Functional Analysis, Approximation and Computation 17:2 (2025), 43–61

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac

q-A-numerical range of an operator

Ahmed Elbarbouchia, Mohamed Boumazgourb

^aDepartment of Mathematics, Faculy of Sciences, University Ibn Zohr, Agadir, Morocco ^bFaculy of Economic Science, University Ibn Zohr, Dakhla city, P.O. Box 8658 Agadir, Morocco

Abstract. The aim of this paper is to introduce and investigate the concept of the q-A-numerical range of an operator on a Hilbert space. Basic properties of this set are studied, and several estimates of the related q-A-numerical radius are established. As applications, many q-A-numerical radius inequalities for some operator matrices on a Hilbert space are given. In addition, some results about the center of the q-A-numerical range of an operator are established.

1. Introduction

Let H be a complex Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and associated norm $\| \cdot \|$. By $\mathcal{B}(H)$ we denote the algebra of all bounded linear operators from H into H. For $T \in \mathcal{B}(H)$, we denote by $\mathcal{N}(T)$, $\mathcal{R}(T)$ and T^* the kernel, the range and the adjoint of T, respectively. If F is a linear subspace of H, then \overline{F} stands for its closure in the topology induced by the norm $\| \cdot \|$.

Recall that an operator $A \in \mathcal{B}(H)$ is said to be positive if $\langle Ax, x \rangle \geq 0$ for every $x \in H$. In this case we let $A^{\frac{1}{2}}$ denote the square root of A.

If $A \in \mathcal{B}(H)$ is positive, then it induces a semi-inner product on H defined by $\langle x, y \rangle_A = \langle Ax, y \rangle$ for every $x, y \in H$. Let $\|\cdot\|_A$ be the semi-norm on H induced by $\langle \cdot, \cdot \rangle_A$. Obviously, we have $\|x\|_A = \|A^{\frac{1}{2}}x\|$ for all $x \in H$. Moreover, we can easily check that $\|x\|_A = 0$ if and only if $x \in \mathcal{N}(A)$. This shows $\|\cdot\|_A$ is a norm if and only if $x \in \mathcal{N}(A)$ is complete if and only if the range $x \in \mathcal{N}(A)$ is closed in $x \in \mathcal{N}(A)$.

In all what follows, we shall suppose that A is a positive operator. We say that an operator $T \in \mathcal{B}(H)$ is A-bounded if there exists c > 0 such that $||Tx||_A \le c||x||_A$ for all $x \in H$. By $\mathcal{B}_A(H)$ we denote the set of all operators $T \in \mathcal{B}(H)$ which are A-bounded. Namely,

 $\mathcal{B}_A(H) = \left\{ T \in \mathcal{B}(H) : \exists c > 0 \text{ such that } ||Tx||_A \le c||x||_A \text{ for all } x \in H \right\}.$

2020 Mathematics Subject Classification. 47A12, 47A30, 47A63.

Keywords. Numerical range; Numerical radius; Positive operator; Inequality; Operator matrix.

Received: 30 August 2025; Accepted: 12 October 2025

Communicated by Dragan S. Djordjević

 $\textit{Email addresses:} \ \textbf{ahmedelbarbouchi92@gmail.com} \ (Ahmed \ Elbarbouchi), \\ \textbf{m.boumazgour@uiz.ac.ma} \ (Mohamed \ Boumazgour) \ (Ahmed \ Elbarbouchi), \\ \textbf{m.boumazgour@uiz.ac.ma} \ (Mohamed \ Boumazgour) \ (Ahmed \ Elbarbouchi), \\ \textbf{m.boumazgour@uiz.ac.ma} \ (Mohamed \ Boumazgour) \ (Ahmed \ Elbarbouchi), \\ \textbf{m.boumazgour@uiz.ac.ma} \ (Mohamed \ Boumazgour) \ (Ahmed \ Elbarbouchi), \\ \textbf{m.boumazgour@uiz.ac.ma} \ (Mohamed \ Boumazgour) \ (Ahmed \ Elbarbouchi), \\ \textbf{m.boumazgour@uiz.ac.ma} \ (Mohamed \ Boumazgour) \ (Ahmed \ Elbarbouchi), \\ \textbf{m.boumazgour@uiz.ac.ma} \ (Mohamed \ Boumazgour) \ (Ahmed \ Elbarbouchi), \\ \textbf{m.boumazgour@uiz.ac.ma} \ (Mohamed \ Boumazgour) \ (Ahmed \ Elbarbouchi), \\ \textbf{m.boumazgour@uiz.ac.ma} \ (Mohamed \ Boumazgour) \ (Ahmed \ Elbarbouchi), \\ \textbf{m.boumazgour@uiz.ac.ma} \ (Mohamed \ Boumazgour) \ (Ahmed \ Elbarbouchi), \\ \textbf{m.boumazgour@uiz.ac.ma} \ (Mohamed \ Boumazgour) \ (Ahmed \ Elbarbouchi), \\ \textbf{m.boumazgour@uiz.ac.ma} \ (Mohamed \ Boumazgour) \ (Ahmed \ Elbarbouchi), \\ \textbf{m.boumazgour@uiz.ac.ma} \ (Mohamed \ Boumazgour) \ (Ahmed \ Elbarbouchi), \\ \textbf{m.boumazgour@uiz.ac.ma} \ (Mohamed \ Boumazgour) \ (Ahmed \ Elbarbouchi), \\ \textbf{m.boumazgour@uiz.ac.ma} \ (Ahmed \ Elbarbouchi), \\ \textbf{m.boumazgour.ac.ma} \ (Ahmed \ Elbarbouchi), \\ \textbf{m.boumazgour@uiz.ac.ma} \$

ORCID iDs: 0000-0002-4752-4739 (Mohamed Boumazgour)

We equip the subalgebra $\mathcal{B}_A(H)$ with the semi-norm $\|\cdot\|_A$ given by

$$||T||_{A} = \sup \left\{ \frac{||Tx||_{A}}{||x||_{A}} : x \in \overline{\mathcal{R}(A)}, x \neq 0 \right\}$$
$$= \sup \left\{ ||Tx||_{A} : x \in \overline{\mathcal{R}(A)}, ||x||_{A} = 1 \right\}.$$

It can be easily seen that $||T||_A < \infty$ for all operators $T \in \mathcal{B}_A(H)$. Moreover, from [11], there is equality

$$||T||_A = \sup \{ |\langle Tx, y \rangle_A| : x, y \in H, ||x||_A = ||y||_A = 1 \}.$$

Notice that if $T \notin \mathcal{B}_A(H)$, then the supremum of $\left\{\frac{\|Tx\|_A}{\|x\|_A} : x \in \overline{\mathcal{R}(A)}, x \neq 0\right\}$ may be infinite (see [12]). However, if the operator A is supposed to be injective with closed range, then $\mathcal{B}_A(H) = \mathcal{B}(H)$. We refer to [6, 11, 12, 21, 23] for more details about A-bounded operators.

Let $T \in \mathcal{B}_A(H)$. An operator $S \in \mathcal{B}_A(H)$ is called A-adjoint of T if for every $x, y \in H$, there is equality

$$\langle Tx, y \rangle_A = \langle x, Sy \rangle_A.$$

Notice that, in general, an operator $T \in \mathcal{B}_A(H)$ may admit none, only one or many A-adjoints. In fact, by the Douglas Range Inclusion Theorem [9], such T admits an A-adjoint if and only if $T^*\mathcal{R}(T) \subseteq \mathcal{R}(T)$, or equivalently S is solution of the operator equation $AX = T^*A$. Moreover, it is not difficult to see that $T \in \mathcal{B}_A(H)$ admits an A-adjoint if and only if $T \in \mathcal{B}_{A^2}(H)$. In this case there exists a distinguished A-adjoint of T which we shall denote by T_A (see [21]).

Let P denote the orthogonal projection onto the space $\overline{\mathcal{R}(A^{\frac{1}{2}})}$. Equip the space $\mathcal{R}(A^{\frac{1}{2}})$ with the inner product defined by

$$(A^{\frac{1}{2}}x, A^{\frac{1}{2}}y) := \langle Px, Py \rangle$$
 for all $x, y \in H$.

Throughout the remainder of this paper, we shall use the symbols $\mathbf{R}(A^{\frac{1}{2}})$ and $\|\cdot\|_{\mathbf{R}(A^{\frac{1}{2}})}$ to denote the Hilbert space $(\mathcal{R}(A^{\frac{1}{2}}),(\cdot,\cdot))$ and the norm induced by the inner product (\cdot,\cdot) , respectively. Notice that a simple calculation shows that $\|Ax\|_{\mathbf{R}(A^{\frac{1}{2}})} = \|x\|_A$ for every $x \in H$.

Let $T \in \mathcal{B}(H)$. The A-numerical range and the A-numerical radius of T are defined respectively by

$$W_A(T) = \left\{ \langle Tx, x \rangle_A : x \in H, ||x||_A = 1 \right\}$$

and

$$w_A(T) = \sup \{ |\lambda| : \lambda \in W_A(T) \}.$$

It is worthwhile to note that $W_A(T)$ is a nonempty convex subset of \mathcal{C} which may not be closed (see [5]). Moreover, the A-numerical radius $w_A(\cdot)$ is a semi-norm which is equivalent to $\|\cdot\|_A$; more precisely, $\frac{1}{2}\|T\|_A \le w_A(T) \le \|T\|_A$ for all operators $T \in \mathcal{B}_A(H)$. For more details about the A-numerical range and A-numerical radius, we refer to [1, 5, 7, 26] and references therein. The A-Crawford number of T is given by

$$c_A(T) = \inf\{|\lambda| : \lambda \in W_A(T)\}.$$

For $T \in \mathcal{B}(H)$ and $|q| \le 1$, the *q*-numerical range of *T* is defined by

$$W_q(T) = \big\{ \langle Tx, y \rangle : (x, y) \in C_q \big\},\,$$

where

$$C_q = \{(x, y) \in H \times H : ||x|| = ||y|| = 1; \langle x, y \rangle = q \}.$$

The *q*-numerical radius of *T* is defined by

$$w_q(T) = \sup \{ |\lambda| : \lambda \in W_q(T) \}.$$

For q = 1, $W_q(T)$ and $w_q(T)$ reduce to the classical numerical range W(T) and classical numerical radius w(T) of T, respectively. For more results about the q-numerical range, the reader is referred to [18, 20] and references therein.

The numerical range and its variants are useful tools in operator theory, matrix analysis and numerical analysis, see for example [16, 25] and references therein. The A-numerical range and the q-numerical range of an operator have been studied by many authors, see [1, 5, 7, 8, 10, 11, 15, 18–20, 26] and references therein for an overview about the subject. In this paper, we introduce the concept of q-A-numerical range of an operator and study its basic properties. The remainder of the paper is organized as follows. In the beginning of Section 2, we introduce the q-A-numerical range of an operator $T \in \mathcal{B}(H)$ and investigate its basic properties. Next, we give several estimates of the q-A-numerical radius of T. Our q-A-numerical radius inequalities are natural generalizations of some existing A-numerical radius and q-numerical radius inequalities, see [10, 15]. Section 3 is devoted to estimates of q-A-numerical radius for some $n \times n$ operator matrices regarded as operators on the direct sum $\bigoplus_{i=1}^n H$. The obtained results generalize many inequalities established in [15]. In Section 4, we study the center of the q-A-numerical range of an operator and give some related results.

For a scalar $z \in \mathcal{C}$, let \overline{z} and $\Re(z)$ denote the complex conjugate and the real part of z, respectively. If $K \subseteq \mathbb{C}$, we set $K^* = {\overline{\lambda} : \lambda \in K}$.

2. q-A-numerical range

In this section, we define the q-A-numerical range of an operator $T \in \mathcal{B}(H)$ and describe its basic properties, extending known results on the q-numerical range.

Definition 2.1. Let $T \in \mathcal{B}(H)$ and $|q| \le 1$. We define the *q-A*-numerical range of T by

$$W_{q,A}(T) = \{ \langle Tx, y \rangle_A : x, y \in H, ||x||_A = ||y||_A = 1, \langle x, y \rangle_A = q \}.$$

The *q-A*-numerical radius of *T* is given by

$$w_{q,A}(T) = \sup \{ |\lambda| : \lambda \in W_{q,A}(T) \}$$

When A = I (I: the identity operator), $W_{q,A}(T)$ reduces to the q-numerical range $W_q(T)$ of T. We begin with the following theorem.

Theorem 2.2. If $T \in \mathcal{B}(H)$ and $|q| \le 1$, then the following assertions hold.

- 1. If dim H = 1, then $W_{q,A}(T)$ is nonempty if and only if |q| = 1, in which case if A = [a] and T = [t], then $W_{q,A}(T) = \{atq\}$,
- 2. $W_{q,A}(\alpha I + \lambda T) = \alpha q + \lambda W_{q,A}(T)$ for all $\alpha, \lambda \in \mathbb{C}$,
- 3. $W_{\lambda q,A}(T) = \lambda W_{q,A}(T)$ for all $|\lambda| = 1$,
- 4. If $U \in \mathcal{B}(H)$ is unitary and AU = UA, then $W_{q,A}(U^*TU) = W_{q,A}(T)$,
- 5. If AT = TA, then $(W_{q,A}(T))^* = W_{\bar{q},A}(T^*)$,
- 6. If AT = TA, then $W_{q,A}(T) \subseteq W_q(T)$.

Proof. The assertions (1), (2) and (3) are easy to prove, so their proofs will be omitted.

To prove (4), consider $\lambda \in W_{q,A}(U^*TU)$. There exist two vectors $x, y \in H$ such that $||x||_A = ||y||_A = 1$, $\langle x, y \rangle_A = q$ and $\lambda = \langle U^*TUx, y \rangle_A$. Since AU = UA, then $AU^* = U^*A$, and so

$$\lambda = \langle AU^*TUx, y \rangle = \langle ATUx, Uy \rangle = \langle TUx, Uy \rangle_A$$

On the other hand, since U is unitary, then

$$||Ux||_A^2 = \langle AUx, Ux \rangle = \langle UAx, Ux \rangle = ||x||_A^2 = 1.$$

By using a similar argument, it follows that $||Uy||_A = 1$ and $\langle Ux, Uy \rangle_A = \langle x, y \rangle_A = q$. Thus $\lambda \in W_{q,A}(T)$. This shows that

$$W_{a,A}(U^*TU) \subseteq W_{a,A}(T)$$
.

Since $W_{q,A}(T) = W_{q,A}(U^*(UTU^*)U)$, we derive the equality

$$W_{a,A}(U^*TU) = W_{a,A}(T).$$

To prove (5), let $\lambda = \langle Tx, y \rangle_A \in W_{q,A}(T)$, where $x, y \in H$ with $||x||_A = ||y||_A = 1$ and $\langle x, y \rangle_A = q$. Since AT = TA and $\langle y, x \rangle_A = \langle y, Ax \rangle = \overline{q}$, then $\overline{\lambda} = \langle T^*y, x \rangle_A \in W_{\overline{q},A}(T^*)$. This implies that

$$(W_{q,A}(T))^* \subseteq W_{\overline{q},A}(T^*).$$

The reverse inclusion obviously follows from the first inclusion since $T^{**} = T$ and $\overline{q} = q$. This completes the proof of (5).

To prove (6), suppose that AT = TA. Then $A^{\frac{1}{2}}T = TA^{\frac{1}{2}}$. Now, if $x, y \in H$ are given such that $||x||_A = ||y||_A = 1$ and $\langle x, y \rangle_A = q$, then $||A^{\frac{1}{2}}x|| = ||A^{\frac{1}{2}}y|| = 1$ and $\langle A^{\frac{1}{2}}x, A^{\frac{1}{2}}y \rangle = \langle Ax, y \rangle = q$. Thus

$$\langle Tx, y \rangle_A = \langle TA^{\frac{1}{2}}x, A^{\frac{1}{2}}y \rangle \in W_q(T).$$

From this we derive that

$$W_{q,A}(T) \subseteq W_q(T)$$
.

For an arbitrary operator $T \in \mathcal{B}(H)$, the set $W_{q,A}(T)$ may not be bounded. To see this, consider the following example.

Example 2.3. Let A and T be the 2×2 matrices defined by $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, respectively. Then

$$W_{1,A}(T) = \left\{ y\bar{a} : x, a, y \in \mathbb{C}, |x|^2 = |a|^2 = 1, x\bar{a} = 1 \right\}.$$

Thus

$$W_{1,A}(T) = \mathbb{C}.$$

In particular, $w_{1,A}(T) = +\infty$.

Since $w_q(T) \le ||T|| = 1$, then we deduce that the inequality $w_{q,A}(T) \le w_q(T)$ does not hold in general. Moreover, this example shows that the commutativity condition in Part (6) of the above theorem cannot be dropped.

Remark 2.4. The above example also shows that $W_{q,A}(T)$ may be empty. Indeed, consider the operators A and T defined in Example 2.3. If $q = \frac{1}{2}$, then a straightforward computation shows that $W_{q,A}(T) = \emptyset$.

Proposition 2.5. Suppose dim $H \ge 2$ and let $T \in \mathcal{B}(H)$. If $|q| \le 1$ and A is invertible, then $W_{q,A}(T)$ is nonempty.

Proof. It is not difficult to show that there exist unit vectors $a,b \in H$ such that $\langle a,b \rangle = q$. Since A is invertible, then $A^{\frac{1}{2}}$ is also invertible. Thus, there exist $x,y \in H$ such that $a = A^{\frac{1}{2}}x$ and $b = A^{\frac{1}{2}}y$. Hence $||x||_A = ||y||_A = 1$ and $\langle x,y \rangle_A = \langle A^{\frac{1}{2}}x,A^{\frac{1}{2}}y \rangle = \langle a,b \rangle = q$. Thus $\langle Tx,y \rangle_A \in W_{q,A}(T)$. This implies that $W_{q,A}(T)$ is nonempty, which ends the proof. \square

Proposition 2.6. Let $T \in \mathcal{B}(H)$ and $|q| \le 1$. If A is invertible and AT = TA, then

$$W_{q,A}(T) = W_q(T).$$

Proof. By Part (6) of Theorem 2.2, it suffices to show $W_q(T) \subseteq W_{q,A}(T)$. To do so let $\lambda \in W_q(T)$. Then there exists $(a,b) \in C_q$ such that $\lambda = \langle Ta,b \rangle$. Since A is invertible, there exist $x,y \in H$ such that $a = A^{\frac{1}{2}}x$ and $b = A^{\frac{1}{2}}y$. Thus

$$\lambda = \langle Ta, b \rangle = \langle TA^{\frac{1}{2}}x, A^{\frac{1}{2}}y \rangle = \langle A^{\frac{1}{2}}Tx, A^{\frac{1}{2}}y \rangle = \langle ATx, y \rangle = \langle Tx, y \rangle_A.$$

Also, we easily check that $||x||_A = ||y||_A = 1$ and $\langle x, y \rangle_A = \langle a, b \rangle = q$. Hence

$$\lambda = \langle Tx,y\rangle_A \in W_{q,A}(T) \cdot$$

This completes the proof. \Box

Proposition 2.7. Let $T \in \mathcal{B}_A(H)$ and $|q| \leq 1$. Then

$$W_{q,A}(T_A) = (W_{\bar{q},A}(T))^*.$$

Proof. Let $\lambda \in W_{q,A}(T_A)$. We can write $\lambda = \langle T_A x, y \rangle_A$, where $x, y \in H$ satisfy $||x||_A = ||y||_A = 1$ and $\langle x, y \rangle_A = q$. Hence

$$\lambda = \langle AT_A x, y \rangle = \overline{\langle Ty, x \rangle_A}$$

Since $\langle y, x \rangle_A = \overline{q}$, then $\lambda \in (W_{\overline{q},A}(T))^*$. Therefore

$$W_{q,A}(T_A) \subseteq (W_{\bar{q},A}(T))^*$$
.

Using a similar argument, we can also prove the reverse inclusion. Thus we get the desired equality. $\ \Box$

An immediate consequence of the above theorem is the following equality.

Corollary 2.8. *If* $T \in \mathcal{B}_A(H)$ *and* $0 \le q \le 1$ *, then*

$$w_{q,A}(T_A) = w_{q,A}(T).$$

Proposition 2.9. *If* $T \in \mathcal{B}_A(H)$, then

$$w_{q,A}(T) \leq ||T||_A$$

Proof. Since $T \in \mathcal{B}_A(H)$, then

$$||T||_A = \sup \{ |\langle Tx, y \rangle_A| : x, y \in H, ||x||_A = ||y||_A = 1 \}.$$

Hence

$$w_{q,A}(T) \leq ||T||_A.$$

The following theorem is a generalization of [12, Theorem 2]. The proof is similar to that given in [12], we give it here for the sake of completness.

Theorem 2.10. Let $T \in \mathcal{B}(H)$ be given such that $T(\mathcal{N}(A)) \nsubseteq \mathcal{N}(A)$. Then

$$w_{q,A}(T) = +\infty$$
 for every $|q| \le 1$.

Proof. With respect to the decomposition $H = \mathcal{N}(A) \oplus \overline{\mathcal{R}(A)}$, we have

$$W_{q,A}(T) = \{ \langle Tx_1, y_2 \rangle_A + \langle Tx_2, y_2 \rangle_A : x_1 \in \mathcal{N}(A), x_2, y_2 \in \overline{\mathcal{R}(A)}, \\ ||x_2||_A = ||y_2||_A = 1, \langle x_2, y_2 \rangle_A = q \}.$$
(2.1)

Since $T(\mathcal{N}(A)) \nsubseteq \mathcal{N}(A)$, then there exists $a \in \mathcal{N}(A)$ such that $ATa \neq 0$. This implies that $A^{\frac{1}{2}}ATa \neq 0$. Indeed, if $A^{\frac{1}{2}}ATa = 0$, then $A^2Ta = 0$. Hence $||ATa||^2 = \langle A^2Ta, Ta \rangle = 0$ and so ATa = 0 leading to a contradiction. Next, let $b = \frac{ATa}{||ATa||_A} \in \mathcal{R}(A)$. Clearly we have $||b||_A = 1$. Then it follows from (2.1) that

$$W_{q,A}(T) \supseteq \left\{ \lambda \langle Ta, b \rangle_A + \langle Tx_2, b \rangle_A : x_2 \in \overline{\mathcal{R}(A)}, ||x_2||_A = 1, \langle x_2, b \rangle_A = q, \lambda \in \mathbb{C} \right\}$$

$$\supseteq \left\{ \lambda \frac{||ATa||^2}{||ATa||_A} + \langle Tx_2, b \rangle_A : x_2 \in \overline{\mathcal{R}(A)}, ||x_2||_A = 1, \langle x_2, b \rangle_A = q, \lambda \in \mathbb{C} \right\}$$

$$= \mathbb{C}.$$

Therefore

$$w_{a,A}(T) = +\infty.$$

The following theorem shows that $W_{q,A}(T)$ is a convex subset of \mathcal{C} for all $T \in \mathcal{B}(H)$ and $0 \le q \le 1$.

Theorem 2.11. If $0 \le q \le 1$, then $W_{q,A}(T)$ is convex for all $T \in \mathcal{B}(H)$.

Proof. Consider the following two cases:

- 1. *A* is injective : In this case $(H, \langle .,. \rangle_A)$ is a pre-Hilbert space. Thus the convexity of $W_{q,A}(T)$ follows from [24, Theorem 1].
- 2. *A* is not injective : Suppose first that $T(\mathcal{N}(A)) \subseteq \mathcal{N}(A)$. From (2.1), we have

$$W_{q,A}(T) = \left\{ \langle PTx_2, y_2 \rangle_A : x_2, y_2 \in \overline{\mathcal{R}(A)}, ||x_2||_A = ||y_2||_A = 1, \langle x_2, y_2 \rangle_A = q \right\}$$

= $W_{q,A_1}(T_1)$,

where P denotes the orthogonal projection onto $\overline{\mathcal{R}(A)}$, $A_1 = A \mid_{\overline{\mathcal{R}(A)}}$ and $T_1 = PT \mid_{\overline{\mathcal{R}(A)}}$. Since A_1 is an injective operator, we deduce from the first case above that $W_{q,A_1}(T_1)$ is convex. Hence $W_{q,A}(T)$ is convex.

Next, if $T(\mathcal{N}(A)) \nsubseteq \mathcal{N}(A)$, then by Theorem 2.10 we have $W_{q,A}(T) = \mathbb{C}$ which is convex.

Define the operator $Z_A: H \to \mathbf{R}(A^{\frac{1}{2}})$ by $Z_A(x) = Ax$. If $T \in \mathcal{B}(\mathbf{R}(A^{\frac{1}{2}}))$, then by $||T||_{\mathbf{R}(A^{\frac{1}{2}})}$ we denote its norm as an operator acting on the Hilbert space $\mathbf{R}(A^{\frac{1}{2}})$.

To prove our upcoming result, we need the following proposition which holds by combining Proposition 3.6 and Proposition 3.9 in [2].

Proposition 2.12. Let $T \in \mathcal{B}(H)$. Then $T \in \mathcal{B}_A(H)$ if and only if there exists a unique $\widetilde{T} \in \mathcal{B}(R(A^{\frac{1}{2}}))$ such that $Z_A T = \widetilde{T} Z_A$. Moreover, $\|\widetilde{T}\|_{R(A^{\frac{1}{2}})} = \|T\|_A$.

Suppose that $T \in \mathcal{B}(H)$ is A-bounded. In all what follows we denote by $\widetilde{T} \in \mathcal{B}(\mathbf{R}(A^{\frac{1}{2}}))$ the unique operator induced by T in Proposition 2.12.

Theorem 2.13. If $T \in \mathcal{B}_A(H)$ and $|q| \le 1$, then

$$W_{q,A}(T) \subseteq W_q(\widetilde{T}) \subseteq \overline{W_{q,A}(T)}$$

In particular,

$$w_{q,A}(T) = w_q(\widetilde{T}).$$

Proof. Let $\lambda \in W_{q,A}(T)$. Then we can find $x,y \in H$ with $\|x\|_A = \|y\|_A = 1$ and $\langle x,y \rangle_A = q$ such that $\lambda = \langle Tx,y \rangle_A$. A straightforward calculation shows that $\|Ax\|_{\mathbf{R}(A^{\frac{1}{2}})} = \|Ay\|_{\mathbf{R}(A^{\frac{1}{2}})} = 1$ and (Ax,Ay) = q. Thus, by virtue of Proposition 2.12, we have

$$\lambda = \langle A^{\frac{1}{2}}Tx, A^{\frac{1}{2}}y \rangle$$

$$= (ATx, Ay)$$

$$= (Z_ATx, Ay)$$

$$= (\widetilde{T}Z_Ax, Ay)$$

$$= (\widetilde{T}Ax, Ay) \in W_q(\widetilde{T}).$$

This shows that

$$W_{a,A}(T) \subseteq W_a(\widetilde{T})$$

For the second inclusion, assume that $\lambda \in W_q(\widetilde{T})$. Then $\lambda = (\widetilde{T}A^{\frac{1}{2}}x, A^{\frac{1}{2}}y)$, where x and y are two vectors in H with $\|A^{\frac{1}{2}}x\|_{\mathbf{R}(A^{\frac{1}{2}})} = \|A^{\frac{1}{2}}y\|_{\mathbf{R}(A^{\frac{1}{2}})} = 1$ and $(A^{\frac{1}{2}}x, A^{\frac{1}{2}}y) = q$. Since, by [2], the subspace $\mathcal{R}(A)$ is dense in $\mathbf{R}(A^{\frac{1}{2}})$, there exist sequences $\{x_n\}_n$, $\{y_n\}_n \subseteq H$ such that $A^{\frac{1}{2}}x = \lim_n Ax_n$ and $A^{\frac{1}{2}}y = \lim_n Ay_n$. Hence

$$\lim_{n} ||x_n||_A = \lim_{n} ||Ax_n||_{\mathbf{R}(A^{\frac{1}{2}})} = ||A^{\frac{1}{2}}x||_{\mathbf{R}(A^{\frac{1}{2}})} = 1.$$

Similarly, we have $\lim_n ||y_n||_A = 1$. Furthermore,

$$\lim_n \langle x_n, y_n \rangle_A = \lim_n (Ax_n, Ay_n) = (A^{\frac{1}{2}}x, A^{\frac{1}{2}}y) = q.$$

For each n, set $x'_n = \frac{x_n}{\|x_n\|_A}$, $y'_n = \frac{y_n}{\|y_n\|_A}$ and $q_n = \langle x'_n, y'_n \rangle_A$. Then $\|x'_n\|_A = \|y'_n\|_A = 1$ and q_n converges to q. Now, by Proposition 2.12 we have

$$\lambda = \lim_{n} (\widetilde{T}Ax_n, Ay_n) = \lim_{n} (ATx_n, Ay_n) = \lim_{n} (Tx'_n, y'_n)_A \in \overline{W_{q_n, A}(T)}.$$

If the operator A is injective, then $(H, \langle \cdot, \cdot \rangle_A)$ is a pre-Hilbert space. Hence we derive from [20, Theorem 2.9] that

$$\lambda \in \overline{W_{q,A}(T)}$$
.

Next, if A is not injective, then $W_{q_n,A}(T) = W_{q_n,A_1}(T_1)$, where $A_1 = A \mid_{\overline{\mathcal{R}(A)}}$ and $T_1 = PT \mid_{\overline{\mathcal{R}(A)}}$. Since A_1 is injective, we deduce as in the above that $\lambda \in \overline{W_{q,A}(T)}$.

This completes the proof. \Box

As a consequence of Theorem 2.13, we obtain the following corollary.

Corollary 2.14. *If* $T \in \mathcal{B}_A(H)$ *and* $|q| \leq 1$ *, then*

$$\overline{W_q(\widetilde{T})} = \overline{W_{q,A}(T)}.$$

In particular,

$$w(\widetilde{T}) = w_A(T)$$
 and $c(\widetilde{T}) = c_A(T)$.

Theorem 2.15. Let $T \in \mathcal{B}_A(H)$ be injective. If $|q| \le 1$, then

$$\frac{q}{2} \left(||T||_A + \frac{c_A^2(T)}{||T||_A} \right) \leq w_{q,A}(T) \leq ||T||_A.$$

If in addition, T is A-normaloid then

$$q||T||_A \leq w_{a,A}(T).$$

Proof. By [10, Theorem 2.3], we have

$$\frac{q}{2}\left(\|\widetilde{T}\|+\frac{c^2(\widetilde{T})}{\|\widetilde{T}\|}\right)\leq w_q(\widetilde{T})\leq \|\widetilde{T}\|$$

and if \widetilde{T} is normaloid, then

$$q||\widetilde{T}|| \le w_q(\widetilde{T}).$$

Thus the proof follows by combining Proposition 2.12 and Theorem 2.13 and the fact that T is A-normaloid if and only if \widetilde{T} is normaloid. \square

In [5], it was shown that, for all $T \in \mathcal{B}_A(H)$,

$$\frac{1}{2}||T||_{A} \leq w_{A}(T) \leq ||T||_{A}.$$

The following corollary gives a generalization of this inequality.

Corollary 2.16. *If* $T \in \mathcal{B}_A(H)$ *and* $|q| \leq 1$ *, then*

$$\frac{q}{2}||T||_A \le w_{q,A}(T) \le ||T||_A.$$

The next theorem provides an upper bound for the set $\{w_{q,A}(T): q \in [0,1]\}$, where $T \in \mathcal{B}_A(H)$.

Theorem 2.17. *If* $T \in \mathcal{B}_A(H)$ *, then*

$$||T||_A = \sup \{ w_{q,A}(T) : q \in [0,1] \}.$$

Proof. By virtue of [10, Theorem 2.1], we derive that

$$\|\widetilde{T}\|_{\mathbf{R}(A^{\frac{1}{2}})} = \sup \{ w_q(\widetilde{T}) : q \in [0, 1] \}.$$

Thus the proof follows by combining Proposition 2.12 and Theorem 2.13. \Box

The next theorem provides some estimates for the q-A-numerical radius of an operator.

Theorem 2.18. Let $T \in \mathcal{B}_A(H)$ and $q \in [0,1]$. The following assertions hold.

1. If $q \ge \frac{1}{\sqrt{2}}$, then

$$w_{q,A}^2(T) \le (2q^2 - 1)w_A^2(T) + (1 - q^2 + q\sqrt{1 - q^2})||T||_A^2$$

2. If $q < \frac{1}{\sqrt{2}}$, then

$$w_{q,A}^2(T) \le (2q^2 - 1)c_A^2(T) + (1 - q^2 + q\sqrt{1 - q^2})||T||_A^2.$$

Proof. 1. Assume that $q \ge \frac{1}{\sqrt{2}}$. By applying [10, Theorem 2.2] for the operator \widetilde{T} , we get

$$w_q^2(\widetilde{T}) \le (2q^2 - 1)w^2(\widetilde{T}) + (1 - q^2 + q\sqrt{1 - q^2})\|\widetilde{T}\|_{\mathbf{R}(A^{\frac{1}{2}})}^2. \tag{2.2}$$

Since by Proposition 2.12, $\|\widetilde{T}\|_{\mathbf{R}(A^{\frac{1}{2}})} = \|T\|_A$, and by Theorem 2.13, $w_{q,A}(T) = w_q(\widetilde{T})$, it follows from (2.2) that

$$w_{q,A}^2(T) \leq (2q^2-1)w_A^2(T) + (1-q^2+q\sqrt{1-q^2})||T||_A^2.$$

2. If $q < \frac{1}{\sqrt{2}}$, then by applying [10, Theorem 2.2] once again, we get

$$w_q^2(\widetilde{T}) \le (2q^2 - 1)c^2(\widetilde{T}) + (1 - q^2 + q\sqrt{1 - q^2})||\widetilde{T}||_{\mathbf{R}(A^{\frac{1}{2}})}^2$$

Therefore, by Proposition 2.12, Theorem 2.13 and Corollary 2.14, we deduce that

$$w_{q,A}^2(T) \le (2q^2 - 1)c_A^2(T) + (1 - q^2 + q\sqrt{1 - q^2})||T||_A^2$$

which completes the proof.

Let $T \in \mathcal{B}_A(H)$. Feki, in [12, Theorem 7], proved that

$$w_A(T) \le \frac{1}{2} (\|T\|_A + \|T^2\|_A^{\frac{1}{2}})$$
 (2.3)

By using Theorem 2.18, Part (1) and the inequality in (2.3), we get the following upper bound of $w_{q,A}(T)$ for all $T \in \mathcal{B}_A(H)$.

Corollary 2.19. *If* $T \in \mathcal{B}_A(H)$ *and* $\frac{1}{\sqrt{2}} \leq q \leq 1$, then

$$w_{q,A}^2(T) \leq \Big(\frac{3}{4} - \frac{q^2}{2} + q\sqrt{1-q^2}\,\Big)||T||_A^2 + \Big(\frac{q^2}{2} - \frac{1}{4}\Big)\Big(||T^2||_A + 2||T||_A||T^2||_A^{\frac{1}{2}}\Big) + \frac{1}{4} + \frac{$$

If, in particular $AT^2 = 0$, then

$$w_{q,A}(T) \leq \sqrt{\frac{3}{4} - \frac{q^2}{2} + q\sqrt{1 - q^2}} \, \|T\|_A.$$

Combining the above theorem and [14, Theorem 2.2], we also have the following result.

Corollary 2.20. If $T \in \mathcal{B}_A(H)$ and $\frac{1}{\sqrt{2}} \leq q \leq 1$, then

$$w_{q,A}^2(T) \leq \Big(\frac{3}{4} - \frac{q^2}{2} + q\sqrt{1-q^2}\,\Big)||T||_A^2 + \Big(\frac{q^2}{2} - \frac{1}{4}\Big)w_A(T^2)\cdot$$

Let $S, T \in \mathcal{B}(H)$ and $|q| \le 1$. Obviously $w_{q,A}(T+S) \le w_{q,A}(T) + w_{q,A}(S)$. So it seems interesting to find conditions under which there is equality $w_{q,A}(T+S) = w_{q,A}(T) + w_{q,A}(S)$. Such equality has been studied by Kaadoud and Moulaharabbi [18, Theorem 3.1] in the special case where A is the identity operator.

Theorem 2.21. Let $S, T \in \mathcal{B}_A(H)$ and $|q| \le 1$. The following assertions are equivalent:

- 1. $w_{q,A}(T+S) = w_{q,A}(T) + w_{q,A}(S)$,
- 2. There exit sequences $\{x_n\}_n$ and $\{y_n\}_n$ of vectors in H with $||x_n||_A = ||y_n||_A = 1$ and $\langle x_n, y_n \rangle_A = q$ such that

$$\lim_n \langle T_A y_n, x_n \rangle_A \langle S x_n, y_n \rangle_A = w_{q,A}(T) w_{q,A}(S).$$

Proof. Assume that $w_{q,A}(T+S) = w_{q,A}(T) + w_{q,A}(S)$. Then there exist sequences $\{x_n\}_n$ and $\{y_n\}_n$ of vectors in H with $\|x_n\|_A = \|y_n\|_A = 1$ and $\langle x_n, y_n \rangle_A = q$ such that

$$w_{q,A}(T) + w_{q,A}(S) = \lim_{n} |\langle (T+S)x_n, y_n \rangle_A|$$

For every n, we have

$$\begin{aligned} |\langle (T+S)x_{n},y_{n}\rangle_{A}|^{2} &= |\langle Tx_{n},y_{n}\rangle_{A}|^{2} + |\langle Sx_{n},y_{n}\rangle_{A}|^{2} + 2\Re(\overline{\langle Tx_{n},y_{n}\rangle_{A}}\langle Sx_{n},y_{n}\rangle_{A}) \\ &= |\langle Tx_{n},y_{n}\rangle_{A}|^{2} + |\langle Sx_{n},y_{n}\rangle_{A}|^{2} + 2\Re(\langle T_{A}y_{n},x_{n}\rangle_{A}\langle Sx_{n},y_{n}\rangle_{A}) \\ &\leq |\langle Tx_{n},y_{n}\rangle_{A}|^{2} + |\langle Sx_{n},y_{n}\rangle_{A}|^{2} + 2|\langle T_{A}y_{n},x_{n}\rangle_{A}||\langle Sx_{n},y_{n}\rangle_{A}| \\ &= \left(|\langle Tx_{n},y_{n}\rangle_{A}| + |\langle Sx_{n},y_{n}\rangle_{A}|\right)^{2} \\ &\leq \left(w_{q,A}(T) + w_{q,A}(S)\right)^{2}. \end{aligned}$$

Hence, we derive that

$$\lim_{n} \langle T_A y_n, x_n \rangle_A \langle S x_n, y_n \rangle_A = w_{q,A}(T) w_{q,A}(S) \cdot$$

Conversely, suppose that (2) holds. Then

$$\lim_n \Re(\langle T_A y_n, x_n \rangle_A \langle S x_n, y_n \rangle_A) = w_{q,A}(T) w_{q,A}(S) \cdot$$

Since $|\langle T_A y_n, x_n \rangle_A| \le w_{q,A}(T)$ and $|\langle S x_n, y_n \rangle_A| \le w_{q,A}(S)$, it follows that

$$\lim_{n} |\langle T_A y_n, x_n \rangle_A| = w_{q,A}(T) \text{ and } \lim_{n} |\langle S x_n, y_n \rangle_A| = w_{q,A}(S)$$

This implies that

$$\begin{aligned} w_{q,A}(T) + w_{q,A}(S) &= \lim_{n} |\langle (T+S)x_n, y_n \rangle_A| \\ &\leq w_{q,A}(T+S) \\ &\leq w_{q,A}(T) + w_{q,A}(S) \cdot \end{aligned}$$

Therefore (1) holds and the proof is complete. \Box

3. q-A-numerical range of an operator matrix

In this section, we investigate the q-A-numerical range of some operator matrices. Observe that since A is positive, then for every n, the $n \times n$ operator matrix

$$\mathbb{A}_{n} = \begin{pmatrix} A & 0 & \dots & 0 \\ 0 & A & 0 & \vdots \\ \vdots & \dots & \dots & 0 \\ 0 & \dots & 0 & A \end{pmatrix}$$
 (3.4)

defined on the space $\bigoplus_{i=1}^n H$ is also positive. Furthermore, it is not difficult to show that if $T_{ij} \in \mathcal{B}_A(H)$, $i, j = 1, \dots, n$, then the operator matrix $T = \left(T_{ij}\right)_{i,j} \in \mathcal{B}_A(\bigoplus_{i=1}^n H)$.

In all what follows we shall denote \mathbb{A}_n the positive operator defined by (3.4). For simplicity we omit n and simply write $\mathbb{A} = \mathbb{A}_n$.

In the sequel we will need the following lemma.

Lemma 3.1. Let
$$T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}$$
, where $T_{11}, T_{12}, T_{21}, T_{22} \in \mathcal{B}_A(H)$. Then

$$\widetilde{T} = \begin{pmatrix} \widetilde{T_{11}} & \widetilde{T_{12}} \\ \widetilde{T_{21}} & \widetilde{T_{22}} \end{pmatrix}.$$

Proof. We have

$$\begin{pmatrix} \widetilde{T_{11}} & \widetilde{T_{12}} \\ \widetilde{T_{21}} & \widetilde{T_{22}} \end{pmatrix} \mathbb{A} = \begin{pmatrix} \widetilde{T_{11}} A & \widetilde{T_{12}} A \\ \widetilde{T_{21}} A & \widetilde{T_{22}} A \end{pmatrix}$$

$$= \begin{pmatrix} AT_{11} & AT_{12} \\ AT_{21} & AT_{22} \end{pmatrix}$$

$$= AT.$$

Since, by [2, Proposition 3.6], \widetilde{T} is the unique operator that satisfies the equation $X\mathbb{A} = \mathbb{A}T$, we deduce that

$$\widetilde{T} = \begin{pmatrix} \widetilde{T_{11}} & \widetilde{T_{12}} \\ \widetilde{T_{21}} & \widetilde{T_{22}} \end{pmatrix}.$$

To prove the upcoming theorem, we also need the following lemma.

Lemma 3.2. [22, Theorem 3.3] Let H and K be Hilbert spaces. If $T = \begin{pmatrix} B & C \\ D & E \end{pmatrix} \in \mathcal{B}(H \oplus K)$ and $q \in [0,1]$, then

1.
$$w_q(T) \le \max\{||B||, ||E||\} + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} (||C|| + ||D||).$$

$$w_q(T) \le \sqrt{1 - q^2} \Big(||B||^2 + ||C||^2 + ||D||^2 + ||E||^2 \Big)^{\frac{1}{2}} + q \Big(\max\{w(B), w(E)\} + \frac{||C|| + ||D||}{2} \Big).$$

3.
$$\max \left\{ w_q(B), w_q(E), w_q \begin{pmatrix} 0 & C \\ D & 0 \end{pmatrix} \right\} \le w_q(T).$$

For the q - A-numerical radius, we have the following analogous inequalities.

Theorem 3.3. Let
$$T = \begin{pmatrix} B & C \\ D & E \end{pmatrix} \in \mathcal{B}(H \oplus H)$$
. If $q \in [0, 1]$, then

1.
$$w_{q,\mathbb{A}}(T) \le \max\{||B||_A, ||E||_A\} + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} (||C||_A + ||D||_A).$$

$$w_{q,A}(T) \le \sqrt{1 - q^2 \Big(||B||_A^2 + ||C||_A^2 + ||D||_A^2 + ||E||_A^2 \Big)^{\frac{1}{2}}} + q \Big(\max\{w_A(B), w_A(E)\} + \frac{||C||_A + ||D||_A}{2} \Big).$$

$$3. \ \max \left\{ w_{q,\mathbb{A}}(B), w_{q,\mathbb{A}}(E), w_{q,\mathbb{A}}\begin{pmatrix} 0 & C \\ D & 0 \end{pmatrix} \right\} \leq w_{q,\mathbb{A}}(T).$$

Proof. By Lemma 3.1, we know that

$$\widetilde{T} = \begin{pmatrix} \widetilde{B} & \widetilde{C} \\ \widetilde{D} & \widetilde{E} \end{pmatrix} \in \mathcal{B}(\mathbf{R}(A^{\frac{1}{2}}) \oplus \mathbf{R}(A^{\frac{1}{2}}))$$

Hence, by applying Lemma 3.2 to the operator \widetilde{T} , we get

$$\begin{split} w_q(\widetilde{T}) \leq \max \Big\{ \|\widetilde{B}\|_{\mathbf{R}(A^{\frac{1}{2}})'} \|\widetilde{E}\|_{\mathbf{R}(A^{\frac{1}{2}})} \Big\} + \Big(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\Big)^{\frac{1}{2}} \times \\ \Big(\|\widetilde{C}\|_{\mathbf{R}(A^{\frac{1}{2}})} + \|\widetilde{D}\|_{\mathbf{R}(A^{\frac{1}{2}})} \Big) \cdot \end{split}$$

Now, by combining Proposition 2.12 and Theorem 2.13, we derive that

$$w_{q,\mathbb{A}}(T) \leq \max\{||B||_A, ||E||_A\} + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right) + \left(1 - \frac{3q^2}{4} + q\sqrt{1 - q^2}\right)^{\frac{1}{2}} \left(||C||_A + ||D||_A\right)$$

By using a similar reasoning, we also get the other inequalities. \Box

To present our next result, we need the following lemmas.

Lemma 3.4. Let
$$T = \begin{pmatrix} T_1 & T_2 & \dots & T_n \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix} \in \mathcal{B}_{\mathbb{A}}(\bigoplus_{i=1}^n H)$$
. If $T_1, T_2, \dots, T_n \in \mathcal{B}_A(H)$, then

$$\widetilde{T} = \begin{pmatrix} \widetilde{T}_1 & \widetilde{T}_2 & \dots & \widetilde{T}_n \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}.$$

Proof. Since for every *i*, we have $AT_i = \widetilde{T}_i A$, it follows that

$$\mathbb{A}T = \begin{pmatrix} \widetilde{T_1} & \widetilde{T_2} & \cdots & \widetilde{T_n} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \mathbb{A}.$$

Therefore, the required equality follows from the uniqueness of the operator \widetilde{T} . \square

Lemma 3.5. [15] Let
$$T = \begin{pmatrix} T_1 & T_2 & \dots & T_n \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix} \in \mathcal{B}(\bigoplus_{i=1}^n H)$$
. Then

$$w(T) \le \frac{1}{2} \left(w(T_1) + \sqrt{w^2(T_1) + \sum_{j=2}^n ||T_j||^2} \right).$$

The next theorem is a generalization of [15, Theorem 2.5]

Theorem 3.6. Let
$$T = \begin{pmatrix} T_1 & T_2 & \dots & T_n \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix} \in \mathcal{B}(\bigoplus_{i=1}^n H)$$
. If $T_1, T_2, \dots, T_n \in \mathcal{B}_A(H)$ and $\frac{1}{\sqrt{2}} \leq q \leq 1$, then

$$w_{q,\mathbb{A}}^{2}(T) \leq \frac{2q^{2} - 1}{4} \left(w_{A}(T_{1}) + \sqrt{w_{A}(T_{1}) + \sum_{j=2}^{n} ||T_{j}||_{A}^{2}} \right)^{2} + \left(1 - q^{2} + q\sqrt{1 - q^{2}} \right) \sum_{j=1}^{n} ||T_{j}||_{A}^{2}.$$

$$(3.5)$$

Proof. By Theorem 2.18, we have

$$w_{q,\mathbb{A}}^{2}(T) \le (2q^{2} - 1)w_{\mathbb{A}}^{2}(T) + \left(1 - q^{2} + q\sqrt{1 - q^{2}}\right) ||T||_{\mathbb{A}}^{2}. \tag{3.6}$$

Combining Corollary 2.14 and Lemma 3.4, we get

$$w_{\mathbb{A}}(T) = w(\widetilde{T}) = w \begin{pmatrix} \widetilde{T}_1 & \widetilde{T}_2 & \dots & \widetilde{T}_n \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}.$$

Hence

$$w_{\mathbb{A}}(T) \le \frac{1}{2} \left(w(\widetilde{T}_1) + \sqrt{w^2(\widetilde{T}_1) + \sum_{j=2}^n ||\widetilde{T}_j||^2_{\mathbf{R}(A^{\frac{1}{2}})}} \right)$$
(3.7)

$$= \frac{1}{2} \left(w_A(T_1) + \sqrt{w_A^2(T_1) + \sum_{j=2}^n ||T_j||_A} \right), \tag{3.8}$$

where the inequality in (3.7) follows from Lemma 3.5, and the equality in (3.8) follows by applying again Corollary 2.14.

On the other hand, we have

$$||T||_{\mathbb{A}}^{2} = ||\widetilde{T}||_{\mathbf{R}(\mathbb{A}^{\frac{1}{2}})}^{2}$$

$$= ||(\widetilde{T}_{1} \quad \widetilde{T}_{2} \quad \dots \quad \widetilde{T}_{n})||_{\mathbf{C}(\mathbb{A}^{\frac{1}{2}})}^{2}$$

$$= ||(\widetilde{T}_{1} \quad \widetilde{T}_{2} \quad \dots \quad \widetilde{T}_{n})||_{\mathbf{C}(\mathbb{A}^{\frac{1}{2}})}^{2}$$

$$= ||(\widetilde{T}_{1} \quad \widetilde{T}_{2} \quad \dots \quad \widetilde{T}_{n})||_{\mathbf{R}(\mathbb{A}^{\frac{1}{2}})}^{2}$$

$$= \sum_{j=1}^{n} ||\widetilde{T}_{j}||_{\mathbf{R}(\mathbb{A}^{\frac{1}{2}})}^{2}$$

$$= \sum_{j=1}^{n} ||T_{j}||_{A}^{2}.$$
(3.9)

Combining (3.6), (3.8) and (3.9), we deduce (3.5) which completes the proof. \Box

Lemma 3.7. [15] Let
$$T = \begin{pmatrix} T_1 & T_2 & \dots & T_n \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix} \in \mathcal{B}(\bigoplus_{i=1}^n H)$$
. Then

$$w(T) \le \frac{1}{2} \left(||T_1|| + \sqrt{||\sum_{j=2}^n T_j T_j^*||^2} \right).$$

Lemma 3.8. [21] Let $T \in \mathcal{B}_{A^2}(H)$. Then

$$\widetilde{T_A} = (\widetilde{T})^*$$
 and $\widetilde{T} = [(\widetilde{T_A})_A]$.

Theorem 3.9. Let
$$T = \begin{pmatrix} T_1 & T_2 & \dots & T_n \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix} \in \mathcal{B}(\bigoplus_{i=1}^n H). \text{ If } T_1, T_2, \dots, T_n \in \mathcal{B}_{A^2}(H), \text{ then }$$

$$w_{\mathbb{A}^2}(T) \le \frac{1}{2} \left(||T_1||_{A^2} + \sqrt{||\sum_{j=2}^n T_j T_{jA}||_{A^2}^2} \right)$$

Proof. From the proof of Theorem 3.6, we have

$$w_{\mathbb{A}^2}(T) = w(\widetilde{T}) = w \begin{pmatrix} \begin{pmatrix} \widetilde{T}_1 & \widetilde{T}_2 & \dots & \widetilde{T}_n \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix} \end{pmatrix}.$$

Then by Lemma 3.7, we infer that

$$w_{\mathbb{A}^2}(T) \le \frac{1}{2} \left(\|\widetilde{T}_1\|_{\mathbf{R}(A)} + \sqrt{\|\sum_{j=2}^n \widetilde{T}_j(\widetilde{T}_j)^*\|_{\mathbf{R}(A)}^2} \right).$$

By Lemma 3.8, we have

$$\widetilde{T_j}(\widetilde{T_j})^* = \widetilde{T_j}\, \widetilde{(T_j)_A}.$$

Since, by [13, Lemma 2.1], $\widetilde{XY} = \widetilde{XY}$ and $\widetilde{X+Y} = \widetilde{X} + \widetilde{Y}$ for every $X, Y \in \mathcal{B}_{A^2}(H)$, we derive that $\widetilde{T_j}(\widetilde{T_j})^* = \widetilde{T_j(T_j)_A}$ and

$$\begin{split} \| \sum_{j=2}^{n} \widetilde{T_{j}} (\widetilde{T_{j}})^{*} \|_{\mathbf{R}(A)} &= \| \sum_{j=2}^{n} \widetilde{T_{j}} (T_{j})_{A} \|_{\mathbf{R}(A)} \\ &= \| \sum_{j=2}^{n} \widetilde{T_{j}} (T_{j})_{A} \|_{\mathbf{R}(A)} \\ &= \| \sum_{j=2}^{n} T_{j} (T_{j})_{A} \|_{A^{2}} . \end{split}$$

Then

$$w(\widetilde{T}) \le \frac{1}{2} \left(||T_1||_{A^2} + \sqrt{||\sum_{j=2}^n T_j(T_j)_A||_{A^2}^2} \right).$$

Therefore

$$w_{\mathbb{A}^2}(T) \le \frac{1}{2} \left(\|T_1\|_{A^2} + \sqrt{\|\sum_{j=2}^n T_j(T_j)_A\|_{A^2}^2} \right).$$

Proposition 3.10. Let
$$T = \begin{pmatrix} T_1 & T_2 & \dots & T_n \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix} \in \mathcal{B}(\bigoplus_{i=1}^n H)$$
. If $T_1, T_2, \dots, T_n \in \mathcal{B}_{A^2}(H)$ and $\frac{1}{\sqrt{2}} \leq q \leq 1$, then

$$w_{q,\mathbb{A}^{2}}^{2}(T) \leq \frac{2q^{2} - 1}{4} \left(\|T_{1}\|_{A^{2}} + \sqrt{\|\sum_{j=2}^{n} T_{j}(T_{j})_{A}\|_{A^{2}}^{2}} \right)^{2} + \left(1 - q^{2} + q\sqrt{1 - q^{2}}\right) \sum_{j=1}^{n} \|T_{j}\|_{A^{2}}^{2}.$$

$$(3.10)$$

Proof. By Theorem 2.18, we have

$$w_{q,\mathbb{A}^2}^2(T) \le (2q^2 - 1)w_{\mathbb{A}^2}^2(T) + \left(1 - q^2 + q\sqrt{1 - q^2}\right)||T||_{\mathbb{A}^2}^2$$

and by (3.9), we have

$$||T||_{\mathbb{A}^2}^2 = \sum_{j=1}^n ||T_j||_{A^2}^2.$$

Thus, the inequality in (3.10) follows from Theorem 3.9. \Box

To present our next result, we need the following estimate established by Guelfen and Kittaneh [15].

Lemma 3.11. [15] Let $T = (T_{ij})$ be an $n \times n$ operator matrix with $T_{ij} \in \mathcal{B}(H)$. Then

$$w(T) \le \max \left\{ w(T_{ii}) : 1 \le i \le n \right\} + \frac{1}{2} \sum_{i=1}^{n} \sqrt{\| \sum_{\substack{j=1 \ j \ne i}}^{n} T_{ij} T_{ij}^* \|} \cdot$$

Proposition 3.12. Let $T = (T_{ij})$ be an $n \times n$ operator matrix with $T_{ij} \in \mathcal{B}_{A^2}(H)$. Then

$$w_{\mathbb{A}^2}(T) \le \max \left\{ w_{A^2}(T_{ii}) : 1 \le i \le n \right\} + \frac{1}{2} \sum_{i=1}^n \sqrt{\| \sum_{\substack{j=1 \ j \ne i}}^n T_{ij}(T_{ij})_A \|_{A^2}} \cdot$$

Proof. The proof follows by applying Lemma 3.11 and using an argument similar to that used in the proof of Theorem 3.9. \Box

Theorem 3.13. Let $T = (T_{ij})$ be an $n \times n$ operator matrix with $T_{ij} \in \mathcal{B}_{A^2}(H)$. If $\frac{1}{\sqrt{2}} \leq q \leq 1$, then

$$\begin{split} w_{q,\mathbb{A}^2}(T) &\leq 2 \Big(2q^2 - 1 \Big) \max \Big\{ w_{A^2}^2(T_{ii}) : 1 \leq i \leq n \Big\} \\ &+ \frac{n}{2} \Big(2q^2 - 1 \Big) \sum_{i=1}^n \| \sum_{j=1_{j \neq i}}^n T_{ij}(T_{ij})_A \|_{A^2} \\ &+ \Big(1 - q^2 + q \sqrt{1 - q^2} \Big) \sum_{j=1}^n \| T_j \|_{A^2}^2. \end{split}$$

Proof. By Proposition 3.12, we have

$$w_{\mathbb{A}^2}^2(T) \le \left(\max \left\{ w_A(T_{ii}) : 1 \le i \le n \right\} + \frac{1}{2} \sum_{i=1}^n \sqrt{\| \sum_{\substack{j=1 \ j \ne i}}^n T_{ij}(T_{ij})_A \|_{A^2}} \right)^2.$$

Hence

$$w_{\mathbb{A}^2}^2(T) \le 2 \max \left\{ w_A^2(T_{ii}) : 1 \le i \le n \right\} + \frac{1}{2} \left(\sum_{i=1}^n \sqrt{\|\sum_{\substack{j=1\\j \ne i}}^n T_{ij}(T_{ij})_A\|_{A^2}} \right)^2.$$

Since the function $h(t) = t^2$ is convex on $(0, \infty)$, we easily check that

$$w_{\mathbb{A}^2}^2(T) \le 2 \max \left\{ w_A^2(T_{ii}) : 1 \le i \le n \right\} + \frac{n}{2} \sum_{i=1}^n \| \sum_{\substack{j=1 \ i \ne i}}^n T_{ij}(T_{ij})_A \|_{A^2}.$$

Thus the proof follows by using an argument similar to that used in proof of Proposition 3.10. \Box

4. A-q-center

In this section we generalize some results of Kaadoud and Moulaharabbi [18]. Let K be a compact subset of \mathbb{C} . By R_K and c_K denote the radius and the center of the smallest disk D_K containing K, respectively. Set $|K| = \sup\{|\lambda| : \lambda \in K\}$ and $\mathbb{S}_A = \{x \in H : ||x||_A = 1\}$. The identity operator on H is denoted by I. We begin with the following lemma.

Lemma 4.1. [17] Let K be a compact subset of \mathbb{C} . Then

$$R_K = |K - c_K| = \sup_{\lambda \in K} |c_K - \lambda| = \inf_{\alpha \in \mathbb{C}} \sup_{\lambda \in K} |\alpha - \lambda|.$$

Proposition 4.2. Let $T \in \mathcal{B}_A(H)$ and $0 < |q| \le 1$. Then

$$R_{W_{q,A}(T)} = \left| W_{q,A}(T) - c_{W_{q,A}(T)} \right| = w_{q,A}(T - \frac{1}{q}c_{W_{q,A}(T)}I).$$

Proof. Since $T \in \mathcal{B}_A(H)$, then $w_{q,A}(T) \leq ||T||_A$. This shows that $\overline{W_{q,A}(T)}$ is a compact subset of \mathcal{C} . Using Lemma 4.1, we get

$$\begin{split} R_{W_{q,A}(T)} &= \sup_{\lambda \in W_{q,A}(T)} \left| \lambda - c_{W_{q,A}(T)} \right| \\ &= \sup \left\{ \left| \langle Tx, y \rangle_A - c_{W_{q,A}(T)} \right| : x, y \in \mathbb{S}_A, \langle x, y \rangle_A = q \right\} \\ &= \sup \left\{ \left| \langle (T - \frac{1}{q} c_{W_{q,A}(T)} I) x, y \rangle_A \right| : x, y \in \mathbb{S}_A, \langle x, y \rangle_A = q \right\} \\ &= w_{q,A} (T - \frac{1}{q} c_{W_{q,A}(T)} I). \end{split}$$

Definition 4.3. Let $T \in \mathcal{B}_A(H)$ and $0 < |q| \le 1$. The scalar λ that satisfies

$$\inf_{\alpha \in \mathbb{C}} w_{q,A}(T - \alpha I) = w_{q,A}(T - \lambda I),$$

is called *q*-*A*-center of *T*; we denote it by $c_{q,A}(T)$.

For A = I, we have $c_{q,A}(T) = c_q(T)$ the *q*-center defined in [18].

Proposition 4.4. Let $T \in \mathcal{B}_A(H)$ and $0 < |q| \le 1$. Then

$$R_{W_{q,A}(T)} = \inf_{\alpha \in \mathbb{C}} w_{q,A}(T - \alpha I) = w_{q,A}(T - c_{q,A}(T)I),$$

and

$$c_{q,A}(T) = \frac{1}{a}c_{W_{q,A}(T)}.$$

Proof. By the definition of a *q-A*-center, we have

$$\begin{split} w_{q,A}(T-c_{q,A}(T)I) &= \inf_{\alpha \in \mathbb{C}} w_{q,A}(T-\alpha I) \\ &= \inf_{\alpha \in \mathbb{C}} w_{q,A}(T-\frac{\alpha}{q}I) \\ &= \inf_{\alpha \in \mathbb{C}} \sup \left\{ |\langle Tx,y \rangle_A - \alpha| : x,y \in \mathbb{S}_A, \langle x,y \rangle_A = q \right\} \\ &= \left| W_{q,A}(T) - c_{W_{q,A}(T)} \right| \\ &= R_{W_{q,A}(T)}. \end{split}$$

On the other hand,

$$\begin{aligned} \left| W_{q,A}(T) - qc_{q,A}(T) \right| &= \sup \left\{ \left| \langle Tx, y \rangle_A - qc_{q,A}(T) \right| : x, y \in \mathbb{S}_A, \langle x, y \rangle_A = q \right\} \\ &= \sup \left\{ \left| \langle (T - c_{q,A}(T))x, y \rangle_A \right| : x, y \in \mathbb{S}_A, \langle x, y \rangle_A = q \right\} \\ &= w_{q,A}(T - c_{q,A}(T)I). \end{aligned}$$

It follows that

$$|W_{q,A}(T) - qc_{q,A}(T)| = |W_{q,A}(T) - c_{W_{q,A}(T)}|.$$

By the unicity of the center $c_{W_{q,A}(T)}$ of $W_{q,A}(T)$, we deduce that

$$c_{W_{q,A}(T)} = qc_{q,A}(T).$$

Proposition 4.5. If a sequence $T_n \in \mathcal{B}_A(H)$ converges to $T \in \mathcal{B}_A(H)$ and $0 < |q| \le 1$, then the sequence $c_{q,A}(T_n)$ converges to $c_{q,A}(T)$.

Proof. By [17], the sequence $c_{W_{q,A}(T_n)}$ converges to $c_{W_{q,A}(T)}$. Using Proposition 4.4, we get $c_{W_{q,A}(T_n)} = qc_{q,A}(T_n)$. Hence the sequence $c_{q,A}(T_n)$ converges to $c_{q,A}(T)$.

Proposition 4.6. [17] Let K be a compact subset of \mathbb{C} and $c \in \mathbb{C}$. The following assertions are equivalent:

- 1. $c = c_{K}$
- 2. $|K-c| < |K-(c+\alpha)|$ for all nonzero $\alpha \in \mathbb{C}$,
- 3. $|K-c|^2 + |\alpha|^2 \le |K-(c+\alpha)|^2$ for all $\alpha \in \mathbb{C}$.

Proposition 4.7. *If* $T \in \mathcal{B}_A(H)$ *and* $0 < |q| \le 1$, then the following assertions are equivalent:

- 1. $c = c_{q,A}(T)$,
- 2. $w_{q,A}(T-cI) < w_{q,A}(T-(c+\frac{\alpha}{q})I)$ for all nonzero $\alpha \in \mathbb{C}$,
- 3. $w_{q,A}(T-cI)^2 + |\alpha|^2 \le w_{q,A}(T-(c+\frac{\alpha}{a})I)^2$ for all $\alpha \in \mathbb{C}$.

Proof. Since $w_{q,A}(T-\frac{\alpha}{q})=|W_{q,A}(T)-\alpha|$ for all $\alpha\in\mathbb{C}$, then by Proposition 4.4, we get

$$c_{W_{q,A}(T)} = qc_{q,A}(T).$$

Thus Proposition 4.6 implies that the three assertions are equivalent. \Box

As a consequence of the above proposition, we have the following inequality.

Corollary 4.8. Let $T \in \mathcal{B}_A(H)$ and $0 < |q| \le 1$. If $0 \in W_{q,A}(T)$, then

$$|c_{q,A}(T)| \le \frac{1}{\sqrt{2}|q|} w_{q,A}(T).$$

Proof. By [17], we have

$$|c_{W_{q,A}(T)}| \leq \frac{1}{\sqrt{2}} w_{q,A}(T).$$

By Proposition 4.4, we have $c_{W_{q,A}(T)} = qc_{q,A}(T)$; thus

$$|c_{q,A}(T)| \le \frac{1}{\sqrt{2}|q|} w_{q,A}(T).$$

For a subset $\Omega \subseteq \mathcal{C}$, we denote by diam Ω its diameter defined by

$$diam\Omega = \sup\{|\alpha - \beta| : \alpha, \beta \in \Omega\}.$$

Proposition 4.9. [18] Let $T \in \mathcal{B}(H)$ and $0 \le q \le 1$. Then

$$w_q(T) \leq qw(T) + (1 - \frac{q}{2}) diam W(T).$$

Proposition 4.10. *If* $T \in \mathcal{B}_A(H)$ *and* $0 \le q \le 1$ *, then*

$$w_{q,A}(T) \leq q w_A(T) + (1-\frac{q}{2}) diam W_A(T).$$

Proof. By applying Proposition 4.9 to the operator \widetilde{T} induced by T, we get

$$w_q(\widetilde{T}) \le qw(\widetilde{T}) + \text{diam}W(\widetilde{T}).$$

Now by Theorem 2.13, we have $w_{q,A}(T) = w_q(\widetilde{T})$. In addition, by Corollary 2.14, we have $\overline{W(\widetilde{T})} = \overline{W_A(T)}$. Hence

$$w_{q,A}(T) \le qw_A(T) + \text{diam}W_A(T)$$

which completes the proof. \Box

Conflict of interest The authors have no conflict of interest to disclose.

References

- [1] N. Altwaijry, K. Feki, and N. Minculete, Further inequalities for the weighted numerical radius of operators, Mathematics 10(2022), 35-76.
- [2] M.L. Arias, G. Corach and M.C. Gonzalez, Lifting properties in operator ranges, Acta Sci. Math. (Szeged) 75(3-4)(2009), 635-653
- [3] M.L. Arias, G. Corach and M.C. Gonzalez, Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl. 428(7)(2008), 1460-1475.
- [4] M.L. Arias, G. Corach and M.C. Gonzalez, Metric properties of projections in semi-Hilbertian spaces, Integral Equations and Operator Theory, 62(2008), 11-28.
- [5] H. Baklouti, K. Feki and O. A. M. Sid Ahmed, Joint numerical ranges of operators in semi-Hilbertian spaces, Linear Algebra Appl., 555(2018), 266-284.
- [6] B.A. Barnes, The spectral properties of certain linear operators and their extensions, Proc. Amer. Math. Soc. 128(2000), 1371-1375.
- [7] P. Bhunia, K. Feki and K. Paul, Generalized A-numerical radius of operators and related inequalities, Bulletin of the Iranian Math. Soc. 48(2022), 3883-3907.
- [8] P. Bhunia, F. Kittaneh, P. Kallol and S. Anirban, Andersons theorem and A-spectral radius bounds for semi-Hilbertian space operators, Linear Algebra Appl. 657 (2023), 147-162.
- [9] R.G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Am. Math. Soc. 17(1966), 413-416.

- [10] A. Elbarbouchi, M. Boumazgour and M.C. kaadoud, New estimates of the q-numerical radius of Hilbert space operators, To appear in Linear Multilinear Algebra.
- [11] M. Faghih-Ahmadi and F. Gorjizadeh, *A-numerical radius of A-normal operators in semi-Hilbertian spaces*, Ital. J. Pure Appl. Math. **36**(2016), 73-78.
- [12] K. Feki, Spectral radius of semi-Hilbertian space operators and its applications, Annals of Functional Analysis, 11(2020), 929-946.
- [13] K. Feki, On tuples of commuting operators in positive semidefinite inner product spaces, Linear Algebra Appl. 603(2020), 313-328.
- [14] K. Feki, Some numerical radius inequalities for semi-Hilbert space operators, J. Korean Math Soc. 58(6)(2021), 1385-1405.
- [15] H. Guelfen and F. Kittaneh, On numerical radius inequalities for operator matrices, Numer. Funct. Anal. Optim. 40 (2019), 1231-1241.
- [16] K. E. Gustafson and D.K.M. Rao, Numerical Range, Springer-Verlag, New York, 1997.
- [17] M.C. Kaadoud, Geométrie de spectre dans une algèbre de Banach et domaine numérique, Studia Mathematica 162(1)(2004), 1-14.
- [18] M.C. Kaadoud and S. Moulaharabbi, *q-numerical radius inequalities for products of complex linear bounded operators*, Journal Operators and Matrices, **18**(2)(2024), 375-388.
- [19] F. Kittaneh and A. Zamani, A re nement of A-Buzano inequality and appli cations to A-numerical radius inequalities, Linear Algebra Appl. 697(2024), 32-48.
- [20] C.K. Li, P.P. Mehta and L. Rodman, A generalized numerical range: the range of a constrained sesquilinear form, Linear Multilinear Algebra. 37(1-3)(1994), 25-49.
- [21] W. Majdak, N.A. Secelean and L. Suciu, Ergodic properties of operators in some semi-Hilbertian spaces, Linear Multilinear Algebra, 61(2)(2013), 139-159.
- [22] A. Patra and F. Roy, The estimation of q-numerical radius of Hilbert space operators, Operators and matrices, 18(2024), 343-359.
- [23] L. Suciu, Maximum A-isometric part of an A-contraction and applications, Israel J. Math. 174(2009), 419-443.
- [24] N.K. Tsing, The constrained bilinear form and the C-numerical range, Linear Algebra Appl. 56(1984), 195-206.
- [25] P.Y. Wu and H.-L. Gau, Numerical Ranges of Hilbert Space Operators, Encyclopedia of Mathematics and Its Applications, vol. 179. Cambridge University Press, Cambridge, 2021.
- [26] A. Zamani, A-numerical radius inequalities for semi-Hilbertian space operators, Linear Algebra Appl. 578(2019), 159-183.