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FIXED POINT PROPERTY
FOR HYPERSPACES OF ARBOROIDS

Ivan Lonéar

Abstract

The main purpose of this paper is to study arboroids, a non-metric ana-
logue of dendroids. It is proved that hyperspaces of some arboroids have the
fixed point property.

1 Introduction

All spaces in this paper are compact Hausdorff and all mappings are continuous.
The weight of a space X is denoted by w(X). The cardinality of a set A is denoted
by card(A). We shall use the notion of inverse system as in [5, pp. 135-142]. An
inverse system is denoted by X = {X,, pa, A}

A generalized arc is a Hausdorff continuum with exactly two non-separating
points. Each separable arc is homeomorphic to the closed interval I = [0, 1].

For a compact space X we denote by 2% the hyperspace of all nonempty closed
subsets of X equipped with the Vietoris topology. C(X) and X(n), where n is
a positive integer, stand for the sets of all connected members of 2% and of all
nonempty subsets consisting of at most n points, respectively, both considered as
subspaces of 2%, see [7].

For a mapping f : X — Y define 2¢ : 2X — 2V by 2/(F) = f(F) for F € 2%.
By [12, 5.10] 27 is continuous, 2/(C(X)) € C(Y) and 2/(X(n)) C Y(n). The
restriction 2|C(X) is denoted by C(f).

An element {z,} of the Cartesian product [[{X, : a € A} is called a thread of
X if pap(xp) = 24 for any a, b € A satisfying a < b. The subspace of [[{X, : a € A}
consisting of all threads of X is called the limit of the inverse system X = {X,, pas,
A} and is denoted by lim X or by lim{X,, pas, 4} [5, p. 135].

Let X = {X,, pap, A} be an inverse system of compact spaces with the
natural projections p, : limX — X,, for a € A. Then 2X = {2Xa 2Pav A}
C(X) = {C(Xa),C(pap), A} and X(n) = {Xu(n), 2P*| X4(n), A} form inverse
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systems. For each F' € 2limx, i.e., for each closed F' C limX the set p,(F) C X,
is closed and compact. Thus, we have a mapping 2P« : 2imX _, 2Xe induced by p,
for each a € A. Define a mapping M : 2mX — 1im 2X by M(F) = {p,(F) : a € A}.
Since {po(F) : a € A} is a thread of the system 2%, the mapping M is continuous
and one-to-one. It is also onto since for each thread {F, : a € A} of the system
2% the set F'/ = ({p;'(F.) : a € A} is non-empty and p,(F') = F,. Thus, M
is a homeomorphism. If P, : lim2X — 2%a g € A, are the projections, then
P, M = 2P Identifying F with M (F) we have P, = 2Pa.

Lemma 1.1. [7, Lemma 2.]. Let X =lim X. Then 2% =1im2¥, C(X) =lim C(X)
and X (n) = limX(n).

We say that an inverse system X = {X,, pap, A} is o-directed if for each sequence
ai,as, ..., ax, ... of the members of A there is an a € A such that a > a; for each k
eN.

Let A be a partially ordered directed set. We say that a subset A1 C A majorates
[2, p. 9] another subset Ay C A if for each element as € As there exists an element
a1 € A; such that a; > as. A subset which majorates A is called cofinal in A.
A subset of A is said to be a chain if every two elements of it are comparable.
The symbol sup B, where B C A, denotes the lower upper bound of B (if such an
element exists in A). Let 7 > Ry be a cardinal number. A subset B of A is said to
be 7-closed in A if for each chain C C B, with card(B) < 7, we have supC € B,
whenever the element sup C' exists in A. Finally, a directed set A is said to be
T-complete if for each chain C of A of elements of A with card(C) < 7, there exists
an element sup C' in A.

Suppose that we have two inverse systems X = {X,, pap, A} and Y = {Y}, qve, B}-
A morphism of the system X into the system Y [2, p. 15]is a family {¢, {fs : b € B}}
consisting of a nondecreasing function ¢ : B — A such that ¢(B) is cofinal in A,
and of maps f, : X,) — Y5 defined for all b € B such that the following

Po(b)io(c)
Xowy — X

»(c)
l fb l fc (11)
, &Y

diagram commutes. Any morphism {p,{f; : b€ B}} : X — Y induces a map,
called the limit map of the morphism

lm{p, {fp:b€ B}}:limX — limY

In the present paper we deal with the inverse systems defined on the same
indexing set A. In this case, the map ¢ : A — A is taken to be the identity and we
use the following notation {f, : X, — Ya;a € A} : X =Y.

We say that an inverse system X = {X,,pap, A} is factorizing [2, p. 17] if
for each real-valued mapping f : lim X — R there exist an a € A and a mapping
fa : Xo — R such that f = f,p,.

An inverse system X = {X,, pap, A} is said to be o-directed if for each sequence
ai,as, ..., ay, ... of the members of A there is an a € A such that a > a;, for each k
eN.
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Lemma 1.2. /2, Corollary 1.8.2, p. 18]. If X = {Xa, pap, A} is a o-directed
inverse system of compact spaces with surjective bonding mappings, then it is fac-
torizing.

An inverse system X = {X,, pa, A} is said to be 7-continuous [2, p. 19]
if for each chain B in A with card(B) < 7 and sup B = b, the diagonal product
A {pap : @ € B} maps the space X}, homeomorphically into the space lim{ X, pap, B}.

An inverse system X = {X,, pap, A} is said to be 7-system [2, p. 19] if:

a) w(X,) < 7 for every a € A,

b) The system X = {X,, pas, A} is T-continuous,

¢) The indexing set A is T-complete.

If 7 = Ny, then 7-system is called a o-system. The following theorem is called
the Spectral Theorem [2, p. 19].

Theorem 1.3. [2, Theorem 1.3.4, p. 19]. If a T-system X = {Xq, pap, A} with
surjective limit projections is factorizing, then each map of its limit space into the
limit space of another T-system Y = {Y,, qup, A} is induced by a morphism of
cofinal and T-closed subsystems. If two factorizing T-systems with surjective limit
projections and the same indexing set have homeomorphic limit spaces, then they
contain isomorphic cofinal and T-closed subsystems.

Let us remark that the requirement of surjectivity of limit projections of systems
in Theorem 1.3 is essential [2, p. 21].

A fized point of a function f: X — X is a point p € X such that f(p) = p.
A space X is said to have the fized point property provided that every surjective
mapping f : X — X has a fixed point.

The following result is known.

Theorem 1.4. [10, Theorem 2, p. 17]. Let X = {X,, pap, A} be a o-system
of compact spaces with the limit X and onto projections p, : X — X,. Let
{fa: Xo — Xu} : X — X be a morphism. Then the induced mapping f =lm{f,} :
X — X has a fixed point if and only if each mapping f, : Xq — X4, a € A, has a
fixed point.

As an immediate consequence of this theorem and the Spectral theorem 1.3 we
have the following result.

Theorem 1.5. Let a non-metric continuum X be the inverse limit of an inverse
o-system X = {X,, pab, A} such that each X, has the fized point property and each
bonding mapping pay is onto. Then X has the fized point property.

Now we will prove some expanding theorems of non-metric compact spaces into
o-directed inverse systems of compact metric spaces.

Theorem 1.6. For each Cartesian product X = [[{X, : a € A} of spaces X,
there exists a o-directed inverse system X = { X", P,,, M} of the countable product
XH such that X is homeomorphic to lim X. Moreover, if each X, is metrizable
continuum, then X = {X*, P,,,, M} is an inverse o-system with monotone bonding
mappings P, .
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Proof. Let M be the set of all countable subsets p of A ordered by inclusion. If
i C v, then we write u < v. It is clear that M is o-directed. For each yu € M
there exists X* = [[{X, : a € p}. If p,v € M and p < v, then there exists
the projection P, : X — X" which, as the projection, is monotone if X, are
continua. Finally, we have the system X = {X* P,,,M}. Let us prove X =
{X* P,,, M} is an inverse o-system. It is clear that M is o-directed. Moreover,
A is o-complete. Namely, if u3 < po < ... < pp,... is a countable chain in M,
then we have a countable chain py C pus C ... C py, ... of countable subsets of A.
It is clear that u = [J{u, : n € N} is a countable subset of A and p = sup py,.
It remains to prove that X = {X*, P,,, M} is continuous. Let B = p1 < po <
vo < Py ey < Ty lig € M, be a chain with sup uo, = v € M. We have transfinite
inverse sequence {X*, P, ,.,B}. Let us prove that the mappings P, ,a < T
induce a homeomorphism of the spaces X7 and lim{X*~, P, , ., B}. Let x € X7.
It is clear that P, ,(x) = x,, is a point of X#* and that P,_,,(z.,) = ©,, if
fo < pg. This means that (x,,) is a thread in {X*~, P, .., B}. Set H(z) =
(2,,). We have the mapping H : X7 — lim{X*~, P, ,,, B}. It is clear that H is
continuous, 1-1 and onto. Hence, H is a homeomorphism. If each X, is metrizable,
then X = {X*, P,,, M} is an inverse o-system since w(X*) < Ry. Let us prove
that X is homeomorphic to limX. Let € X. It is clear that P,(z) = z, is a
point of X* and that P,,(z,) = x, if 4 < v. This means that (z,) is a thread in
X ={X* P,,M}. Set H(z) = (z,). We have the mapping H : X — limX. It is
clear that H is continuous, 1-1 and onto. Hence, H is a homeomorphism. O

Theorem 1.7. For each Tychonoff cube I™, m > Wy, there exists an inverse o-
system I = {I% P, A} of the Hilbert cubes I* such that I™ is homeomorphic to
limI. Equivalently, I'"™ has a o-representation.

Proof. Let us recall that the Tychonoff cube I™ is the Cartesian product [[{I; :
s € S}, card(S) = m, Iy = [0,1] [5, p. 114]. If card(S) = N, the Tychonoff cube
I"™ is called the Hilbert cube. Let A be the set of all countable subsets of S ordered
by inclusion. If @ C b, then we write a < b. It is clear that A is o-directed. For
each a € A there exists the Hilbert cube I*. If a,b € A and a < b, then there exists
the projection P, : I® — I%. Finally, we have the system I = {I% P,;, A}. The
remaining part of the proof is the same as in the proof of Theorem 1.6 O

Theorem 1.8. Let X be compact Hausdorff space such that w(X) > Ny. There
exists an inverse o-system X = { X, pap, A} such that X is homeomorphic to lim X,
i.e., every compact Hausdorff non-metric space has a o-representation.

Proof. By [5, Theorem 2.3.23.] the space X is embeddable in I*X) From Theorem
1.7 it follows that I*X) is a limit of I = {I%, P,;, A}, where every I® is the Hilbert
cube. Now, X is a closed subspace of limI. Let X, = P,,,(X), where P, : I — I°
is a projection of the Tychonoff cube I onto the Hilbert cube I®. Let py, be the
restriction of Py, onto Xp. We have the inverse system X = {X,, pap, A} such that
w(X,) < Ng. It is obvious that X is homeomorphic to lim X. Moreover, X is an
inverse o-system since I = {I%, P,;,, A} is an inverse o-system. O
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2 Monotone-light factorization and inverse systems

A space X is said to be rim-metrizable if it has a basis B such that Bd(U)) is
metrizable for each U € B. Equivalently, a space X is rim-metrizable if and only
if for each pair F, G of disjoint closed subsets of X there exists a metrizable closed
subset of X which separates F' and G.

Lemma 2.1. [16, Theorem 1.2]. Let X be a non-degenerate rim-metrizable con-
tinuum and let Y be a continuous image of X under a light mapping f : X — Y.
Then w(X) = w(Y).

Lemma 2.2. [16, Theorem 3.2]. Let X be a rim-metrizable continuum and let
f: X =Y be a monotone mapping onto Y. Then Y is rim-metrizable.

Let M be a class of continua such that X is in M if and only if X is the
countable union of closed subsets X; which are either locally connected or rim-
metrizable continua. Now we shall to prove the following result.

Theorem 2.3. Let X = {X,, pap, A} be an inverse system of compact spaces and
surjective bonding mappings pap. Then:

1) There exists an inverse system M (X) = {M,, mqp, A} of compact spaces such
that map are monotone surjections and lim X is homeomorphic to lim M(X),

2) If X is o-directed, then M(X) is o-directed,
3) If X is o-complete, then M (X) is o-complete,

4) If every X, is a metric space, lim X is in M and hereditarily unicoherent, then
every M, is metrizable.

Proof. The statements 1)-3) are proved in [8, Theorem 3.12]. It remains to prove
4). Let imX =U{X, : ¢ € N}, where each X; is either a locally connected
closed subsets of lim X or a rim-metrizable subsets of lim X. From the proof of
[8, Theorem 3.12] it follows that M, is a continuum such that there exists the
mappings m, : limX —M, and ¢, : M, — X,. Moreover, m, is monotone and
£, is light. Firstly, suppose that X; is locally connected. Then m,(X;) C M, is
locally connected [17, Lemma 1.5, p. 70]. Applying [11, Theorem 1] we conclude
that mq(X;) is metrizable. If X, is rim-metrizable, then m,(X;) is rim-metrizable
(Theorem 2.2) since from hereditarily unicoherence of lim X it follows that m,|X;
is monotone. Finally, from Theorem 2.1 it follows that m,(X;) metrizable. Now,
M, = U{m.(X;) : i € N}. Using [5, Corollary 3.1.20, p. 171] we see that M, is
metrizable. O

An arboroid is an hereditarily unicoherent continuum which is arcwise connected
by generalized arcs. A metrizable arboroid is a dendroid. If X is an arboroid and
x,y € X, then there exists a unique arc [z,y] in X with endpoints z and y. If [z, y]
is an arc, then [z, y]\{z,y} is denoted by (z,y).
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A point t of an arboroid X is said to be a ramification point of X if t is the only
common point of some three arcs such that it is the only common point of any two,
and an end point of each of them.

A point e of an arboroid X is said to be end point of X if there exists no arc
[a,b] in X such that x € [a,b]\{a,b}.

A continuum is a graph if it is the union of a finite number of metric free arcs.
A tree is an acyclic graph. A continuum X is tree-like if for each open cover U of
X, there is a tree Xy; and a U-mapping fi; : X — Xy (the inverse image of each
point is contained in a member of U).

Every tree-like continuum is hereditarily unicoherent. A dendroid is tree-like
[3].

Proposition 1. If X = {X,, pas, A} is an inverse system of tree-like continua and
if pap are onto mappings, then the limit X = lim X is a tree-like continuum.

Proof. Let U ={Uy,..., U,} be an open covering of X. There exist an a € A and
an open covering U, = {Uiq, ..., Uga} such that {p;l(Ula),..., pgl(U;m)} refines
the covering U. There exist a tree T, and an U,-mapping f, : X, — T, since X, is
tree-like. It is clear that f,p, : X — T, is an U-mapping. Hence, X is tree-like. [J

If an arboroid X has only one ramification point ¢, it is called a generalized fan
with the top t. A metrizable generalized fan is called a fan.
The following result is known for the generalized fans.

Theorem 2.4. [9, Theorem 4.22, p. 410]. For every generalized fan X there exists
a o-directed inverse system X = {X,, pap, A} of metric fans such that all the
bonding mappings paep are surjective and the limit lim X is homeomorphic to X .

Now we shall prove that there is a o-system with the property as in Theorem
2.4.

Theorem 2.5. For every generalized fan X there exists a o-system X = {X,,
Dab, A} of metric fans such that all the bonding mappings papy are surjective and the
limit lim X is homeomorphic to X.

Proof. It remains to prove that there exists such o-system. Let X = {X,, pas, 4}
be as in Theorem 2.4. The proof is broken into several steps.

Step 1. For each subset Ag of (4, <) we define sets A,, n = 0,1, ..., by the
inductive rule A, 11 = A, U {m(z,y) : x, y € A,}, where m(z,y) is a member of
A such that z,y < m(x,y). Let A = U{A, : n € N}. Tt is clear that card(A) =
card(Ap). Moreover, A is directed by <. For each directed set (A, <) we define

A, ={A:0#ACA, card(A) <Xy and A is directed by <}.

Step 2. If A is a directed set, then A, is o-directed and o-complete. Let {Al,
A2 ..., A" ..} be a countable subset of A,. Then Ag = U{A!, A2 .. A" ..}
is a countable subset of A,. Define sets A,, n = 0,1,..., by the inductive rule
Apyr = AU {m(x,y) -z, y € Ay}, where m(z, y) is a member of A such that
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z,y < m(z,y). Let A = [J{A,: n € N}. It is clear that card(A) = card(Ay).
This means that A is countable. Moreover A D A?, i € N. Hence A, is o-directed.
Let us prove that A, is o-complete. Let A' € A2 C ...C A" C ... be a countable
chain in A,. Then A = U{A?: i € N} is countable and directed subset of 4, i.e.,
A € A,. Tt is clear that A D A, i € N. Moreover, for each I' € A, with property
I DAY i €N, wehave I' D A. Hence A = sup{A’ : i € N}. This means that A, is
o-complete.

Step 3. If A € A,, let XA = {Xb, Pob A} and XA = lim X2, If AT e A,
and A C T, let Par: Xr — XA denote the map induced by the projections pg :
Xt — X5, 0 € A, of the inverse system X',

Step 4. If X = {X,, pab, A} is an inverse system, then X, = {Xa, Par,
Ay} is a o-directed and o-complete inverse system such that im X and lim X, are
homeomorphic. Each thread z = (2, : a € A) induces the thread (z, : a € A)
for each A € A,, i.e., the point zao € Xa. This means that we have a mapping
H : limX — limX, such that H(z) = (za : A € A,). It is obvious that H is
continuous and 1-1. The mapping H is onto since the collections of the threads
{za : A € A,} induces the thread in X. We infer that H is a homeomorphism
since lim X is compact.

Step 5. Every Xa is a metric fan. Every Xa is a metric tree-like continuum.
This follows from Proposition 1. This means that every Xa is hereditarily unico-
herent. Let us prove that every X is arcwise connected. This follows from [15,
Theorem]. As in the proof of Theorem 4.19. of [9] we conclude that every Xa is a
fan.

Step 6. FEvery projection Pa : lim X, — XAa is onto. This follows from the
assumption that the bonding mappings p,, are surjective.

Finally, X, = {Xa, Par, A5} is a desired o-system. O

The following cardinal invariant is a ”connected” version of the cellularity. Let
X be a continuum and let

¢(X) = sup{card(C) : C is a disjoint family of non-degenerate subcontinua in X }.
Similarly, a ”connected” version of the density is defined as follows.
d(X) = min{card(D) : D is a subset of X meeting each non-degenerate

subcontinuum of X}.

The main results of [1] are:

a) w(X) < min{d(X),a(X)*},

b) Under the generalized Suslin Hypothesis w(X) < ¢(X),

¢) Each Suslinian continuum is hereditarily decomposable, has weight < w; (and
is metrizable if the Suslin Hypothesis holds).

The main Theorem of [1] is

Theorem 2.6. Fach compact space X with w(X) > ¢(X) is the limit of an inverse
well-ordered spectrum of lenght (X)) consisting of compacta with weight < ¢(X)
and monotone bonding mappings.
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3 Fixed point property for 2* and C(X) if X is a
fan

In this section we shall prove the fixed point property for 2¥ and C(X) if X is a
fan. If X is a metric fan, i.e., a fan then we have the following result.

Theorem 3.1. [6, Theorem 22.13, p. 194]. If X is a fan, then 2% and C(X) have
the fixed point property.

For generalized fans the proofs for 2% and C(X) are different. We start be the
proof for 2X.

Theorem 3.2. If X is a generalized fan, then 2% have the fized point property.

Proof. By Theorem 2.5 there exists a o-system X = {X,, pap, A} of metric fans
such that all the bonding mappings p, are surjective and the limit lim X is home-
omorphic to X. Now we have the inverse system 2% = {2%« 2Pat A} whose limit
is 2X (Lemma 1.1). It is clear that the mappings 2P«* are onto if the bonding map-
pings pgp are onto. Now we can apply Theorem 1.5 since, by Theorem 3.1, every
2%a has the fixed point property. Hence, 2% has the fixed point property. O

Let X = {Xg, pab, A} be a o-system. If we consider the inverse system C(X) =
{C(X4),C(pap), A}, then C(pgp) are not always the surjections. This is the case only
if pap are weakly confluent mappings [13, Theorem (0.49.1), p. 24]. This means that
we can apply Theorem 1.5 on the system C(X) = {C(X,), C(pap), A} only if pap
are weakly confluent mappings. Let us recall that a mapping f : X — Y is weakly
confluent provided that for each subcontinuum K of Y there exists a component A
of f71(K) such that f(A) = K [13, (0.45.4), p. 22]. Each monotone mapping is
weakly confluent. It follows that expanding Theorem 2.5 is not enough for proving
the fixed point property of C(X) when X is a generalized fan. For this reason we
shall consider the fixed point property for 2% and C(X) if X is a generalized fan in
class M.

Theorem 3.3. If X is a generalized fan in the class M, then C(X) have the fized
point property.

Proof. By Theorem 2.5 there exists a o-system X = {X,, pay, A} of metric fans
such that all the bonding mappings p.p are surjective and the limit lim X is home-
omorphic to X. Applying Theorem 2.3 we obtain an inverse system M (X) = {M,,
Map, A} of compact metric spaces such that m,;, are monotone surjections and lim X
is homeomorphic to lim M (X), i.e., X is homeomorphic to lim M (X). Moreover,
from the fact that the projections m, : lim M(X) — M, are monotone it follows
that M, is a fan. Now we have the inverse system C'(M (X)) = {C(M,), C(map), A}
whose limit is C(X) (Lemma 1.1). Tt is clear that the mappings C(pap) are onto if
the bonding mappings m,;, are monotone. Now we can apply Theorem 1.5 since,
by Theorem 3.1, every C(M,) has the fixed point property. Hence, C'(X) has the
fixed point property. O
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4 TFixed point property for 2% and C(X) if X is a
smooth arboroid

An arboroid X is said to be smooth if there exists a point p € X, called an initial
point of X, such that for every convergent net of points {a, : n € E} of X the
condition

lim a, = a
nek

implies that the net of arcs pa, is convergent and
Lim pa, = pa.
HAL pan =P

The set of all points of X each of them can be taken as an initial point will be called
the initial set of X.

Lemma 4.1. [4, Corollary 10, p. 309]. If [ is a monotone mapping of a smooth
arboroid X onto Y, then'Y is a smooth arboroid and f(P) C P*, where P and P*
denote the initial sets of X and Y respectively.

Theorem 4.2. [6, Theorem 22.12, p. 194]. If X is a smooth dendroid, then 2%
and C(X) have the fized point property.

Theorem 4.3. If a non-metrizable arboroid X is in class M, then there exists an
inverse o-system X = { X4, pap, A} such that each X, is a dendroid, every pgp is
monotone and X is homeomorphic to lim X.

Proof. jFrom Corollary 2.3 it follows that there exists an inverse o-system X =
{XasDap, A} such that each X, is a metric continuum, every p,p is monotone and X
is homeomorphic to lim X. From 4.1 we infer that every X, is an arboroid. Hence,
every X, is a metrizable arboroid, i.e., a dendroid. O

Theorem 4.4. If a non-metrizable smooth arboroid X is in class M, then there
exists an inverse o-system X = { X, pap, A} such that each X, is a smooth dendroid,
every pqp 1S monotone and X is homeomorphic to lim X.

Proof. Theorem follows from Theorems 2.3 and 4.1. O

Theorem 4.5. If X is a smooth arboroid in the class M, then 2% and C(X) have
the fixed point property.

Proof. By Theorem 4.4 there exists an inverse o-system X = { X, pas, A} such that
each X, is a smooth dendroid, every pq; is monotone and X is homeomorphic to
limX. Now the systems 2X = {2%« 2Pt A} and C(X) = {C(X,),C(pay), A}
satisfy the conditions of Theorem 1.5. Hence, 2% and C(X) have the fixed point
property. O
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5 Fixed point property for 2* and C(X) if X is a
cone over a generalized fan or a smooth arboroid

Let Y be a topological space. The suspension over Y, which we denote by X(Y), is
the quotient space obtained from Y x [—1,1] by shrinking ¥ x {—1} and ¥ x {1}
to (different) points.

Theorem 5.1. [6, Theorem 22.15, p. 195]. Let X = Cone(Y), where Y is a fan
or a smooth dendroid. Then, 2% and C(X) have the fived point property.

Theorem 5.2. Let X = Cone(Y), where Y € M is a generalized fan or a smooth
arboroid. Then, 2% and C(X) have the fived point property.

Proof. If Y € M is a generalized fan or a smooth arboroid, then there exists an
inverse o-system Y = {Y,, pap, A} such that each Y, is a smooth dendroid, every
Dab 1s monotone and Y is homeomorphic to lim Y. Furthermore, X = Cone(Y) =
lim{Cone(Ya), qap, A} [14, 3.15, p. 41 and Exercise 3.30, p. 49 |. Let us observe
that q,5 are monotone. This means that the inverse systems {20"”6(Ya),2q“b,A}
and {C(Cone(Y,)),C(qas), A} satisfy the conditions of Theorem 1.5. Hence, 2%
and C'(X) have the fixed point property. O

For suspension 3(Y') over Y we have the following result.

Theorem 5.3. [6, Theorem 22.16, p. 196]. Let X = X(Y'), where Y is a fan or a
smooth dendroid. Then, 2% and C(X) have the fived point property.

Analogue result for non-metric settings is as follows.

Theorem 5.4. Let X = X(Y), where Y € M is a generalized fan or a smooth
arboroid. Then, 2% and C(X) have the fized point property.

6 Fixed point property for 2* and C(X) if X is a
product of generalized fans or smooth arboroids

In this section we shall generalize the following result.

Theorem 6.1. [6, Theorem 22.14, p. 195]. Let X be a finite or countably infinite
Cartesian product, where each coordinate space is a fan or a smooth dendroid. Then
2% and C(X) have the fized point property.

Theorem 6.2. Let X be a Cartesian product, where each coordinate space is a fan
or a smooth dendroid. Then 2% and C(X) have the fived point property.

Proof. If X is a finite or countably infinite Cartesian product, then apply Theorem
6.1. Suppose now that X is the Cartesian product X = [[{X, : a € A}, where
card(A) > Rg. From Theorem 1.6 it follows that for product X = [[{X, : a € A}
of spaces X, there exists a o-directed inverse system X = {X* P,,, M} of the
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countable product X* such that X is homeomorphic to lim X. Moreover, if each
X, is metrizable continuum, then X = {X*, P,,, M} is an inverse o-system with
monotone bonding mappings P,,. The inverse systems 2% = {2X" 2Pw M} and
C(X) = {C(XH),C(P,,), M} satisfy the assumptions of Theorem 1.5. Hence, 2%
and C(X) have the fixed point property. O

We close this section with the following result.

Theorem 6.3. Let X be a Cartesian product, where each coordinate space is a
generalized fan or a smooth arboroid of the same weight. Then 2% and C(X) have
the fixed point property.

Proof. Now we have X = [[{X;, : m € M} and w(X,,) = k for every m €
M, where k is an uncountable cardinal. This means that for every m € M we
have an inverse o-system X,, = { Xy a;Pm.ab, A} whose limit is X,,,. Now X is
homeomorphic to im{IIX,, o, Ip., ap, A} [5, Exercise 2.5.D.(b), p. 143]. Finally the
systems {211Xm.a 2WPmar A} and {C(T1X,,.4), C(Ipom,ab), A} satisfy the conditions
of Theorem 1.5 since, by Theorem 6.2, the continua 2"%m.« and C(I1X,,,) have
the fixed point property. Hence, 2% and C(X) have the fixed point property. [
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