Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat

Filomat 22:1 (2008), 139–144

GENERIC WARPED PRODUCT SUBMANIFOLDS IN A KAEHLER MANIFOLD

K.A. Khan, Shahid Ali and Nargis Jamal

Abstract

In this paper we have shown that there do not exist proper warped product submanifolds of the type $N \times_f N_T$ and $N_T \times_f N$ where N_T is an invariant and N is any real non-anti invariant submanifold of a Kaehler manifold. We thus generalize the results of B. Sahin [10] who projected same results for a restricted class, the class of warped product submanifolds $N_{\theta} \times_f N_T$ and $N_T \times_f N_{\theta}$.

1. Introduction

Bishop and O'Niell [2] introduced the concept of warped product manifolds to study manifolds of negative curvature and applied the scheme to space-time. The geometrical aspect of these manifolds have attracted the attention of a lot of researchers recently [6], [8], [10]. Many research papers have appeared to see the existence of warped product submanifolds of manifolds under different settings after it was found that the space around a body with high gravitational field can be modeled on a warped product manifold.

B.Y.Chan [6] studied warped product CR-submanifolds of the type $N_{\perp} \times_f N_T$ and $N_T \times_f N_{\perp}$ of a Keahler manifold \overline{M} , where N_T is an invariant and N_{\perp} is an anti invariant submanifold of \overline{M} . He has shown that there do not exist proper warped product submanifolds of the type $N_{\perp} \times_f N_T$, when as he and others found many examples of warped product submanifolds of type $N_T \times_f N_{\perp}$ in a Kaehler manifold. B. Sahin extended the study to slant warped product submanifolds of the type $M = N_T \times_f N_{\theta}$ and $M = N_{\theta} \times_f N_T$ of a Kaehler manifold \overline{M} , where N_T is an invariant and N_{θ} is a proper slant submanifolds of \overline{M} , and showed that they do not exist in either case.

In this paper, we have generalized the results of Chen [6] [7] and Sahin [10] and have shown that there are no proper warped product submanifolds of the type $M = N \times_f N_T$ and $M = N_T \times_f N$, where N_T is a invariant and N is any real non-anti invariant submanifold of a Kaehler manifold. We thus have extended this study to generic warped product submanifolds of Kaehler manifold.

²⁰⁰⁰ Mathematics Subject Classification. 53C40, 53B25.

 $Keywords\ and\ Phrases.$ Warped product submanifold, Kaehler manifold, generic manifold.

Received: July 26, 2007

Communicated by Dragan S. Djordjević

2. Some Basic Results

Let \overline{M} be a Kaehler manifold with a complex structure J, Hermitian metric g and the Levi-Civita connection $\overline{\nabla}$. Then we have

$$J^2 = -I, \quad g(JU, JV) = g(U, V), \quad \bar{\nabla}J = 0$$
 (2.1)

for all vector fields U, V on \overline{M} .

Let \overline{M} be a Kaehler manifold with a complex structure J, and M be a submanifold of \overline{M} . The induced Riemannian metric on M is denoted by the same symbol g whereas the induced connection on M is denoted by ∇ . Then M is called holomorphic if $JT_pM \subset T_pM$, for every $p \in M$, where T_pM denotes the tangent space to M at the point p.

If $T\overline{M}$ and TM denote the Lie-algebra of vector fields on \overline{M} and M respectively and $T^{\perp}M$, the set of all vector fields normal to M, then the Gauss and Weingarten formulae are respectively given by

$$\bar{\nabla}_U V = \nabla_U V + h(U, V), \qquad (2.2)$$

$$\bar{\nabla}_U \xi = -A_\xi U + \nabla_U^{\perp} \xi \tag{2.3}$$

for each $U, V \in TM$ and $\xi \in T^{\perp}M$, where ∇^{\perp} denotes the connection on the normal bundle $T^{\perp}M$. h and A_{ξ} are the second fundamental forms and the shape operator of the immersion of M into \overline{M} corresponding to the normal vector field ξ . They are related as

$$g(A_{\xi}U, V) = g(h(U, V), \xi).$$
 (2.4)

For any $U \in TM$ and $\xi \in T^{\perp}M$, we write

$$JU = PU + FU, (2.5)$$

$$J\xi = t\xi + f\xi, \tag{2.6}$$

where PU and $t\xi$ are the tangential components of JU and $J\xi$ respectively whereas FU and $f\xi$ are the normal components of JU and $J\xi$ respectively. The covariant differentiation of the tensors P, F, t and f are defined respectively as

$$(\bar{\nabla}_U P)V = \nabla_U PV - P\nabla_U V, \qquad (2.7)$$

$$(\bar{\nabla}_U F)V = \nabla_U^{\perp} FV - F\nabla_U V, \qquad (2.8)$$

$$(\bar{\nabla}_U t)\xi = \nabla_U t\xi - t\nabla_U^{\perp}\xi, \qquad (2.9)$$

$$(\bar{\nabla}_U f)\xi = \nabla_U^{\perp} f\xi - f\nabla_U^{\perp} \xi.$$
(2.10)

Let \overline{M} be an almost Hermition manifold with an almost complex structure J, Hermitian metric g and M be a submanifold of \overline{M} . For each $x \in M$, let $D_x = T_x M \cap JT_x M$ i.e., a maximal holomorphic subspace of the tangent space $T_x M$ at $x \in M$. If the dimension of D_x remains the same for each $x \in M$

and it defines a holomorphic distribution D on M, then M is called a generic submanifold [4].

A generic submanifold M of an almost Hermition manifold \overline{M} is said to be generic product submanifold if it is locally a Riemannian product of the leaves of D and D', where D' is orthogonal complementry distribution to D in TM. In this case D and D' are parallel on M i.e., $\nabla_U X \in D$ or equivalently $\nabla_U Z \in D'$ for all $U \in TM$, $X \in D$ and $Z \in D'$.

Now we consider warped product of manifolds which are defined as follows **Definition 2.1.** Let (B, g_B) and (F, g_F) be two Riemannian manifolds with Riemannian metrics g_B and g_F respectively and f be a positive differentiable function on B. The warped product of B and F is the Riemannian manifold $(B \times F, g)$, where

$$g = g_B + f^2 g_F. (2.11)$$

The warped product manifold $(B \times F, g)$ is denoted by $B \times_f F$. If U is tangent to $M = B \times_f F$ at (p, q) then by equation (2.11),

$$||U||^{2} = ||d\pi_{1}U||^{2} + f^{2}(p)||d\pi_{2}U||^{2}$$

where π_1 and π_2 are the canonical projections of M onto B and F respectively.

On a warped product manifold $B \times_f F$ one has

$$\nabla_U V = \nabla_V U = (Ulnf)V \tag{2.12}$$

for any vector fields U tangent to B and V tangent to F [2].

3. Generic Warped Product Submanifolds

In this section we study generic warped product submanifolds of a Kaehler manifold \overline{M} of the form $M = N_T \times_f N$, $M = N \times_f N_T$ respectively, where N_T is a holomorphic submanifold and N is any real non anti-invariant submanifold of \overline{M} .

Theorem 3.1. There do not exist proper generic warped product submanifold $M = N \times_f N_T$ of a Kaehler manifold \overline{M} , where N_T is an invariant submanifold and N is any real non anti-invariant submanifold of \overline{M} .

Proof. For any $X \in TN_T$ and $U \in TM$ using (2.12) we obtain

$$g(\overline{\nabla}_X X, U) = -g(\overline{\nabla}_X U, X)$$
$$= -g(\nabla_X U, X)$$
$$= -U \ln f ||X||^2$$
(3.1)

But, we also have

$$g(\nabla_X X, U) = g(J\nabla_X X, JU)$$

$$= g(\overline{\nabla}_X JX, JU)$$

$$= -g(\overline{\nabla}_X JU, JX)$$

$$= -g(\overline{\nabla}_X PU, JX) - g(\overline{\nabla}_X FU, JX)$$

$$= -PU \ln fg(X, JX) + g(A_{FU}X, JX)$$

$$= g(h(X, JX), FU) \qquad (3.2)$$

Thus from (3.1) and (3.2), we obtain

$$g(h(X, JX), FU) = -U \ln f ||X||^2$$
(3.3)

Now replacing X by JX in (3.3), we obtain

$$g(h(JX, J^{2}X), FU) = -U \ln f ||X||^{2}$$
$$-g(h(X, JX), FU) = -U \ln f ||X||^{2}$$
$$g(h(X, JX), FU) = U \ln f ||X||^{2}$$
(3.4)

Thus from (3.3) and (3.4), we get

$$U \ln f \|X\|^2 = 0$$

for all $U \in TM$. Which implies that f is constant or X = 0. Hence the theorem is proved.

We now interchange the factors N and N_T and prove the following: **Theorem 3.2.** There do not exist proper generic warped product submanifold $M = N_T \times_f N$ of a Kaehler manifold \overline{M} , where N_T is a holomorphic submanifold and N is any real non anti-invariant submanifold of \overline{M} .

Proof. For any $U, V \in TM$ and using the fact that \overline{M} is kaehler, we have

$$\bar{\nabla}_U JV = J\bar{\nabla}_U V,$$

therefore,

$$\bar{\nabla}_U PV + \bar{\nabla}_U FV = J(\nabla_U V + h(U, V)),$$

On using (2.2), (2.3), (2.5), we have

$$\nabla_U PV + h(U, PV) - A_{FV}U + \nabla_U^{\perp} FV = P\nabla_U V + F(\nabla_U V) + th(U, V) + fh(U, V).$$

Now, compairing tangential part and using (2.7), we obtain

$$(\bar{\nabla}_U P)V = A_{FV}U + th(U, V). \tag{3.5}$$

Now, for $X \in TN_T$ and using (2.12), we get

Generic warped product submanifolds in a Kaehler manifold

$$(\bar{\nabla}_X P)U = \nabla_X PU - P\nabla_X U$$
$$= (Xlnf)PU - (Xlnf)PU$$
$$= 0.$$

Using it in (3.5), we get

$$A_{FU}X = -th(X,U). \tag{3.6}$$

On the other hand

$$(\bar{\nabla}_U P)X = (PX\ln f)U - (X\ln f)PU. \tag{3.7}$$

Also from (3.5), we have

$$(\bar{\nabla}_U P)X = th(X, U). \tag{3.8}$$

Thus from (3.7) and (3.8), we have

$$(PX\ln f)U - (X\ln f)PU = th(X, U).$$
(3.9)

From (3.6) and (3.9), it follows that

$$(PX\ln f)U - (X\ln f)PU = -A_{FU}X.$$

Now taking inner product with PU in above equation we get

$$g(h(X, PU), FU) = X \ln f ||PU||^2.$$
(3.10)

Now, for $U \in TN$, $X \in TN_T$ we have

$$g(\bar{\nabla}_{PU}U, X) = 0, \tag{3.11}$$

Using the fact that $J\overline{\nabla}_{PU}U = \overline{\nabla}_{PU}JU$ in (3.11), we get $0 = g(\overline{\nabla}_{PU}JU, JX)$

$$= g(\overline{\nabla}_{PU}PU, JX) + g(\overline{\nabla}_{PU}FU, JX)$$

$$= g(\overline{\nabla}_{PU}PU, JX) - g(A_{FU}PU, JX)$$

$$= -g(\overline{\nabla}_{PU}JX, PU) - g(h(PU, JX), FU)$$

$$= -JX \ln f \|PU\|^2 - g(h(JX, PU), FU)$$

$$-g(h(JX, PU), FU) = JX \ln f ||PU||^2.$$
(3.12)

Replacing X by JX in (3.12), we get

$$-g(h(X, PU), FU) = X \ln f ||PU||^2.$$
(3.13)

143

Now (3.10) and (3.13) implies that

$X\ln f = 0.$

Thus f is constant or X = 0, which proves the result.

References

- Bejancu. A., Geometry of CR-Submanifolds, Kluwer. Aead. Publ. Dordreeht. 1986.
- [2] Bishop. R., and O'Niell., Manifold of negative curvature, Trans. Amer. Math. Soc. 145 (1969) 1-49.
- [3] Chen B. Y., Geometry of Submanifolds, Marcell Dekker.inc, New York, 1973.
- [4] Chen B. Y., Differential geometry of Real submanifold in Kaehler manifold, Monatsh. math. 91(1981), 257-274.
- [5] Chen B. Y., Geometry of Slant submanifold, Katholieke University Leuven, Leuven 1990.
- [6] Chen B. Y., Geometry of warped product CR-submanifolds in Kaehler manifold I, Monatsh. math. 133(2001), 177-195.
- [7] Chen B. Y., Geometry of warped product CR-submanifolds in Kaehler manifold II, Monatsh. math. 134(2001), 103-119.
- [8] Chen B. Y., On isometric minimal immersions from wraped products into real space form, Proc. Edinburgn. Math. Soc. 45 (2002), 579-587.
- [9] Papaghiuc N., Semi-slant submanifolds of Kaehler manifold, An. St. Univ. AI. I. Cuza. Iasi, 40(1994), 55-61.
- [10] Sahin B., Nonexistence of warped product semi-slant submanifolds of Kaehler manifold, Geom. Dedicata (2005),

Address

Department of Mathematics, Aligarh Muslim University, Aligarh -202 002, India *E-mail*: Khalid.mathematics@gmail.com jamal.nargis@gmail.com