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bLaboratoire MEMIAD, Université des Antilles, Campus de Fouillole, 97159 Pointe à Pitre

Abstract. For a set S of real numbers we introduce the concept of S-asymptotically almost automorphic
functions valued in a Banach space. It generalizes in particular the one of Z-asymptotically almost
automorphic functions. This enables us to study the existence of asymptotically almost automorphic
solutions of a differential equation with piecewise constant argument of generalized type.

1. Introduction

The almost periodic functions have been introduced by Bohr in 1925 and describe phenomenons that
are similar to the periodic oscillations which can be observed in many fields, such as celestial mechanics,
nonlinear vibration, electromagnetic theory, plasma physics, engineering. An important generalization of the
almost periodicity is the concept of the almost automorphy introduced in the literature [3]-[6] by Bochner.
In [16], the author presents the theory of almost automorphic functions and their applications to differential
equations.
The study of differential equations with piecewise constant argument (EPCA) is an important subject
because these equations have the structure of continuous dynamical systems in intervals of unit length.
Therefore they combine the properties of both differential and difference equations. There have been many
papers studying DEPCA, see for instance [17],[19]-[23] and the references therein.
Some papers deal with the existence of asympotically ω-periodic solutions (see for instance [11]), S-asymp-
totically ω-periodic solutions of DEPCA (see [12]). Other articles deal with the existence of almost auto-
morphic solutions of EPCA (see [10],[18]). In this paper, we study the existence of asymptoticlly almost
automorphic solutions of the following differential equation with piecewise constant argument of generalized
(DEPCAG) type (see [1], [2], [8])

x′(t) = A(t)x(φ(t)) + f(t, x(φ(t))), t ∈ R (1)
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where φ is a step function, A : R → Rq×q is continuous in R \ S and f : R× Rq → Rq is continuous. More
precisely, there exists a strictly increasing sequence of real numbers ti, i ∈ Z, such that ti →+

− ∞ as i→+
− ∞

and on each interval [ti, ti+1[, φ(t) is constant:

φ(t) = gn, tn ≤ t < tn+1.

In order to give sufficient conditions of existence and uniqueness of asymptotically almost automorphic
solutions of the equation (1), we introduce the concept of S-asymptotically almost automorphic functions
that generalizes the one of Z-asymptotically almost automorphic ones, where S is a subset of R. We refer
to [7, 14] to have more information about this.
The set of the new results presented in this paper allow to study the existence of Asymptotically Almost
Automorphy of the equation (1), while in [13], we studied the existence of Almost Automorphy of the
equation(1). Therefore, the study of the existence of Asymptotically Almost Automorphy of the equation
(1) is new.
The paper is organized as follows. In Section 2, we recall definitions and properties about almost automorphic
functions and introduce the concept of S-almost automorphic functions. In Section 3, we also study the
existence and uniqueness of almost automorphic solutions of the equation (1) considering the concept of
S-almost automorphic functions and using the Banach fixed point Theorem.

2. Asymptotically almost automorphic functions with respect to a set

Let S denote a subset of R. For every non zero real number r we consider the function φr : R → R such
that for every (t, s) ∈ R× S:

φr(t+ s) = φr(t) + rs. (2)

In particular for all s ∈ S we have:

φr(s) = rs+ φr(0).

Definition 2.1. A subset A of R is said to be r-stable if it is invariant under the homothety of ratio r and
center 0.

We give an example of such a set S and an associated function φr.

Example 2.2. Let S be a discrete subgroup of R, then S = αZ for some (non negative) real α, and S is
obviously r-stable for all non zero integer r. Set φr(t) = [rt/α]α + c where [.] is the integer part function
and c is a constant; then it is easily seen that (2) is satisfied.

Proposition 2.3. The function φr satisfies the following properties

i) ∀(t, s) ∈ R× S, φr(t− s) = φr(t)− rs.

i) ∀(s1, s2, · · · , sp) ∈ Sp,∀(m1,m2, · · · ,mp) ∈ Zp:

φr(m1s1 + · · ·+mpsp) = r(m1s1 + · · ·+mpsp) + φr(0).

In all the sequel X denotes a real or complex Banach space.

Definition 2.4. A function f : R → X is said to be S-continuous if it is continuous in R \ S, which is
refered as an S-continuous function.

The set of all S-continuous functions f : R → X will be denoted by SC(R,X) and the set of those that are
bounded by SCb(R,X). Clearly SCb(R,X) is a closed subspace of the Banach space Cb(R,X) of bounded
continuous functions and then it is also a Banach space.
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Definition 2.5. A bounded S-continuous function f : R → X is said to be almost automorphic with respect
to the set S if for every real sequence s′ valued in S, there are a subsequence s and a function g : R → X
such that for all t ∈ R:

lim
n→∞

f(t+ sn) = g(t) and lim
n→∞

g(t− sn) = f(t). (3)

Such a function f is called S-almost automorphic and if the above limits are uniform, it is called S-almost
periodic.

The set of all S-almost automorphic (resp. almost periodic) functions will be denoted by SAA(R,X) (resp.
SAP (R,X)). Clearly SAA(R,X) is a subspace of the Banach space SCb(R,X); we have the following:

Theorem 2.6. The space SAA(R,X) is a Banach space.

Proposition 2.7. Let S be r-stable and φr ∈ SC(R,X). If f ∈ AA(R,X) (resp. AP (R,X)), then f ◦ φr ∈
SAA(R,X) (resp. SAP (R,X)). If f ∈ SAA(R,X) (resp. SAP (R,X)) and S ∩ φr(R \ S) = ∅, the same
conclusion holds.

We associate to the subset S the following property:

(P1) There is a bounded set K0 in R such that all real t can be
written as t = α+ ξ where α ∈ K0 and ξ ∈ S.

(P2) For every T > 0, there exist Tγ ∈ R such that if t > Tγ then φr(t) > T .

Example 2.8. Let S = αZ for some (non negative) real α. Set φr(t) = [rt/α]α+ c where [.] is the integer
part function, r ∈ N∗ and c is a constant; then it is easily seen that (P2) is satisfied. In fact, since
[rt/α]α+ c ≤ rt+ c < [rt/α]α+ α+ c and lim

t→+∞
rt+ c = +∞, we deduce that lim

t→+∞
[rt/α]α+ α+ c = +∞.

Hence, we have lim
t→+∞

[rt/α]α+ c = +∞ and φr(t) = [rt/α]α+ c satisfy (P2).

Proposition 2.9. Let S satisfy (P1) and let f be an S-almost automorphic (resp. S-almost periodic)
function. If f is uniformly continuous, then f is almost automorphic (resp. almost periodic).

Remark 2.10. We note that S = Z satisfies the condition (P1): it suffices to take K0 = [0, 1[, since for
every real number x, x− [x] ∈ [0, 1[.

Definition 2.11. A continuous function f : R×X → X is said to be almost automorphic in t ∈ R for each
x ∈ X, if for every sequence of real numbers (s′n), there exists a subsequence (sn) such that for each t ∈ R
and x ∈ X,

lim
n→∞

f(t+ sn, x) = g(t, x) and lim
n→∞

g(t− sn, x) = f(t, x).

Then we have the following result.

Theorem 2.12. [16, Theorem 2.2.5] If f is almost automorphic in t ∈ R for each x ∈ X and if f is
Lipschitzian in x uniformly in t, then g satisfies the same Lipschitz condition in x uniformly in t.

Using the above theorem we obtain:

Theorem 2.13. Let f : R×X → X be almost automorphic in t ∈ R for each x ∈ X. Assume that f satisfies
a Lipschitz condition in x uniformly in t ∈ R. Let also ϕ : R → X be almost automorphic. Then the function
F : R → X defined by F (t) = f(t, ϕ(φr(t)) is S-almost automorphic.

Remark 2.14. Let f : R×X → X satisfy the conditions of the previous theorem. We have that the function
G : R → X defined by G(t) = g(t, ϕ(φr(t))) is bounded.
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Definition 2.15. A bounded continuous function f : R → X is said to be asymptotically almost automorphic
if it can be decomposed as f(t) = g(t) + h(t) where

g(t) ∈ AA(R,X), h(t) ∈ C0(R,X).

Here
C0(R,X) := {h : R → X : h is continuous on R and lim

t→∞
h(t) = 0}.

Denote by AAA(R,X) the set of all such functions.

Lemma 2.16. AAA(R,X) is a Banach space with the suprenum norm.

Definition 2.17. A bounded S-continuous function f : R → X is said to be S-asymptotically almost auto-
morphic if it can be decomposed as f(t) = g(t) + h(t) where

g(t) ∈ SAA(R,X), h(t) ∈ SC0(R,X).

Here
SC0(R,X) := {h : R → X : h is continuous on R \ S and lim

t→∞
h(t) = 0}.

Denote by SAAA(R,X) the set of all such functions.

Proposition 2.18. We assume also that there exists a sequence s′ valued in S such thar lim
n→∞

s′n = +∞.

Then the decomposition of a S-Asymptotically almost automorphic function is unique.

Proof. We assume that f(t) = g1(t) + h1(t), f(t) = g2(t) + h2(t) with g1, g2 ∈ SAA(R,X) and h1, h2 ∈
SC0(R,X). Then g1(t)− g2(t) + h1(t)− h2(t) = 0 and lim

t→∞
g1(t)− g2(t) = 0. Consider the sequence s′k such

thar lim
k→∞

s′k = ∞. Therefore there exist a subsequence sn such that

lim
k→+∞

g1(t+ sk)− g2(t+ sk) = F (t)

and
lim

k→+∞
F (t− sk) = g1(t)− g2(t)

for all t ∈ R. We deduce that for all t ∈ R, F (t) = 0. Therefore for all t ∈ R, g1(t) − g2(t) = 0 and
h1(t)− h2(t) = 0.

Lemma 2.19. We assume also that there exists a sequence s′ valued in S such thar lim
n→∞

s′n = +∞. If

f ∈ SAAA(R,X), that is, f = g + h where g ∈ SAA(R,X) and h ∈ SC0(R,X) then

{g(t) : t ∈ R} ⊂ {f(t) : t ∈ R}.

Proof. Since g ∈ SAA(R,X), there exists a sequence (sn)n∈N with lim
n→+∞

sn = +∞ such that

lim
n→+∞

g(t+ sn) = p(t) (a)

is well defined for each t ∈ R and
lim

n→+∞
p(t− sn) = g(t) (b)

for each t ∈ R.
Now for any fixed t0, we have lim

n→+∞
t0 + sn = +∞, and deduce that

lim
n→+∞

f(t0 + sn) = lim
n→+∞

g(t0 + sn) + h(t0 + sn) = p(t0).
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Consequently, p(t0) ∈ {f(t) : t ∈ R} and {p(t) : t ∈ R} ⊂ {f(t) : t ∈ R}. According (a) and (b), we have
{g(t) : t ∈ R} = {p(t) : t ∈ R}. Therefore

{g(t) : t ∈ R} ⊂ {f(t) : t ∈ R}.

2

Remark 2.20. If f ∈ SAAA(R,X), that is f = g + h where g ∈ SAA(R,X) and h ∈ SC0(R,X), we define

||f ||SAAA := sup
t∈R

||g(t)||+ sup
t∈R

||h(t)||.

Lemma 2.21. We assume also that there exists a sequence s′ valued in S such thar lim
n→∞

s′n = +∞.

SAAA(R,X) is a Banach space with the norm || · ||SAAA.

Proof. If f ∈ SAAA(R,X), that is, f = g + h where g ∈ SAA(R,X) and h ∈ SC0(R,X), then ||g|| =
sup
t∈R

||g(t)|| ≤ sup
t∈R

||f(t)|| = ||f || considering the last lemma. Now

||f || ≤ ||f ||SAAA(R,X)

= sup
t∈R

||g(t)||+ sup
t∈R

||h(t)||

= sup
t∈R

||g(t)||+ sup
t∈R

||f(t)− g(t)||

≤ 3 sup
t∈R

||f(t)||

≤ 3||f ||.

Let fn be a cauchy sequence in SAAA(R,X). Then fn = gn+hn with gn ∈ SAA(R,X) and hn ∈ SC0(R,X).
Since fn is a cauchy sequence in SAAA(R,X), then gn is a cauchy sequence in SAA(R,X).
Since gn is a cauchy sequence in the Banach space SAA(R,X), then there exists g ∈ SAA(R,X) such that
gn → g uniformly on R.
hn is also a Cauchy sequence of S-continuous functions with respect to the norm sup. Therefore, there exists
h : R → X such that hn → h uniformly on R. Since ||h(t)|| ≤ ||h(t)− hn(t)||+ ||hn(t)||, we deduce that

lim
t→∞

||h(t)|| = 0.

For all x0 ∈ R \ S, hn is continuous in x0. Since hn → h uniformly on R and hn is continuous in x0, then h
is continuous in x0. Therefore h : R → X is continous on R \ S. We obtain so that h ∈ SC0(R,X).
Therefore, the function f defined as f := g + h ∈ SAAA(R,X) and fn → f . 2

Lemma 2.22. The following assertions hold:
i) Let S satisfy (P1) and f = g + h, g ∈ SAA(R,X) and SC0(R, X). We assume also that there exist a
sequence s′ valued in S such thar lim

n→∞
s′n = ∞. If f is uniformly continuous on R, then g is also uniformly

continuous on R.
ii) Let S satisfy (P1). We assume also that there exist a sequence s′ valued in S such that lim

n→∞
s′n = ∞If f

is uniformly continuous on R and f ∈ SAAA(R, X). Then f ∈ AAA(R, X).
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Proof. i) There exist a sequence s′n ∈ S with lim
n→∞

s′n = ∞. Therefore, there exist a subsequence {sn} ⊂ {s′n}
such that

lim
n→∞

g(t+ sn) = u(t) and lim
n→∞

u(t− sn) = g(t).

We observe that for every x, y ∈ R:

||u(x)− u(y)|| ≤ ||u(x)− g(x+ sn)||+ ||g(x+ sn)− g(y + sn)||+ ||g(y + sn)− u(y)||

≤ ||u(x)− g(x+ sn)||+ ||f(x+ sn)− f(y + sn)||+ ||g(y + sn)− u(y)||

+||h(x+ sn)||+ ||h(y + sn)||

Sinc f is uniformly continuous, and g is a S almost automophic function, then u is also uniformly continuous.
We observe that for every x, y ∈ R:

||g(x)− g(y)|| ≤ ||g(x)− u(x− sn)||+ ||u(x− sn)− u(y − sn)||

+||u(y − sn)− g(y).||

We deduce so that g is uniformly continuous.
ii) Since f is uniformly continuous, then g is uniformly continuous. Since g is uniformly continuous and a S
almost-automorphic function, then g is an almost automorphic function. Since f and g are continuous then
h = f − g is continuous. Therefore h ∈ C0(R, X). 2

Example 2.23. The function f(t) = sin( 1
2+cos(t)+cos(

√
2t)

) is an almost automorphic function but is not

almost periodic (see [16]). For all real α ̸= 0, the function g(t) = sin( 1
2+cos([ t

α ]α)+cos(
√
2[ t

α ]α)
) is a αZ-almost

automorphic function.

Proposition 2.24. We assume that S be r-stable, that (P1) and (P2) are satisfied. We assume also that
φr ∈ SC(R,X). If f ∈ AAA(R,X), then f ◦ φr ∈ SAAA(R,X).

Proof. Let f ∈ AAA(R,X). Therefore f = g+ h where g ∈ AA(R,X) and h ∈ C0(R, X). According to the
proposition 2.7, g ◦ φr ∈ SAA(R,X). Since h ∈ C0(R, X), then we have

∀ϵ > 0, ∃ T > 0, t > T =⇒ ||h(t)|| < ϵ.

Let ϵ > 0. According to (P2), there exists Tγ ∈ R such thath if t > Tγ , then φr(t) > T . Therefore, if
t > Tγ , then ||h(φr(t))|| < ϵ. We deduce so that h ∈ SC0(R, X). 2

Definition 2.25. A bounded continuous function f : R×X → X is said to vanish at infinity if limt→∞ ||f(t, x)|| =
0 uniformly on any bounded subset of X. Denote by C0(R× X, X) the set of all these functions.

Definition 2.26. A bounded continuous function f : R × X → X is said to be asymptotically almost auto-
morphic if it can be decomposed as f = g + h where

g ∈ AA(R× X,X), h ∈ C0(R× X,X).

Denote by AAA(R× X,X) the set of all such functions.

Theorem 2.27. Let f : R × X → X be asymptotically almost automorphic. Assume that f satisfies a
Lipschitz condition in x uniformly in t ∈ R. Let also ϕ : R → X be asymptotically almost automorphic.
Then the function F : R → X defined by F (t) = f(t, ϕ(φr(t)) is S-Asymptotically almost automorphic.
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Proof. Let f = g + h, ϕ = ϕ1 + ϕ2 where g ∈ AA(R × X,X), ϕ1 ∈ AA(R,X), h ∈ C0(R × X,X) and
ϕ2 ∈ C0(R,X). We have

f(t, ϕ(φr(t)) = g(t, ϕ1(φr(t)) + f(t, ϕ(φr(t))− g(t, ϕ1(φr(t))

= g(t, ϕ1(φr(t)) + g(t, ϕ(φr(t))− g(t, ϕ1(φr(t)) + h(t, ϕ(φr(t)).

Since f is lipschitzian then g is also lipschitzian. The idea is the same idea that in i of the lemma 2.22.
Since g is lipschitzian, then the function G(t) = g(t, ϕ1(φr(t))) is a S-almost automorphic function.
Since

||g(t, ϕ(φr(t))− g(t, ϕ1(φr(t))|| ≤ Kg||ϕ2(φr(t))||,

we deduce that g(t, ϕ(φr(t))− g(t, ϕ1(φr(t)) ∈ SC0(R,X). Obviously h(t, ϕ(φr(t)) ∈ SC0(R,X). 2

3. A differential equation with a general piecewise constant argument

We consider the differential equation (1) where φ is a step function, A : R → Rq×q is continuous in R \ S
and f : R×Rq → Rq is continuous. Thus, in the sequel X = Rq. Moreover, in addition to (P1), we consider
the two following conditions:

(P3) ∀(t, s) ∈ R× S, φ(t+ s) = φ(t) + s and φ(t) ≤ t.

(P4) f : R×X → X is asymptotically almost automorphic in t ∈ R for each x ∈ X and f satisfies a Lipschitz
condition in x uniformly in t ∈ R.

We give a consequence of (P1) that will be useful for the sequel.

Proposition 3.1. [13] Assume that (P1) is satisfied, then there exists a bounded set K1 in R such that:
∀t ∈ R, t− φ(t) ∈ K1.

Definition 3.2. A solution of (1) is a function x(t) defined on R for which the following conditions hold:

(1) x(t) is continuous on R.
(2) The derivative x′(t) exists at each point t ∈ R, with possible exception at the points ti, i ∈ Z, where

one-sided derivatives exist.

(3) The equation (1) is satisfied on each interval [ti, ti+1[, i ∈ Z.

Theorem 3.3. [13] Let f satisfy (P3) and (P4). Then the solution of (1) satisfies

x(t) = x(φ(t)) +

∫ t

φ(t)

A(s)x(φ(s))ds+

∫ t

φ(t)

f(s, x(φ(s))ds.

Lemma 3.4. Assume that (P1), (P2), (P3) and (P4) are satisfied. We assume also that A(t) is an
S-Asymptotically almost automorphic operator. Then

(∧ϕ)(t) = ϕ(φ(t)) +

∫ t

φ(t)

A(s)ϕ(φ(s))ds+

∫ t

φ(t)

f(s, ϕ(φ(s)))ds

maps SAAA(X) into itself.
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We set M1 = sup(K1), where K1 is the bounded subset of R introduced in Proposition 3.1. Note that, if
φ(t) ≤ t, then M1 ≥ 0.
Proof. We have A = A1 + A2 and ϕ = ϕ1 + ϕ2, where A1, ϕ1 ∈ SAA(R, X) and A2, ϕ2 ∈ SC0(R, X).
According to the theorem 2.27, we have f(t, ϕ(φ(t))) = g(t, ϕ1(φ(t))+g(t, ϕ(φ(t))−g(t, ϕ1(φ(t))+h(t, ϕ(φ(t))
where

g(t, ϕ1(φ(t)) ∈ SAA(R, X)

and
g(t, ϕ(φ(t))− g(t, ϕ1(φ(t)) + h(t, ϕ(φr(t)) ∈ SC0(R, X).

We put

F (t) = ϕ(φ(t)) +

∫ t

φ(t)

A(s)ϕ(φ(s))ds+

∫ t

φ(t)

f(s, ϕ(φ(s)))ds.

Therefore we can write F (t) = G(t) +H(t) with

G(t) = ϕ1(φ(t)) +

∫ t

φ(t)

A1(s)ϕ1(φ(s))ds+

∫ t

φ(t)

g(s, ϕ1(φ(s))ds

and

H(t) = ϕ2(φ(t)) +

∫ t

φ(t)

A1(s)ϕ2(φ(s))ds+

∫ t

φ(t)

A2(s)ϕ1(φ(s))ds

+

∫ t

φ(t)

A2(s)ϕ2(φ(s))ds+

∫ t

φ(t)

g(s, ϕ(φ(s))− g(s, ϕ1(φ(s))ds

+

∫ t

φ(t)

h(s, ϕ(φ(s))ds.

According to the lemma 3.3 of [13], we have that G ∈ SAA(R, X) because ϕ1 ∈ SAA(R, X). Let ϵ > 0.
There exist T > 0 such that if t > T then

||ϕ2(φ(t))|| ≤
ϵ

6
, ||ϕ2(φ(t))|| ≤

ϵ

6M1||A1||∞
, ||ϕ2(φ(t))|| ≤

ϵ

6M1Kg

||A2(t)|| ≤
ϵ

6M1||ϕ1||∞
, ||A2(t)|| ≤

ϵ

6M1||ϕ2||∞
and ||h(t, ϕ(φ(t)))|| ≤ ϵ

6
.

According to (P2), there exist Tγ such that if t > Tγ , then φ(t) > T . If t > Tγ , we observe that

||H(t)|| ≤ ||ϕ2(φ(t))||+
∫ t

φ(t)

||A1(s)ϕ2(φ(s))||ds+
∫ t

φ(t)

||A2(s)ϕ1(φ(s))||ds

+

∫ t

φ(t)

||A2(s)ϕ2(φ(s))||ds+
∫ t

φ(t)

||g(s, ϕ(φ(s))− g(s, ϕ1(φ(s))||ds

+

∫ t

φ(t)

||h(s, ϕ(φ(s))||ds.

≤ ||ϕ2(φ(t))||+
∫ t

φ(t)

||A1||∞||ϕ2(φ(s))||ds+
∫ t

φ(t)

||A2(s)|| ||ϕ1||∞ds

+

∫ t

φ(t)

||A2(s)|| ||ϕ2||∞ds+
∫ t

φ(t)

Kg||ϕ2(φ(s))||ds+
∫ t

φ(t)

||h(s, ϕ(φ(s))||ds

≤ ϵ

6
+

∫ t

φ(t)

||A1||∞
ϵ

6M1||A1||∞
ds+

∫ t

φ(t)

ϵ

6M1||ϕ1||∞
||ϕ1||∞ds
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+

∫ t

φ(t)

ϵ

6M1||ϕ2||∞
||ϕ2||∞ds+

∫ t

φ(t)

Kg
ϵ

6M1Kg
ds+

∫ t

φ(t)

ϵ

6M1
ds

≤ ϵ

6
+

ϵ

6M1
M1 +

ϵ

6M1
M1 +

ϵ

6M1
M1 +

ϵ

6M1
M1 +

ϵ

6M1
M1

≤ ϵ.

Therefore H ∈ SC0(R, X). 2

Theorem 3.5. Assume that (P1), (P2), (P3) and (P4) are satisfied and that y → φ(y) is constant on
the interval [φ(t), t]. If

∥I +
∫ t

φ(t)

A(s)ds∥+M1L < 1,

then (1) has a unique S-Asymptotically Almost Automorphic solution which is also the unique Asymptotically
Almost Automorphic solution of (1).

Proof. First Step

We define the nonlinear operator Γ by the expression

(Γϕ)(t) = ϕ(φ(t)) +

∫ t

φ(t)

A(s)ϕ(φ(s))ds+

∫ t

φ(t)

f(s, ϕ(φ(s)))ds.

According to Theorem 2.27, the function t 7→ f(t, ϕ(φ(t))) belongs to SAAA(R,X). According to Lemma
3.4 the operator Γ maps SAAA(R,X) into itself. Since t− φ(t) ≤M1 for all t ∈ R, we have:

∥(Γϕ)(t)− (Γψ)(t)∥ = ∥
(
I +

∫ t

φ(t)
A(s)ds

)(
ϕ(φ(t))− ψ(φ(t))

)
+
∫ t

φ(t)
f(s, ϕ(φ(s)))− f(s, ψ(φ(s)))ds∥

≤ ∥I +
∫ t

φ(t)
A(s)ds∥ ∥ϕ(φ(t))− ψ(φ(t))∥

+∥
∫ t

φ(t)
f(s, ϕ(φ(s)))− f(s, ψ(φ(s)))ds∥

≤ ∥I +
∫ t

φ(t)
A(s)ds∥ ∥ϕ− ψ∥∞

+
∫ t

φ(t)
L∥ϕ(φ(s)))− ψ(φ(s))∥ds

∥(Γϕ)(t)− (Γψ)(t)∥ ≤
(
∥I +

∫ t

φ(t)
A(s)ds∥+M1L

)
∥ϕ− ψ∥∞.

This proves that Γ is a contraction. We conclude that Γ has a unique fixed point in SAAA(R,X). We denote
by z the unique S-asymptotically almost automorphic solution of (1).

Second Step

We show that z is an asymptotically almost automorphic solution of (1). Since z is S-asymptotically almost
automorphic, it suffices to prove that z is uniformly continuous. According to the second step of the proof
oh the theorem of [13], z is uniformly continuous. Therefore z is an asymptotically almost automorphic
solution of (1).
The function z is necessarily the unique asymptotically almost automorphic solution of (1). In fact, an
asymptotically almost automorphic function is also S-asymptotically almost automorphic and (1) has a
unique such solution. The theorem is thus proved. 2
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Corollary 3.6. Let A(t) be a Z-asymptotically almost automorphic operator and assume that (P4) is sat-
isfied. If

∥I +
∫ t

[t]

A(s)ds∥+ L < 1,

then the following equation

x′(t) = A(t)x([t]) + f(t, x([t]))dt, t ∈ R

has a unique Z-asymptotically almost automorphic solution which is also his unique asymptotically almost
automorphic solution.

Proof. We have φ(t) = [t] ≤ t, K0 = K1 = [0, 1[ and M1 = 1. let T > 0. We put Tγ = [T ] + 1. If t > Tγ
then [t] > T . 2

Corollary 3.7. Suppose that A(t) is a αhZ-asymptotically almost automorphic operator and that (P4) is
satisfied. If

∥I +
∫ t

[ t
αh ]αh

A(s)ds∥+ αhL < 1,

then the following equation

x′(t) = A(t)x(

[
t

αh

]
αh) + f(t, x(

[
t

αh

]
αh))dt, t ∈ R,

has a unique αhZ-asymptotically almost automorphic solution which is also its unique asymptotically almost
automorphic solution.

Proof. We have that φ(t) = [ t
αh ]αh. Then φ is constant on each interval [nαh, (n + 1)αh[ where n ∈ Z.

We observe also that

φ(t+ αhn) =
[ t+ αhn

αh

]
αh =

[ t

αh
+ n

]
αh

=
[ t

αh

]
αh+ αhn = φ(t) + αhn.

If t ∈ [nαh, (n + 1)αh[ where n ∈ Z, then φ(t) = αhn, φ(t) ≤ t t − φ(t) ∈ [0, αh] and M0 = αh. All real
t can be written as t = β + ζ where β ∈ [0, αh] and ζ ∈ αhZ. Let T > 0. We put Tγ =

(
[ T
αh ] + 1

)
αh. If

t > Tγ then [ t
αh ]αh > T . 2
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