GENERIC WARPED PRODUCT SUBMANIFOLDS IN A KAHLER MANIFOLD

K.A. Khan, Shahid Ali and Nargis Jamal

Abstract

In this paper we have shown that there do not exist proper warped product submanifolds of the type $N \times f N_T$ and $N_T \times f N$ where N_T is an invariant and N is any real non-anti invariant submanifold of a Kaehler manifold. We thus generalize the results of B. Sahin [10] who projected same results for a restricted class, the class of warped product submanifolds $N_\theta \times f N_T$ and $N_T \times f N_\theta$.

1. Introduction

Bishop and O’Neill [2] introduced the concept of warped product manifolds to study manifolds of negative curvature and applied the scheme to space-time. The geometrical aspect of these manifolds have attracted the attention of a lot of researchers recently [6], [8], [10]. Many research papers have appeared to see the existence of warped product submanifolds of manifolds under different settings after it was found that the space around a body with high gravitational field can be modeled on a warped product manifold.

B.Y.Chan [6] studied warped product CR-submanifolds of the type $N_L \times f N_T$ and $N_T \times f N_L$ of a Kaehler manifold \bar{M}, where N_T is an invariant and N_L is an anti invariant submanifold of \bar{M}. He has shown that there do not exist proper warped product submanifolds of the type $N_L \times f N_T$, when as he and others found many examples of warped product submanifolds of type $N_T \times f N_L$ in a Kaehler manifold. B. Sahin extended the study to slant warped product submanifolds of the type $M = N_T \times f N_\theta$ and $M = N_\theta \times f N_T$ of a Kaehler manifold \bar{M}, where N_T is an invariant and N_θ is a proper slant submanifolds of \bar{M}, and showed that they do not exist in either case.

In this paper, we have generalized the results of Chen [6] [7] and Sahin [10] and have shown that there are no proper warped product submanifolds of the type $M = N \times f N_T$ and $M = N_T \times f N$, where N_T is a invariant and N is any real non-anti invariant submanifold of a Kaehler manifold. We thus have extended this study to generic warped product submanifolds of Kaehler manifold.

2000 Mathematics Subject Classification. 53C40, 53B25.

Keywords and Phrases. warped product submanifold, Kaehler manifold, generic manifold.

Received: July 26, 2007
Communicated by Dragan S. Djordjević
2. Some Basic Results

Let \tilde{M} be a Kähler manifold with a complex structure J, Hermitian metric g and the Levi-Civita connection ∇. Then we have

$$J^2 = -I, \quad g(JU, JV) = g(U, V), \quad \nabla J = 0$$

(2.1)

for all vector fields U, V on \tilde{M}.

Let \tilde{M} be a Kähler manifold with a complex structure J, and M be a submanifold of \tilde{M}. The induced Riemannian metric on M is denoted by the same symbol g whereas the induced connection on M is denoted by ∇. Then M is called holomorphic if $JT_pM \subset T_pM$, for every $p \in M$, where T_pM denotes the tangent space to M at the point p.

If $T\tilde{M}$ and TM denote the Lie-algebra of vector fields on \tilde{M} and M respectively and $T^\bot M$, the set of all vector fields normal to M, then the Gauss and Weingarten formulae are respectively given by

$$\nabla_UV = \nabla_UV + h(U, V),$$

$$\nabla_U\xi = -A_\xi U + \nabla^\bot_U\xi,$$

(2.2)

(2.3)

for each $U, V \in TM$ and $\xi \in T^\bot M$, where ∇^\bot denotes the connection on the normal bundle $T^\bot M$. h and A_ξ are the second fundamental forms and the shape operator of the immersion of M into \tilde{M} corresponding to the normal vector field ξ. They are related as

$$g(A_\xi U, V) = g(h(U, V), \xi).$$

(2.4)

For any $U \in TM$ and $\xi \in T^\bot M$, we write

$$JU = PU + FU,$$

$$J\xi = t\xi + f\xi,$$

(2.5)

(2.6)

where PU and $t\xi$ are the tangential components of JU and $J\xi$ respectively whereas FU and $f\xi$ are the normal components of JU and $J\xi$ respectively. The covariant differentiation of the tensors P, F, t and f are defined respectively as

$$(\nabla_U P)V = \nabla_U PV - P\nabla_U V,$$

$$\nabla_U F = \nabla_U^\bot FV - F\nabla_U V,$$

$$\nabla_U t\xi = \nabla_U t\xi - t\nabla_U^\bot\xi,$$

$$\nabla_U f\xi = \nabla_U^\bot f\xi - f\nabla_U^\bot\xi,$$

(2.7)

(2.8)

(2.9)

(2.10)

Let \tilde{M} be an almost Hermition manifold with an almost complex structure J, Hermitian metric g and M be a submanifold of \tilde{M}. For each $x \in M$, let $D_x = T_xM \cap JT_xM$ i.e., a maximal holomorphc subspace of the tangent space T_xM at $x \in M$. If the dimension of D_x remains the same for each $x \in M$
and it defines a holomorphic distribution D on M, then M is called a generic submanifold [4].

A generic submanifold M of an almost Hermitian manifold \bar{M} is said to be generic product submanifold if it is locally a Riemannian product of the leaves of D and D', where D' is orthogonal complementry distribution to D in TM. In this case D and D' are parallel on M i.e., $\nabla_U X \in D$ or equivalently $\nabla_U Z \in D'$ for all $U \in TM$, $X \in D$ and $Z \in D'$.

Now we consider warped product of manifolds which are defined as follows

Definition 2.1. Let (B, g_B) and (F, g_F) be two Riemannian manifolds with Riemannian metrics g_B and g_F respectively and f be a positive differentiable function on B. The warped product of B and F is the Riemannian manifold $(B \times f F, g)$, where

$$g = g_B + f^2 g_F. \quad (2.11)$$

The warped product manifold $(B \times f F, g)$ is denoted by $B \times f F$. If U is tangent to $M = B \times f F$ at (p, q) then by equation (2.11),

$$\|U\|^2 = \|d\pi_1 U\|^2 + f^2(p) \|d\pi_2 U\|^2$$

where π_1 and π_2 are the canonical projections of M onto B and F respectively.

On a warped product manifold $B \times f F$ one has

$$\nabla_U V = \nabla_V U = (U \ln f)V \quad (2.12)$$

for any vector fields U tangent to B and V tangent to F [2].

3. Generic Warped Product Submanifolds

In this section we study generic warped product submanifolds of a Kaehler manifold \bar{M} of the form $M = N_T \times f N$, $M = N \times f N_T$ respectively, where N_T is a holomorphic submanifold and N is any real non anti-invariant submanifold of \bar{M}.

Theorem 3.1. There do not exist proper generic warped product submanifold $M = N \times f N_T$ of a Kaehler manifold M, where N_T is an invariant submanifold and N is any real non anti-invariant submanifold of \bar{M}.

Proof. For any $X \in TN_T$ and $U \in TM$ using (2.12) we obtain

$$g(\nabla_X X, U) = -g(\nabla X U, X)$$

$$= -g(\nabla X U, X)$$

$$= -U \ln f \|X\|^2 \quad (3.1)$$

But, we also have
\[g(\nabla_X X, U) = g(J\nabla_X X, JU) \]
\[= g(\nabla_X JX, JU) \]
\[= -g(\nabla_X JU, JX) \]
\[= -g(\nabla_X PU, JX) - g(\nabla_X FU, JX) \]
\[= -PU \ln f g(X, JX) + g(A_{FU} X, JX) \]
\[= g(h(X, JX), FU) \] (3.2)

Thus from (3.1) and (3.2), we obtain

\[g(h(X, JX), FU) = -U \ln f\|X\|^2 \] (3.3)

Now replacing \(X \) by \(JX \) in (3.3), we obtain

\[g(h(JX, J^2X), FU) = -U \ln f\|X\|^2 \]
\[-g(h(X, JX), FU) = -U \ln f\|X\|^2 \]
\[g(h(JX, JX), FU) = U \ln f\|X\|^2 \] (3.4)

Thus from (3.3) and (3.4), we get

\[U \ln f\|X\|^2 = 0 \]

for all \(U \in TM \). Which implies that \(f \) is constant or \(X = 0 \). Hence the theorem is proved.

Theorem 3.2. There do not exist proper generic warped product submanifold \(M = N_T \times fN \) of a Kähler manifold \(\bar{M} \), where \(N_T \) is a holomorphic submanifold and \(N \) is any real non anti-invariant submanifold of \(\bar{M} \).

Proof. For any \(U, V \in TM \) and using the fact that \(\bar{M} \) is kähler, we have

\[\nabla_U JV = J\nabla_U V, \]

therefore,

\[\nabla_U PV + \nabla_U FV = J(\nabla_U V + h(U, V)), \]

On using (2.2), (2.3), (2.5), we have

\[\nabla_U PV + h(U, PV) - A_{FU} U + \nabla_U^1 FV = P\nabla_U V + F(\nabla_U V) + th(U, V) + fh(U, V). \]

Now, comparing tangential part and using (2.7), we obtain

\[(\nabla_U P)V = A_{FU} U + th(U, V). \] (3.5)

Now, for \(X \in TN_T \) and using (2.12), we get
\[
(\bar{\nabla}_X P)U = \nabla_X PU - P\nabla_X U
= (X \ln f)PU - (X \ln f)PU
= 0.
\]

Using it in (3.5), we get
\[
A_{FU}X = -th(X, U). \tag{3.6}
\]

On the other hand
\[
(\bar{\nabla}_U P)X = (PX \ln f)U - (X \ln f)PU. \tag{3.7}
\]

Also from (3.5), we have
\[
(\bar{\nabla}_U P)X = th(X, U). \tag{3.8}
\]

Thus from (3.7) and (3.8), we have
\[
(PX \ln f)U - (X \ln f)PU = th(X, U). \tag{3.9}
\]

From (3.6) and (3.9), it follows that
\[
(PX \ln f)U - (X \ln f)PU = -A_{FU}X.
\]

Now taking inner product with \(PU\) in above equation we get
\[
g(h(X, PU), FU) = X \ln f \|PU\|^2. \tag{3.10}
\]

Now, for \(U \in TN, X \in TN_T\) we have
\[
g(\bar{\nabla}_{PU}U, X) = 0, \tag{3.11}
\]

Using the fact that \(J\bar{\nabla}_{PU}U = \bar{\nabla}_{PU}JU\) in (3.11), we get
\[
0 = g(\bar{\nabla}_{PU}JU, JX)
= g(\nabla_{PU}PU, JX) + g(\nabla_{PU}FU, JX)
= g(\nabla_{PU}PU, JX) - g(A_{FU}PU, JX)
= -g(\nabla_{PU}JX, PU) - g(h(NU, JX), FU)
= -JX \ln f \|PU\|^2 - g(h(JX, PU), FU)
\]

\[
-g(h(JX, PU), FU) = JX \ln f \|PU\|^2. \tag{3.12}
\]

Replacing \(X\) by \(JX\) in (3.12), we get
\[
-g(h(X, PU), FU) = X \ln f \|PU\|^2. \tag{3.13}
\]
Now (3.10) and (3.13) implies that

\[X \ln f = 0. \]

Thus \(f \) is constant or \(X = 0 \), which proves the result.

References

Address

Department of Mathematics, Aligarh Muslim University, Aligarh -202 002, India

E-mail: Khalid.mathematics@gmail.com jamal.nargis@gmail.com