It is also well
known that a sequence (xk)k∈Zn in Y is almost periodic if and only if there exists an almost periodic function
F : Rn → Y such that xk = F (k) for all k ∈ Zn; for more details about almost periodic functions, almost
periodic sequences and their applications, we refer to research monographs [7], [12], [17], [19], [20], [23] and
[25].

The class of Stepanov almost periodic sequences, which has been introduced by J. Andres and D. Pen-
nequin in the one-dimensional setting ([3]), reduces to the class of almost periodic sequences; a similar
statement holds in the multi-dimensional setting. This is no longer true for the class of equi-Weyl almost
periodic sequences, which provides a proper extension of the class of almost periodic sequences. This class
of generalized almost periodic sequences has been introduced by A. Iwanik in [16], who considered the class
of equi-Weyl almost periodic sequences with values in compact metric spaces.

Suppose that 1 ≤ p < +∞. The class of (equi-)Weyl-p-almost periodic sequences and the class of Doss-
p-almost periodic sequences have recently been introduced and analyzed in our joint research article with
W.-S. Du and D. Velinov [8]. A sequence x : Zn → Y is said to be:
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(i) equi-Weyl-p-almost periodic if, for every ϵ > 0, there exist s ∈ N and L > 0 such that, for every
t0 ∈ Zn, the cube I ′ ≡ t0 + [0, L]n contains a point τ ∈ I ′ ∩ Zn which satisfies

sup
t0∈Zn

s−n/p

[ ∑
j∈(t0+[0,s]n)∩Zn

∥∥xj+τ − xj

∥∥p]1/p

< ϵ; (1.1)

(ii) Weyl-p-almost periodic if, for every ϵ > 0, there exists L > 0 such that, for every t0 ∈ Zn, the cube
I ′ ≡ t0 + [0, L]n contains a point τ ∈ I ′ ∩ Zn which satisfies that there exists an integer sτ ∈ N such
that (1.1) holds for all integers s ≥ sτ ;

(iii) Doss-p-almost periodic if, for every ϵ > 0, there exists L > 0 such that, for every t0 ∈ Zn, the cube
I ′ ≡ t0 + [0, L]n contains a point τ ∈ I ′ ∩ Zn which satisfies

lim sup
s→+∞

s−n/p

[ ∑
j∈[−s,s]n∩Zn

∥∥xj+τ − xj

∥∥p]1/p

< ϵ;

(iv) Besicovitch-p-almost periodic if for every ϵ > 0 there exists a trigonometric polynomial P (·) such that

lim sup
s→+∞

s−n/p

[ ∑
j∈[−s,s]n∩Zn

∥∥xj − P (j)
∥∥p]1/p

< ϵ.

The class of one-dimensional Besicovitch almost periodic sequences has been introduced by A. Bellow,
V. Losert [24] and further analyzed by V. Bergelson et al. in [5] and [8] (cf. also the research article [15] by
T. Downarowicz and A. Iwanik, where the authors have considered the notion of quasi-uniform convergence
in compact dynamical systems).

On the other hand, the abstract difference equations in normed spaces have been considered in the
research monograph [10] by M. I. Gil, where it has been assumed that all operator coefficients are bounded
linear operators. Further on, the theory of discrete fractional calculus and the theory of fractional difference
equations are rapidly growing fields of theoretical and applied mathematics, which are incredibly important
in different fields like aerodynamics, rheology, interval-valued systems and discrete-time recurrent neural
networks (cf. the monographs [1] by S. Abbas et al., and [11] by C. Goodrich and A. C. Peterson for further
information in this direction). In our recent research monograph [21], we have considered the existence
and uniqueness of almost periodic type solutions for various classes of the abstract fractional-differential-
difference equations in Banach spaces.

Almost periodic sequences with values in locally convex spaces and abstract fractional difference equations
in locally convex spaces have not received considerable attention of authors by now; cf. [22] for further
information in this direction. In this paper, we continue our analysis from the above-mentioned research
article by investigating some classes of Weyl ρ-almost periodic type sequences, Doss ρ-almost periodic type
sequences and Besicovitch ρ-almost periodic type sequences with values in locally convex spaces. We also
investigate the existence and uniqueness of generalized ρ-almost periodic type solutions for some classes of
the abstract (fractional) difference inclusions in locally convex spaces.

The paper is very simply organized. After explaining the notation and preliminaries, in Section 2 we
consider several new classes of generalized ρ-almost periodic type sequences in locally convex spaces. Some
applications to abstract fractional difference equations in locally convex spaces are given in Section 3. With
the exception of the fifth application to the abstract semilinear difference inclusions given in Section 3, the
remaining part of paper is written as a scientific report.

Notation and preliminaries. If Y is a Hausdorff locally convex space over the field of complex numbers,
then the abbreviation ⊛Y stands for the fundamental system of seminorms which defines the topology of
Y ; I denotes the identity operator on Y . If Y is sequentially complete, then we simply write that Y is
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an SCLCS. If X is also a Hausdorff locally convex space over the field C, then L(X,Y ) denotes the space
consisting of all continuous linear mappings from X into Y ; L(X) ≡ L(X,X). For more details about the
integration of functions with values in SCLCSs, the multivalued linear operators (MLOs) in SCLCSs and
the solution operator families subgenerated by MLOs in SCLCSs, we refer the reader to [18]. We will use
the same notion and notation as in this monograph.

If X is a topological space, then by a trigonometric polynomial P : Λ × X → Y we mean any linear
combination of functions like

ei[λ1t1+λ2t2+···+λntn]c(x),

where λi are real numbers (1 ≤ i ≤ n) and c : X → Y is a continuous mapping. Further on, if Y is a
locally convex space and W is a base of balanced neighbourhoods of zero in Y , then a continuous function
f : Rn → Y is said to be (Bohr) almost periodic if, for every W ∈ W, there exists a number l > 0 such
that for each t0 ∈ Rn there exists a point τ ∈ B(t0, l) such that f(t + τ) − f(t) ∈ W for all t ∈ Rn. In
this case, the range of f(·) is totally bounded in Y and f(·) is uniformly continuous; the space of all almost
periodic functions, denoted by AP (Rn : Y ), is translation invariant, closed under uniform convergence and
closed under reflexions at zero. We have recently proved that AP (Rn : Y ) is a vector space with the usual
operations if Y is a general locally convex space; the proof of this fact will appear somewhere else (cf.
also the pioneering papers [13] and [14] by G. M. N’Guérékata). Concerning the class of ρ-almost periodic
functions with values in locally convex spaces and the class of Weyl ρ-almost periodic functions with values
in locally convex spaces, we refer the reader to the recent research articles [9] and [2].

The Gamma function will be denoted by Γ(·) and the principal branch will be always used to take
the powers; define gζ(t) := tζ−1/Γ(ζ) and 0ζ := 0 (ζ > 0, t > 0). Given a number s ∈ R, we set
⌈s⌉ := inf{l ∈ Z : s ≤ l}. If m ∈ N, then we define Nm := {1, ...,m}.

If α > 0 and v ∈ N0, then the Cesàro sequence (kα(v))v∈N0
is defined by

kα(v) :=
Γ(v + α)

Γ(α)v!
.

Then we know that, for every α > 0 and β > 0, we have kα ∗0 kβ ≡ kα+β , where ∗0 is the finite convolution
product given by (kα ∗0 kβ)(v) :=

∑v
j=0 k

α(v− j)kβ(j), v ∈ N0, and |kα(v)− gα(v)| = O(gα(v)|1/v|), v ∈ N.
The Weyl fractional derivative [∆α

Wu](·) of arbitrary order α > 0 is defined as follows. Suppose that
m = ⌈α⌉ and u : Z → Y satisfies

∑∞
v=−∞ p(u(v)) · (1 + |v|)m−α−1 < +∞ for all p ∈ ⊛Y . Then [∆α

Wu](·) is
defined by[

∆α
Wu

]
(v) :=

[
∆m

(
∆

−(m−α)
W u

)]
(v), v ∈ Z,

where (
∆

−(m−α)
W u

)
(v) :=

v∑
l=−∞

km−α(v − l)u(l), v ∈ Z

and

∆muv :=

m∑
j=0

(−1)m−j

(
m

j

)
uv+j , v ∈ Z.

2. Generalized ρ-almost periodic type sequences in locally convex spaces

In this section, we will consider Weyl, Besicovitch and Doss classes of generalized ρ-almost periodic type
sequences with values in locally convex spaces. Unless stated otherwise, we will always assume henceforth
that Y is a (Hausdorff) locally convex space and X is an arbitrary non-empty set.

Suppose that Λ = Λ1 × Λ2 × ... × Λn, where for each j ∈ Nn there exists an integer a ∈ Z such that
Λj = Z, Λj = {..., a− 2, a− 1, a} or Λj = {a, a+1, a+2, ...}. Set Λ′′ := {a ∈ Zn : a+Λ ⊆ Λ}. If l ∈ N, then
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we introduce the set Pl consisting of all closed subrectangles of Λ which contains exactly (l+1)n points with
all integer coordinates. Suppose also that a function Fl : {l} × Pl → [0,∞) is given for each integer l ∈ N.

We start this section by introducing the following extension of [21, Definition 2.1.13], where we have
considered the case in which Y is a complex Banach space and 1 ≤ p < +∞:

Definition 2.1. Suppose that F : Λ ×X → Y is a given sequence, p > 0, ∅ ≠ Λ′ ⊆ Λ′′ and ρ is a binary
relation on Y. Then we say that F (·; ·) is:

(i) equi-Weyl-(B,Λ′,F·, p, ρ)-almost periodic if, for every ϵ > 0, κ ∈ ⊛Y and B ∈ B, there exist l ∈ N and
L > 0 such that, for every t0 ∈ Λ′, there exists a point τ ∈ Λ′ ∩B(t0, L) which satisfies that, for every
J ∈ Pl, j ∈ J and x ∈ B, there exists zj,x ∈ ρ(F (j;x)) such that

sup
x∈B

[
Fl(l, J)

]p ∑
j∈J

[
κ
(
F (j + τ ;x)− zj,x

)]p
< ϵ; (2.1)

(ii) Weyl-(B,Λ′,F·, p, ρ)-almost periodic if, for every ϵ > 0, κ ∈ ⊛Y and B ∈ B, there exists L > 0 such
that, for every t0 ∈ Λ′, there exists a point τ ∈ Λ′∩B(t0, L) which satisfies that there exists an integer
lτ ∈ N such that, for every l ≥ lτ , J ∈ Pl, j ∈ J and x ∈ B, there exists zj,x ∈ ρ(F (j;x)) such that
(2.1) holds.

Any equi-Weyl-(B,Λ′,F·, p, ρ)-almost periodic sequence is Weyl-(B,Λ′,F·, p, ρ)-almost periodic and any
Weyl-(B,Λ′,F·, p, ρ)-almost periodic sequence is Doss-(B,Λ′,F·, p, ρ)-almost periodic in the following sense:

Definition 2.2. Suppose that F : Λ ×X → Y is a given sequence, p > 0, ∅ ̸= Λ′ ⊆ Λ′′ and ρ is a binary
relation on Y. Then we say that F (·; ·) is Doss-(B,Λ′,F·, p, ρ)-almost periodic if, for every ϵ > 0, κ ∈ ⊛Y and
B ∈ B, there exists L > 0 such that, for every t0 ∈ Λ′, there exists a point τ ∈ Λ′ ∩B(t0, L) which satisfies
that there exists an increasing sequence (lk) of positive integers such that, for every k ∈ N, J ∈ Plk , j ∈ J
and x ∈ B, there exists zj,x ∈ ρ(F (j;x)) such that (2.1) holds with the number l replaced by the number lk
therein.

As in the Banach space setting, the situation in which the following condition holds:

(FV) There exists a function F : (0,∞) → (0,∞) such that F(l, J) = F(l) for all l ∈ N and J ∈ Pl

will be the most important for us. Now we will state the following slight extension of [21, Proposition 2.1.16];
the proof is similar to the proof of the above-mentioned result and therefore omitted:

Proposition 2.3. Suppose that F : Λ × X → Y is a given sequence, X is a pseudometric space, p > 0,
Λ′ = Λ′′ and ρ : Y → Y is a continuous function. If (FV) holds and F (·; ·) is equi-Weyl-(B,F, p, ρ)-almost
periodic, then for each bounded set B ∈ B the set {F (t;x) : t ∈ Λ;x ∈ B} is bounded as well.

In [21, Theorem 2.1.18], we have stated an important result concerning the extensions of (equi-)Weyl
ρ-almost periodic type sequences and Doss ρ-almost periodic type sequences. This result also holds in the
case that X is an arbitrary non-empty set, Y is a locally convex space and p > 0; moreover, the result stated
in [21, Corollary 2.1.20] holds if 1 ≤ p < +∞ and Y is a locally convex space (see [9] for more details).

The statement of [21, Proposition 2.1.24] can be extended in the following way, with a general exponent
p > 0 (see [2] for the notion of a Bohr almost periodic function H : Λ → Y ):

Proposition 2.4. Suppose that F : Λ → Y is a given sequence, p > 0, Λ′ = Λ′′, ρ = I and F (l, J) ≡ l−n/p

for all l ∈ N and J ∈ Pl. If for each ϵ > 0 and κ ∈ ⊛Y there exist a Bohr almost periodic function H : Λ → Y
and an integer l ∈ N such that, for every J ∈ Pl, we have

l−n
∑
j∈J

[
κ
(
F (j)−H(j)

)]p
≤ ϵ, (2.2)

then F (·) is equi-Weyl-(Λ′,F·, p, ρ)-almost periodic.
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Unfortunately, in the present situation, we do not know whether the well-known result of A. Iwanik [16,
Lemma 1] and the statement of [21, Proposition 2.1.22] can be extended to the equi-Weyl-p-almost periodic
functions with values in locally convex spaces.

Now we will introduce the class of Besicovitch-(B,F, p)-almost periodic sequences in locally convex spaces;
cf. [21, Definition 2.1.27] for the case in which Y is a complex Banach space and 1 ≤ p < +∞:

Definition 2.5. Suppose that X is a topological space, F : Λ ×X → Y is a given sequence, F : (0,∞) →
[0,∞) and p > 0. Then we say that F (·; ·) is Besicovitch-(B,F, p)-almost periodic if, for every ϵ > 0, κ ∈ ⊛Y

and B ∈ B, there exists a trigonometric polynomial P (·; ·) such that

lim sup
l→+∞

{[
F(l)

]p · sup
x∈B

∑
j∈[−l,l]n∩Λ

[
κ
(
F (j;x)− P (j;x)

)]p}
< ϵ.

If F(l) ≡ l−n/p, then we omit the term “F” from the notation.

The set of all Besicovitch-(B,F, p)-almost periodic sequences is a vector space with the usual operations.
The assertions of [21, Theorem 2.1.28, Corollary 2.1.29] continue to hold in locally spaces with the obvious
terminological changes; in particular, any Besicovitch-p-almost periodic sequence F : Zn → Y is Besicovitch
p-bounded in the sense that

lim sup
l→+∞

{
1

ln
· sup
x∈B

∑
t∈[−l,l]n∩Λ

[
κ
(
F (t;x)

)]p}
< +∞ (p > 0),

and the mean value

M(F ) := lim
T→+∞

1

Tn

∑
t∈(s+T [0,1]n)∩Zn

F (t)

exists if 1 ≤ p < +∞ and Y is an SCLCS, uniformly in s ∈ Zn.
For simplicity, we will not consider here the metrically generalized ρ-almost periodic sequences in locally

convex spaces; cf. [21, Subsection 2.1.4] for the Banach space setting. The structural results established
in [2, Proposition 2.3, Theorem 2.4, Theorem 2.5, Theorem 2.9] and the structural results established in
[2, Subsection 2.1], where we have investigated the connections between the completions of locally convex
spaces and Weyl ρ-almost periodicity, can be clarified for the Weyl ρ-almost peirodic type sequences; details
can be left to interested readers.

3. Applications to abstract fractional difference equations in locally convex spaces

In this section, we will present some applications of the introduced notion to the abstract fractional
difference inclusions in locally convex spaces. For the sake of brevity, we will always asssume that the
underlying locally convex spaces are sequentially complete.

We will divide the remainder of this section into five parts.

1. In [4, Section 3], D. Araya, R. Castro and C. Lizama have investigated the almost automorphic solutions
of the first-order linear difference equation

u(k + 1) = Au(k) + f(k), k ∈ Z, (3.1)

where Y is a complex Banach space, A ∈ L(Y ) and (fk ≡ f(k))k∈Z is an almost automorphic sequence.
All results concerning the existence and uniqueness of almost periodic (automorphic) type solutions of (3.1)
established in [4] and [21] continue to hold if Y is a general SCLCS and A = λI, where |λ| ≠ 1. In this case,
the assertions of [21, Theorem 2.1.40, Theorem 2.1.41] remain true in SCLCSs.

Concerning the statement of [21, Theorem 2.1.42], we will first clarify the following extension of [21,
Theorem 2.1.45] in SCLCSs:
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Theorem 3.1. ([22]) Suppose that (fk) is a (polynomially) bounded sequence, A is a closed MLO in
Y , C ∈ L(Y ), CA ⊆ AC, A−1C ∈ L(Y ), there exists r > 1 such that for each x ∈ Y the mapping
λ 7→ (λ−A)−1Cx, |λ| < r is continuous and for each seminorm p ∈ ⊛Y there exist c > 0 and q ∈ ⊛Y such
that p((z −A)−1Cx) ≤ cq(x), x ∈ Y, |z| < r. Then the abstract difference inclusion

u(k + 1) ∈ Au(k) + Cf(k), k ∈ Z, (3.2)

has a (polynomially) bounded solution u(·), given by

u(k) = −
∞∑

m=k

Ak−m−1Cf(m) = −
∞∑
v=1

A−vCf(k − 1 + v), k ∈ Z. (3.3)

Suppose now, as in the formulation of [21, Theorem 2.1.42], that F : (0,∞) → (0,∞), 1 ≤ p < +∞,
ρ = T ∈ L(X), (FV) holds and the sequence f(·) is equi-Weyl-(F, p, T )-almost periodic [polynomially
bounded Weyl-(F, p, T )-almost periodic; polynomially bounded Doss-(F, p, T )-almost periodic]. Then the
solution u(·) of (3.2), given by (3.3), is (equi-)Weyl-(F, p, T )-almost periodic [polynomially bounded Weyl-
(F, p, T )-almost periodic; polynomially bounded Doss-(F, p, T )-almost periodic].

2. In [21], we have proved several structural results about the existence and uniqueness of generalized almost
periodic (automorphic) solutions of the abstract fractional difference inclusion

∆α
Wu(k) ∈ Au(k + 1) + f(k), k ∈ Z, (3.4)

where A is a closed multivalued linear operator on a complex Banach space Y and 0 < α ≤ 1. A sequence
(u(k))k∈Z is said to be a strong solution to (3.4) if for each seminorm p ∈ ⊛Y one has

∑
k∈Z p(u(k))·gα(|k|) <

+∞, u(k) ∈ D(A) for all k ∈ Z and (3.4) holds. If A is the integral generator of a discrete (α,C)-resolvent
family (Sα(v))v∈N0

⊆ L(Y ), then a sequence (u(k))k∈Z is said to be a mild solution to (3.4) if

u(k) :=

k−1∑
j=−∞

Sα(k − 1− j)f(j), k ∈ Z (3.5)

and the above series is absolutely convergent, with the meaning clear; cf. [22] for the notion.
Suppose now thatA is the integral generator of an exponentially stable C-regularized semigroup (T (t))t≥0

on Y ; here it is worth recalling that the differential operators with constant coefficients generate exponentially
stable C-regularized semigroups in El-type spaces and their projective limits under very mild conditions (cf.
[9] for more details). If this is the case, then there exists a unique strongly continuous operator family
(Rα(t))t≥0 ⊆ L(Y ) such that∫ +∞

0

e−λtRα(t)x dt =
(
λα −A

)−1
x, ℜλ > 0, x ∈ Y,

and A is the integral generator of an exponentially equicontinuous (gα, gα)-regularized C-resolvent family
(Rα(t))t≥0. After that, we define the Poisson transform of (Rα(t))t≥0 by

Sα(v)x :=

∫ +∞

0

e−t t
v

v!
Rα(t)x dt, v ∈ N0, x ∈ Y.

Then (Sα(v))v∈N0
⊆ L(Y ) is a discrete (α,C)-resolvent family (Sα(v))v∈N0

with the integral generator A
and for each seminorm κ ∈ ⊛Y there exist a real number d > 0 and a seminorm κ1 ∈ ⊛Y such that∑+∞

v=0 κ(Sα(v)x) ≤ dκ1(x) for all x ∈ Y. Suppose now that the inhomogeneity f(·) is equi-Weyl-(F, 1, T )-
almost periodic [bounded Weyl-(F, 1, T )-almost periodic; bounded Doss-(F, 1, T )-almost periodic; bounded
Besicovitch-(F, 1)-almost periodic]. Then a mild solution u(·) of (3.4), given by (3.5), has the same property
(cf. [21, pp. 71–72] for more details).
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3. Suppose that f : Zn → Y , λ1, λ2, ..., λn are complex numbers and

max
(
|λ1|, |λ2|, ..., |λn|

)
< 1.

For each tuple (k1, k2, ..., kn) ∈ Zn, we define

u
(
k1, k2, ..., kn

)
:=

∑
l1≤k1,l2≤k2,...,ln≤kn

λk1−l1
1 λk2−l2

2 · ....λkn−ln
n f

(
l1 − 1, l2 − 1, ..., ln − 1

)
=

∑
v1≥0,v2≥0,...,vn≥0

λv1
1 λv2

2 · .... · λvn
n f

(
k1 − v1 − 1, k2 − v2 − 1, ..., kn − vn − 1

)
.

Using the same argumentation as in the Banach space setting, we can prove that, if (FV) holds and
the sequence f(·) is equi-Weyl-(Λ′,F, p, T )-almost periodic [polynomially bounded Weyl-(Λ′,F, p, T )-almost
periodic; polynomially bounded Doss-(Λ′,F, p, T )-almost periodic], then the sequence u(·) enjoys the same
property as f(·); a similar statement can be deduced for the class of generalized Besicovitch-p-almost periodic
sequences (ρ = T ∈ L(X)). It is very simple to find the form of function F : Zn → X such that

u
(
k1 + 1, k2 + 1, ..., kn + 1

)
= λ1λ2...λn · u

(
k1, k2, ..., kn

)
+ F

(
k1, k2, ..., kn

)
,

for all (k1, k2, ..., kn) ∈ Zn; cf. [21, pp. 81–82] for more details.

4. In [8], we have recently analyzed the existence and uniqueness of generalized almost periodic type
solutions to the abstract impulsive Volterra integro-differential equations in Banach spaces. The statement
of [8, Lemma, p. 16] continues to hold in SCLCSs; concerning the assertion of [8, Theorem 8], we would
like to make the following comment: Let us assume that X is an SCLCS and let us replace the condition
(ew-M1), resp, (w-M1), in the formulation of this result with the following condition:

(ew-M1-T -⊛) For every ϵ > 0 and κ ∈ ⊛X , there exist s ∈ N and L > 0 such that every interval I ′ ⊆ [0,∞) of length
L contains a point τ ∈ I ′ which satisfies that there exists an integer qτ ∈ N such that |ti+qτ −ti−τ | < ϵ
for all i ∈ N and

sup
|J|=s

[
1

s

∑
j∈J

[
κ
(
yj+qτ − Tyj

)]p]1/p

< ϵ, (3.6)

where the supremum is taken over all segments J ⊆ N of length s and ρ = T ∈ L(X).

(w-M1-T -⊛) For every ϵ > 0 and κ ∈ ⊛X , there exists L > 0 such that every interval I ′ ⊆ [0,∞) of length L
contains a point τ ∈ I ′ which satisfies that there exist an integer qτ ∈ N and an integer sτ ∈ N such
that |ti+qτ − ti−τ | < ϵ for all integers i ∈ N and (3.6) holds for all integers s ≥ sτ , with ρ = T ∈ L(X).

Then the function G2 : [0,∞) → X, appearing in the formulation of [8, Theorem 8], will be (equi-)Weyl-
(p, T )-almost periodic; all other conclusions stated in the formulation of the above-mentioned result remain
the same in SCLCSs.

5. Suppose that Y is an SCLCS and 1 ≤ p < +∞. Then by B − e−W p
ap(Z : Y ) we denote the collection of

all sequences F : Z → Y such that for each ϵ > 0 and κ ∈ ⊛Y there exist a Bohr almost periodic function
H : Z → Y and an integer l ∈ N such that, for every J ∈ Pl, we have (2.2). Since Bohr almost periodic
sequences form vector space with usual operations, it readily follows that Y := l∞(Z : Y )∩B−e−W p

ap(Z : Y )
is vector space with usual operations. If we endow Y with the fundamental system of seminorms (κ∞)κ∈⊛Y

,
where κ∞(F ) := supk∈Z κ(F (k)) for all F ∈ Y and κ ∈ ⊛Y , then Y is an SCLCS, as easily approved.

Suppose, further, that A is a closed MLO in Y , C ∈ L(Y ), CA ⊆ AC, A−1C ∈ L(Y ), there exists r > 1
such that for each x ∈ Y the mapping λ 7→ (λ − A)−1Cx, |λ| < r is continuous and for each seminorm
p ∈ ⊛Y there exists c > 0 such that p((z −A)−1Cx) ≤ cp(x), x ∈ Y, |z| < r. Then we know that there exist
a finite real number M > 0 and a number a ∈ (0, 1) such that

p
(
A−vCx

)
≤ Mavp(x), v ∈ N, x ∈ X; (3.7)
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cf. the proof of [22, Theorem 3.1]. Consider now the abstract semilinear difference inclusion

u(k + 1) ∈ Au(k) + Cf(k, u(k)), k ∈ Z. (3.8)

Taking into account Theorem 3.1, it seems reasonable to say that a sequence u : Z → Y is a mild solution
of (3.8) if

u(k) = −
∞∑
v=1

A−vCf
(
k − 1 + v, u(k − 1 + v)

)
, k ∈ Z,

where we assume that the last series converges absolutely. Concerning the function f : Z × Y → Y, we
assume that the following conditions hold:

(i) For each κ ∈ ⊛Y , there exists a finite real number cκ ∈ (0, (1−a)/(Ma)) such that κ(f(k, x)−f(k, y)) ≤
cκκ(x− y) for all k ∈ Z and x, y ∈ Y.

(ii) For each bounded set B ⊆ Y, the set {f(k, x) : k ∈ Z, x ∈ B} is bounded as well.

(iii) f : Z × Y → Y is Bohr almost periodic on bounded subsets of Y, i.e., for each ϵ > 0, κ ∈ ⊛Y and
for each bounded set B ⊆ Y, we have that there exists l > 0 such that for each t0 ∈ Z there exists
τ ∈ B(t0, l) ∩ Z such that

κ
(
f(k + τ, u(k + τ))− f(k, u(k))

)
≤ ϵ, k ∈ Z, x ∈ B. (3.9)

Suppose now that a Bohr almost periodic sequence H : Z → Y is given. Then the range of H(·), denoted
by B, is bounded in Y and the function fB : Z → l∞(B : Y ) given by [fB(k)](x) := f(k, x), k ∈ Z, x ∈ B is
Bohr almost periodic. Keeping in mind this fact, we can prove that, for every ϵ > 0 and κ ∈ ⊛Y , there exists
l > 0 such that for each t0 ∈ Z there exists τ ∈ B(t0, l)∩Z such that (3.9) holds and κ(H(k+τ)−H(k)) ≤ ϵ
for all k ∈ Z. Using this fact and decomposition

κ
(
f(k + τ,H(k + τ))− f(k,H(k))

)
≤ κ

(
f(k + τ,H(k + τ))− f(k,H(k + τ))

)
+ κ

(
f(k,H(k + τ))− f(k,H(k))

)
≤ sup

x∈B
κ
(
f(k + τ, x)− f(k, x)

)
+ cκκ

(
H(k + τ)−H(k)

)
, k ∈ Z,

it follows that the function k 7→ f(k,H(k)), k ∈ Z is Bohr almost periodic. Using now the assumptions (i)
and (ii), it follows that for each u ∈ Y we have f(·, u(·)) ∈ Y. Furthermore, the sequence

k 7→
∞∑
v=1

A−vCH(k − 1 + v), k ∈ Z

is Bohr almost periodic and we can repeat verbatim the argumentation contained in the proof of [21, Theorem
2.1.42] to show that for each u ∈ Y the sequence

k 7→
∞∑
v=1

A−vCu(k − 1 + v), k ∈ Z

also belongs to Y. By the foregoing, the mapping Π : Y → Y, given by[
Π(u)

]
(k) := −

∞∑
v=1

A−vCf
(
k − 1 + v, u(k − 1 + v)

)
, k ∈ Z

is well-defined. Moreover, for each seminorm κ ∈ ⊛Y and u1, u2 ∈ Y we have

κ∞

(
Π
(
u1

)
−Π

(
u2

))
≤ Mcκ

a

1− a
κ∞

(
u1 − u2

)
;

cf. also (3.7). Applying the well-known fixed point theorem of A. Deleanu and G. Marinescu [6, Theorem 1,
p. 92], we get that there exists a unique solution of the abstract semilinear difference inclusion (3.8) which
belongs to the space Y.
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[20] M. Kostić, Metrical Almost Periodicity and Applications to Integro-Differential Equations, W. de Gruyter, Berlin, 2023.
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