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FIXED POINT PROPERTY
FOR HYPERSPACES OF ARBOROIDS

Ivan Lončar

Abstract

The main purpose of this paper is to study arboroids, a non-metric ana-
logue of dendroids. It is proved that hyperspaces of some arboroids have the
fixed point property.

1 Introduction

All spaces in this paper are compact Hausdorff and all mappings are continuous.
The weight of a space X is denoted by w(X). The cardinality of a set A is denoted
by card(A). We shall use the notion of inverse system as in [5, pp. 135-142]. An
inverse system is denoted by X = {Xa, pab, A}.

A generalized arc is a Hausdorff continuum with exactly two non-separating
points. Each separable arc is homeomorphic to the closed interval I = [0, 1].

For a compact space X we denote by 2X the hyperspace of all nonempty closed
subsets of X equipped with the Vietoris topology. C(X) and X(n), where n is
a positive integer, stand for the sets of all connected members of 2X and of all
nonempty subsets consisting of at most n points, respectively, both considered as
subspaces of 2X , see [7].

For a mapping f : X → Y define 2f : 2X → 2Y by 2f (F ) = f(F ) for F ∈ 2X .
By [12, 5.10] 2f is continuous, 2f (C(X)) ⊂ C(Y ) and 2f (X(n)) ⊂ Y (n). The
restriction 2f |C(X) is denoted by C(f).

An element {xa} of the Cartesian product
∏{Xa : a ∈ A} is called a thread of

X if pab(xb) = xa for any a, b ∈ A satisfying a ≤ b. The subspace of
∏{Xa : a ∈ A}

consisting of all threads of X is called the limit of the inverse system X = {Xa, pab,
A} and is denoted by limX or by lim{Xa, pab, A} [5, p. 135].

Let X = {Xa, pab, A} be an inverse system of compact spaces with the
natural projections pa : limX → Xa, for a ∈ A. Then 2X = {2Xa , 2pab , A},
C(X) = {C(Xa), C(pab), A} and X(n) = {Xa(n), 2pab | Xb(n), A} form inverse
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systems. For each F ∈ 2limX, i.e., for each closed F ⊆ limX the set pa(F ) ⊆ Xa

is closed and compact. Thus, we have a mapping 2pa : 2limX → 2Xa induced by pa

for each a ∈ A. Define a mapping M : 2limX → lim 2X by M(F ) = {pa(F ) : a ∈ A}.
Since {pa(F ) : a ∈ A} is a thread of the system 2X, the mapping M is continuous
and one-to-one. It is also onto since for each thread {Fa : a ∈ A} of the system
2X the set F ′ =

⋂{p−1
a (Fa) : a ∈ A} is non-empty and pa(F ′) = Fa. Thus, M

is a homeomorphism. If Pa : lim 2 X → 2 Xa , a ∈ A, are the projections, then
PaM = 2pa . Identifying F with M(F ) we have Pa = 2pa .

Lemma 1.1. [7, Lemma 2.]. Let X = limX. Then 2X = lim 2X, C(X) = lim C(X)
and X(n) = limX(n).

We say that an inverse system X = {Xa, pab, A} is σ-directed if for each sequence
a1, a2, ..., ak, ... of the members of A there is an a ∈ A such that a ≥ ak for each k
∈ N.

Let A be a partially ordered directed set. We say that a subset A1 ⊂ A majorates
[2, p. 9] another subset A2 ⊂ A if for each element a2 ∈ A2 there exists an element
a1 ∈ A1 such that a1 ≥ a2. A subset which majorates A is called cofinal in A.
A subset of A is said to be a chain if every two elements of it are comparable.
The symbol sup B, where B ⊂ A, denotes the lower upper bound of B (if such an
element exists in A). Let τ ≥ ℵ0 be a cardinal number. A subset B of A is said to
be τ -closed in A if for each chain C ⊂ B, with card(B) ≤ τ, we have sup C ∈ B,
whenever the element sup C exists in A. Finally, a directed set A is said to be
τ -complete if for each chain C of A of elements of A with card(C) ≤ τ , there exists
an element sup C in A.

Suppose that we have two inverse systems X = {Xa, pab, A} and Y = {Yb, qbc, B}.
A morphism of the system X into the system Y [2, p. 15] is a family {ϕ, {fb : b ∈ B}}
consisting of a nondecreasing function ϕ : B → A such that ϕ(B) is cofinal in A,
and of maps fb : Xϕ(b) → Yb defined for all b ∈ B such that the following

Xϕ(b)

pϕ(b)ϕ(c)←− Xϕ(c)

↓ fb ↓ fc

Yb
qbc←− Yc

(1.1)

diagram commutes. Any morphism {ϕ, {fb : b ∈ B}} : X → Y induces a map,
called the limit map of the morphism

lim{ϕ, {fb : b ∈ B}} : limX → limY

In the present paper we deal with the inverse systems defined on the same
indexing set A. In this case, the map ϕ : A → A is taken to be the identity and we
use the following notation {fa : Xa → Ya; a ∈ A} : X → Y.

We say that an inverse system X = {Xa, pab, A} is factorizing [2, p. 17] if
for each real-valued mapping f : limX → R there exist an a ∈ A and a mapping
fa : Xa → R such that f = fapa.

An inverse system X = {Xa, pab, A} is said to be σ-directed if for each sequence
a1, a2, ..., ak, ... of the members of A there is an a ∈ A such that a ≥ ak for each k
∈ N.
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Lemma 1.2. [2, Corollary 1.3.2, p. 18]. If X = {Xa, pab, A} is a σ-directed
inverse system of compact spaces with surjective bonding mappings, then it is fac-
torizing.

An inverse system X = {Xa, pab, A} is said to be τ -continuous [2, p. 19]
if for each chain B in A with card(B) < τ and sup B = b, the diagonal product
∆ {pab : a ∈ B}maps the space Xb homeomorphically into the space lim{Xa, pab, B}.

An inverse system X = {Xa, pab, A} is said to be τ -system [2, p. 19] if:
a) w(Xa) ≤ τ for every a ∈ A,
b) The system X = {Xa, pab, A} is τ -continuous,
c) The indexing set A is τ -complete.
If τ = ℵ0, then τ -system is called a σ-system. The following theorem is called

the Spectral Theorem [2, p. 19].

Theorem 1.3. [2, Theorem 1.3.4, p. 19]. If a τ -system X = {Xa, pab, A} with
surjective limit projections is factorizing, then each map of its limit space into the
limit space of another τ -system Y = {Ya, qab, A} is induced by a morphism of
cofinal and τ -closed subsystems. If two factorizing τ -systems with surjective limit
projections and the same indexing set have homeomorphic limit spaces, then they
contain isomorphic cofinal and τ -closed subsystems.

Let us remark that the requirement of surjectivity of limit projections of systems
in Theorem 1.3 is essential [2, p. 21].

A fixed point of a function f : X → X is a point p ∈ X such that f(p) = p.
A space X is said to have the fixed point property provided that every surjective
mapping f : X → X has a fixed point.

The following result is known.

Theorem 1.4. [10, Theorem 2, p. 17]. Let X = {Xa, pab, A} be a σ-system
of compact spaces with the limit X and onto projections pa : X → Xa. Let
{fa : Xa → Xa} : X → X be a morphism. Then the induced mapping f = lim {fa} :
X → X has a fixed point if and only if each mapping fa : Xa → Xa, a ∈ A, has a
fixed point.

As an immediate consequence of this theorem and the Spectral theorem 1.3 we
have the following result.

Theorem 1.5. Let a non-metric continuum X be the inverse limit of an inverse
σ-system X = {Xa, pab, A} such that each Xa has the fixed point property and each
bonding mapping pab is onto. Then X has the fixed point property.

Now we will prove some expanding theorems of non-metric compact spaces into
σ-directed inverse systems of compact metric spaces.

Theorem 1.6. For each Cartesian product X =
∏{Xa : a ∈ A} of spaces Xa

there exists a σ-directed inverse system X = {Xµ, Pµν ,M} of the countable product
Xµ such that X is homeomorphic to limX. Moreover, if each Xa is metrizable
continuum, then X = {Xµ, Pµν ,M} is an inverse σ-system with monotone bonding
mappings Pµν .
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Proof. Let M be the set of all countable subsets µ of A ordered by inclusion. If
µ ⊆ ν, then we write µ ≤ ν. It is clear that M is σ-directed. For each µ ∈ M
there exists Xµ =

∏{Xa : a ∈ µ}. If µ, ν ∈ M and µ ≤ ν, then there exists
the projection Pµν : Xν → Xµ which, as the projection, is monotone if Xa are
continua. Finally, we have the system X = {Xµ, Pµν , M}. Let us prove X =
{Xµ, Pµν ,M} is an inverse σ-system. It is clear that M is σ-directed. Moreover,
A is σ-complete. Namely, if µ1 ≤ µ2 ≤ ... ≤ µn, ... is a countable chain in M ,
then we have a countable chain µ1 ⊆ µ2 ⊆ ... ⊆ µn, ... of countable subsets of A.
It is clear that µ =

⋃{µn : n ∈ N} is a countable subset of A and µ = sup µn.
It remains to prove that X = {Xµ, Pµν ,M} is continuous. Let B = µ1 ≤ µ2 ≤
... ≤ µα, ..., α < τ, µα ∈ M , be a chain with sup µα = γ ∈ M . We have transfinite
inverse sequence {Xµα , Pµαµβ

, B}. Let us prove that the mappings Pµαγ , α < τ
induce a homeomorphism of the spaces Xγ and lim{Xµα , Pµαµβ

, B}. Let x ∈ Xγ .
It is clear that Pµαγ(x) = xµα is a point of Xµα and that Pµαµβ

(xµβ
) = xµα if

µα ≤ µβ . This means that (xµα
) is a thread in {Xµα , Pµαµβ

, B}. Set H(x) =
(xµα). We have the mapping H : Xγ → lim{Xµα , Pµαµβ

, B}. It is clear that H is
continuous, 1-1 and onto. Hence, H is a homeomorphism. If each Xa is metrizable,
then X = {Xµ, Pµν ,M} is an inverse σ-system since w(Xµ) ≤ ℵ0. Let us prove
that X is homeomorphic to limX. Let x ∈ X. It is clear that Pµ(x) = xµ is a
point of Xµ and that Pµν(xν) = xµ if µ ≤ ν. This means that (xµ) is a thread in
X = {Xµ, Pµν , M}. Set H(x) = (xµ). We have the mapping H : X → limX. It is
clear that H is continuous, 1-1 and onto. Hence, H is a homeomorphism.

Theorem 1.7. For each Tychonoff cube Im, m ≥ ℵ1, there exists an inverse σ-
system I = {Ia, Pab, A} of the Hilbert cubes Ia such that Im is homeomorphic to
lim I. Equivalently, Im has a σ-representation.

Proof. Let us recall that the Tychonoff cube Im is the Cartesian product
∏{Is :

s ∈ S}, card(S) = m, Is = [0, 1] [5, p. 114]. If card(S) = ℵ0, the Tychonoff cube
Im is called the Hilbert cube. Let A be the set of all countable subsets of S ordered
by inclusion. If a ⊆ b, then we write a ≤ b. It is clear that A is σ-directed. For
each a ∈ A there exists the Hilbert cube Ia. If a, b ∈ A and a ≤ b, then there exists
the projection Pab : Ib → Ia. Finally, we have the system I = {Ia, Pab, A}. The
remaining part of the proof is the same as in the proof of Theorem 1.6

Theorem 1.8. Let X be compact Hausdorff space such that w(X) ≥ ℵ1. There
exists an inverse σ-system X = {Xa, pab, A} such that X is homeomorphic to limX,
i.e., every compact Hausdorff non-metric space has a σ-representation.

Proof. By [5, Theorem 2.3.23.] the space X is embeddable in Iw(X). From Theorem
1.7 it follows that Iw(X) is a limit of I = {Ia, Pab, A}, where every Ia is the Hilbert
cube. Now, X is a closed subspace of lim I. Let Xa = Pm(X), where Pm : Im → Ia

is a projection of the Tychonoff cube Im onto the Hilbert cube Ia. Let pab be the
restriction of Pab onto Xb. We have the inverse system X = {Xa, pab, A} such that
w(Xa) ≤ ℵ0. It is obvious that X is homeomorphic to limX. Moreover, X is an
inverse σ-system since I = {Ia, Pab, A} is an inverse σ-system.
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2 Monotone-light factorization and inverse systems

A space X is said to be rim-metrizable if it has a basis B such that Bd(U)) is
metrizable for each U ∈ B. Equivalently, a space X is rim-metrizable if and only
if for each pair F, G of disjoint closed subsets of X there exists a metrizable closed
subset of X which separates F and G.

Lemma 2.1. [16, Theorem 1.2]. Let X be a non-degenerate rim-metrizable con-
tinuum and let Y be a continuous image of X under a light mapping f : X → Y .
Then w(X) = w(Y ).

Lemma 2.2. [16, Theorem 3.2]. Let X be a rim-metrizable continuum and let
f : X → Y be a monotone mapping onto Y . Then Y is rim-metrizable.

Let M be a class of continua such that X is in M if and only if X is the
countable union of closed subsets Xi which are either locally connected or rim-
metrizable continua. Now we shall to prove the following result.

Theorem 2.3. Let X = {Xa, pab, A} be an inverse system of compact spaces and
surjective bonding mappings pab. Then:

1) There exists an inverse system M(X) = {Ma, mab, A} of compact spaces such
that mab are monotone surjections and limX is homeomorphic to lim M(X),

2) If X is σ-directed, then M(X) is σ-directed,

3) If X is σ-complete, then M(X) is σ-complete,

4) If every Xa is a metric space, limX is in M and hereditarily unicoherent, then
every Ma is metrizable.

Proof. The statements 1)-3) are proved in [8, Theorem 3.12]. It remains to prove
4). Let limX = ∪{Xi : i ∈ N}, where each Xi is either a locally connected
closed subsets of limX or a rim-metrizable subsets of limX. From the proof of
[8, Theorem 3.12] it follows that Ma is a continuum such that there exists the
mappings ma : limX →Ma and `a : Ma → Xa. Moreover, ma is monotone and
`a is light. Firstly, suppose that Xi is locally connected. Then ma(Xi) ⊂ Ma is
locally connected [17, Lemma 1.5, p. 70]. Applying [11, Theorem 1] we conclude
that ma(Xi) is metrizable. If Xi is rim-metrizable, then ma(Xi) is rim-metrizable
(Theorem 2.2) since from hereditarily unicoherence of limX it follows that ma|Xi

is monotone. Finally, from Theorem 2.1 it follows that ma(Xi) metrizable. Now,
Ma = ∪{ma(Xi) : i ∈ N}. Using [5, Corollary 3.1.20, p. 171] we see that Ma is
metrizable.

An arboroid is an hereditarily unicoherent continuum which is arcwise connected
by generalized arcs. A metrizable arboroid is a dendroid. If X is an arboroid and
x, y ∈ X, then there exists a unique arc [x, y] in X with endpoints x and y. If [x, y]
is an arc, then [x, y]�{x, y} is denoted by (x, y).
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A point t of an arboroid X is said to be a ramification point of X if t is the only
common point of some three arcs such that it is the only common point of any two,
and an end point of each of them.

A point e of an arboroid X is said to be end point of X if there exists no arc
[a, b] in X such that x ∈ [a, b]�{a, b}.

A continuum is a graph if it is the union of a finite number of metric free arcs.
A tree is an acyclic graph. A continuum X is tree-like if for each open cover U of
X, there is a tree XU and a U-mapping fU : X → XU (the inverse image of each
point is contained in a member of U).

Every tree-like continuum is hereditarily unicoherent. A dendroid is tree-like
[3].

Proposition 1. If X = {Xa, pab, A} is an inverse system of tree-like continua and
if pab are onto mappings, then the limit X = limX is a tree-like continuum.

Proof. Let U = {U1, ..., Un} be an open covering of X. There exist an a ∈ A and
an open covering Ua = {U1a, ..., Uka} such that

{
p−1

a (U1a), ..., p−1
a (Uka)

}
refines

the covering U . There exist a tree Ta and an Ua-mapping fu : Xa → Ta since Xa is
tree-like. It is clear that fupa : X → Ta is an U-mapping. Hence, X is tree-like.

If an arboroid X has only one ramification point t, it is called a generalized fan
with the top t. A metrizable generalized fan is called a fan.

The following result is known for the generalized fans.

Theorem 2.4. [9, Theorem 4.22, p. 410]. For every generalized fan X there exists
a σ-directed inverse system X = {Xa, pab, A} of metric fans such that all the
bonding mappings pab are surjective and the limit limX is homeomorphic to X.

Now we shall prove that there is a σ-system with the property as in Theorem
2.4.

Theorem 2.5. For every generalized fan X there exists a σ-system X = {Xa,
pab, A} of metric fans such that all the bonding mappings pab are surjective and the
limit limX is homeomorphic to X.

Proof. It remains to prove that there exists such σ-system. Let X = {Xa, pab, A}
be as in Theorem 2.4. The proof is broken into several steps.

Step 1. For each subset ∆0 of (A,≤) we define sets ∆n, n = 0, 1, ..., by the
inductive rule ∆n+1 = ∆n

⋃ {m(x, y) : x, y ∈ ∆n}, where m(x, y) is a member of
A such that x, y ≤ m(x, y). Let ∆ =

⋃{∆n : n ∈ N}. It is clear that card(∆) =
card(∆0). Moreover, ∆ is directed by ≤. For each directed set (A,≤) we define

Aσ = {∆ : ∅ 6= ∆ ⊂ A, card(∆) ≤ ℵ0 and ∆ is directed by ≤}.

Step 2. If A is a directed set, then Aσ is σ-directed and σ-complete. Let {∆1,
∆2, ..., ∆n, ...} be a countable subset of Aσ. Then ∆0 = ∪{∆1, ∆2, ..., ∆n, ...}
is a countable subset of Aσ. Define sets ∆n, n = 0, 1, ..., by the inductive rule
∆n+1 = ∆n

⋃ {m(x, y) : x, y ∈ ∆n}, where m(x, y) is a member of A such that
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x, y ≤ m(x, y). Let ∆ =
⋃{∆n: n ∈ N}. It is clear that card(∆) = card(∆0).

This means that ∆ is countable. Moreover ∆ ⊇ ∆i, i ∈ N. Hence Aσ is σ-directed.
Let us prove that Aσ is σ-complete. Let ∆1 ⊂ ∆2 ⊂ ...⊂ ∆n ⊂ ... be a countable
chain in Aσ. Then ∆ = ∪{∆i : i ∈ N} is countable and directed subset of A, i.e.,
∆ ∈ Aσ. It is clear that ∆ ⊇ ∆i, i ∈ N. Moreover, for each Γ ∈ Aσ with property
Γ ⊇ ∆i, i ∈ N, we have Γ ⊇ ∆. Hence ∆ = sup{∆i : i ∈ N}. This means that Aσ is
σ-complete.

Step 3. If ∆ ∈ Aσ, let X∆ = {Xb, pbb′ , ∆} and X∆ = limX∆. If ∆, Γ ∈ Aσ

and ∆ ⊆ Γ, let P∆Γ: XΓ → X∆ denote the map induced by the projections pΓ
δ :

XΓ → Xδ, δ ∈ ∆, of the inverse system XΓ.
Step 4. If X = {Xa, pab, A} is an inverse system, then Xσ = {X∆, P∆Γ,

Aσ} is a σ-directed and σ-complete inverse system such that limX and limXσ are
homeomorphic. Each thread x = (xa : a ∈ A) induces the thread (xa : a ∈ ∆)
for each ∆ ∈ Aσ, i.e., the point x∆ ∈ X∆. This means that we have a mapping
H : limX → limXσ such that H(x) = (x∆ : ∆ ∈ Aσ). It is obvious that H is
continuous and 1-1. The mapping H is onto since the collections of the threads
{x∆ : ∆ ∈ Aσ} induces the thread in X. We infer that H is a homeomorphism
since limX is compact.

Step 5. Every X∆ is a metric fan. Every X∆ is a metric tree-like continuum.
This follows from Proposition 1. This means that every X∆ is hereditarily unico-
herent. Let us prove that every X∆ is arcwise connected. This follows from [15,
Theorem]. As in the proof of Theorem 4.19. of [9] we conclude that every X∆ is a
fan.

Step 6. Every projection P∆ : limXσ → X∆ is onto. This follows from the
assumption that the bonding mappings pab are surjective.

Finally, Xσ = {X∆, P∆Γ, Aσ} is a desired σ-system.

The following cardinal invariant is a ”connected” version of the cellularity. Let
X be a continuum and let

c(X) = sup{card(C) : C is a disjoint family of non-degenerate subcontinua in X}.
Similarly, a ”connected” version of the density is defined as follows.

d(X) = min{card(D) : D is a subset of X meeting each non-degenerate

subcontinuum of X}.
The main results of [1] are:

a) w(X) ≤ min{d(X), c(X)+},
b) Under the generalized Suslin Hypothesis w(X) ≤ c(X),
c) Each Suslinian continuum is hereditarily decomposable, has weight ≤ ω1 (and

is metrizable if the Suslin Hypothesis holds).
The main Theorem of [1] is

Theorem 2.6. Each compact space X with w(X) > c(X) is the limit of an inverse
well-ordered spectrum of lenght c(X)+ consisting of compacta with weight ≤ c(X)
and monotone bonding mappings.
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3 Fixed point property for 2X and C(X) if X is a
fan

In this section we shall prove the fixed point property for 2X and C(X) if X is a
fan. If X is a metric fan, i.e., a fan then we have the following result.

Theorem 3.1. [6, Theorem 22.13, p. 194]. If X is a fan, then 2X and C(X) have
the fixed point property.

For generalized fans the proofs for 2X and C(X) are different. We start be the
proof for 2X .

Theorem 3.2. If X is a generalized fan, then 2X have the fixed point property.

Proof. By Theorem 2.5 there exists a σ-system X = {Xa, pab, A} of metric fans
such that all the bonding mappings pab are surjective and the limit limX is home-
omorphic to X. Now we have the inverse system 2X = {2Xa , 2pab , A} whose limit
is 2X (Lemma 1.1). It is clear that the mappings 2pab are onto if the bonding map-
pings pab are onto. Now we can apply Theorem 1.5 since, by Theorem 3.1, every
2Xa has the fixed point property. Hence, 2X has the fixed point property.

Let X = {Xa, pab, A} be a σ-system. If we consider the inverse system C(X) =
{C(Xa), C(pab), A}, then C(pab) are not always the surjections. This is the case only
if pab are weakly confluent mappings [13, Theorem (0.49.1), p. 24]. This means that
we can apply Theorem 1.5 on the system C(X) = {C(Xa), C(pab), A} only if pab

are weakly confluent mappings. Let us recall that a mapping f : X → Y is weakly
confluent provided that for each subcontinuum K of Y there exists a component A
of f−1(K) such that f(A) = K [13, (0.45.4), p. 22]. Each monotone mapping is
weakly confluent. It follows that expanding Theorem 2.5 is not enough for proving
the fixed point property of C(X) when X is a generalized fan. For this reason we
shall consider the fixed point property for 2X and C(X) if X is a generalized fan in
class M.

Theorem 3.3. If X is a generalized fan in the class M, then C(X) have the fixed
point property.

Proof. By Theorem 2.5 there exists a σ-system X = {Xa, pab, A} of metric fans
such that all the bonding mappings pab are surjective and the limit limX is home-
omorphic to X. Applying Theorem 2.3 we obtain an inverse system M(X) = {Ma,
mab, A} of compact metric spaces such that mab are monotone surjections and lim X
is homeomorphic to lim M(X), i.e., X is homeomorphic to limM(X). Moreover,
from the fact that the projections ma : lim M(X) → Ma are monotone it follows
that Ma is a fan. Now we have the inverse system C(M(X)) = {C(Ma), C(mab), A}
whose limit is C(X) (Lemma 1.1). It is clear that the mappings C(pab) are onto if
the bonding mappings mab are monotone. Now we can apply Theorem 1.5 since,
by Theorem 3.1, every C(Ma) has the fixed point property. Hence, C(X) has the
fixed point property.
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4 Fixed point property for 2X and C(X) if X is a
smooth arboroid

An arboroid X is said to be smooth if there exists a point p ∈ X, called an initial
point of X, such that for every convergent net of points {an : n ∈ E} of X the
condition

lim
n∈E

an = a

implies that the net of arcs pan is convergent and

Lim
n∈E

pan = pa.

The set of all points of X each of them can be taken as an initial point will be called
the initial set of X.

Lemma 4.1. [4, Corollary 10, p. 309]. If f is a monotone mapping of a smooth
arboroid X onto Y , then Y is a smooth arboroid and f(P ) ⊂ P ∗, where P and P ∗

denote the initial sets of X and Y respectively.

Theorem 4.2. [6, Theorem 22.12, p. 194]. If X is a smooth dendroid, then 2X

and C(X) have the fixed point property.

Theorem 4.3. If a non-metrizable arboroid X is in class M, then there exists an
inverse σ-system X = {Xa, pab, A} such that each Xa is a dendroid, every pab is
monotone and X is homeomorphic to limX.

Proof. ¿From Corollary 2.3 it follows that there exists an inverse σ-system X =
{Xa, pab, A} such that each Xa is a metric continuum, every pab is monotone and X
is homeomorphic to limX. From 4.1 we infer that every Xa is an arboroid. Hence,
every Xa is a metrizable arboroid, i.e., a dendroid.

Theorem 4.4. If a non-metrizable smooth arboroid X is in class M, then there
exists an inverse σ-system X = {Xa, pab, A} such that each Xa is a smooth dendroid,
every pab is monotone and X is homeomorphic to limX.

Proof. Theorem follows from Theorems 2.3 and 4.1.

Theorem 4.5. If X is a smooth arboroid in the class M, then 2X and C(X) have
the fixed point property.

Proof. By Theorem 4.4 there exists an inverse σ-system X = {Xa, pab, A} such that
each Xa is a smooth dendroid, every pab is monotone and X is homeomorphic to
limX. Now the systems 2X = {2Xa , 2pab , A}, and C(X) = {C(Xa), C(pab), A}
satisfy the conditions of Theorem 1.5. Hence, 2X and C(X) have the fixed point
property.
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5 Fixed point property for 2X and C(X) if X is a
cone over a generalized fan or a smooth arboroid

Let Y be a topological space. The suspension over Y , which we denote by Σ(Y ), is
the quotient space obtained from Y × [−1, 1] by shrinking Y × {−1} and Y × {1}
to (different) points.

Theorem 5.1. [6, Theorem 22.15, p. 195]. Let X = Cone(Y ), where Y is a fan
or a smooth dendroid. Then, 2X and C(X) have the fixed point property.

Theorem 5.2. Let X = Cone(Y ), where Y ∈ M is a generalized fan or a smooth
arboroid. Then, 2X and C(X) have the fixed point property.

Proof. If Y ∈ M is a generalized fan or a smooth arboroid, then there exists an
inverse σ-system Y = {Ya, pab, A} such that each Ya is a smooth dendroid, every
pab is monotone and Y is homeomorphic to limY. Furthermore, X = Cone(Y ) =
lim{Cone(Ya), qab, A} [14, 3.15, p. 41 and Exercise 3.30, p. 49 ]. Let us observe
that qab are monotone. This means that the inverse systems {2Cone(Ya), 2qab , A}
and {C(Cone(Ya)), C(qab), A} satisfy the conditions of Theorem 1.5. Hence, 2X

and C(X) have the fixed point property.

For suspension Σ(Y ) over Y we have the following result.

Theorem 5.3. [6, Theorem 22.16, p. 196]. Let X = Σ(Y ), where Y is a fan or a
smooth dendroid. Then, 2X and C(X) have the fixed point property.

Analogue result for non-metric settings is as follows.

Theorem 5.4. Let X = Σ(Y ), where Y ∈ M is a generalized fan or a smooth
arboroid. Then, 2X and C(X) have the fixed point property.

6 Fixed point property for 2X and C(X) if X is a
product of generalized fans or smooth arboroids

In this section we shall generalize the following result.

Theorem 6.1. [6, Theorem 22.14, p. 195]. Let X be a finite or countably infinite
Cartesian product, where each coordinate space is a fan or a smooth dendroid. Then
2X and C(X) have the fixed point property.

Theorem 6.2. Let X be a Cartesian product, where each coordinate space is a fan
or a smooth dendroid. Then 2X and C(X) have the fixed point property.

Proof. If X is a finite or countably infinite Cartesian product, then apply Theorem
6.1. Suppose now that X is the Cartesian product X =

∏{Xa : a ∈ A}, where
card(A) > ℵ0. From Theorem 1.6 it follows that for product X =

∏{Xa : a ∈ A}
of spaces Xa there exists a σ-directed inverse system X = {Xµ, Pµν ,M} of the
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countable product Xµ such that X is homeomorphic to limX. Moreover, if each
Xa is metrizable continuum, then X = {Xµ, Pµν ,M} is an inverse σ-system with
monotone bonding mappings Pµν . The inverse systems 2X = {2Xµ

, 2Pµν , M} and
C(X) = {C(Xµ), C(Pµν),M} satisfy the assumptions of Theorem 1.5. Hence, 2X

and C(X) have the fixed point property.

We close this section with the following result.

Theorem 6.3. Let X be a Cartesian product, where each coordinate space is a
generalized fan or a smooth arboroid of the same weight. Then 2X and C(X) have
the fixed point property.

Proof. Now we have X =
∏{Xm : m ∈ M} and w(Xm) = k for every m ∈

M, where k is an uncountable cardinal. This means that for every m ∈ M we
have an inverse σ-system Xm = {Xm,a, pm,ab, A} whose limit is Xm. Now X is
homeomorphic to lim{ΠXm,a,Πpm,ab, A} [5, Exercise 2.5.D.(b), p. 143]. Finally the
systems {2ΠXm,a , 2Πpm,ab , A} and {C(ΠXm,a), C(Πpm,ab), A} satisfy the conditions
of Theorem 1.5 since, by Theorem 6.2, the continua 2ΠXm,a and C(ΠXm,a) have
the fixed point property. Hence, 2X and C(X) have the fixed point property.
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