NEW SUBCLASS OF GOODMAN-TYPE p-VALENT HARMONIC FUNCTIONS

S. B. Joshi and N. D. Sangle

2000 Mathematics Subject Classification. Primary 30C45, Secondary 30C50, 30C55.
Keywords and phrases. Harmonic functions, p-valent functions, Convex combination, Distortion bounds.
Received: December 18, 2007
Communicated by Dragan S. Djordjević

Abstract. In this paper, we have introduced a new subclass of p-valent harmonic functions that are orientation preserving in the open unit disk and are related to Goodman-type analytic uniformly starlike functions. Coefficient bounds, distortion bounds, extreme points, convolution conditions and convex combination for the functions belonging to this class are obtained.

1. INTRODUCTION

A continuous complex-valued function \(f = u + iv \) defined in a simply connected complex domain \(D \) is said to be harmonic in \(D \), if both \(u \) and \(v \) are real harmonic in \(D \). There is a close inter-relation between analytic functions and harmonic functions. For example, for real harmonic functions \(u \) and \(v \) there exist analytic functions \(U \) and \(V \) so that

\[
\begin{align*}
\Re(f) &= U(z) \\
\Im(f) &= V(z)
\end{align*}
\]

where \(U \) and \(V \) are respectively, the analytic functions \((u + V/2) \) and \((u - V/2) \). In this case, the Jacobian of \(f(z) = h(z) + g(z) \) is given by

\[
J_f(z) = |h'(z)|^2 - |g'(z)|^2.
\]

The mapping \(z \to f(z) \) is orientation preserving and locally one to one in \(D \), if and only if \(J_f(z) > 0 \) in \(D \). The necessity of this condition is a result of Lewy [6]. See also Clunie and Sheil-Small [2].
The function $f(z) = h(z) + \overline{g(z)}$ is said to be harmonic univalent in D, if the mapping $z \mapsto f(z)$ is orientation preserving, harmonic and one to one in D. We call h the analytic part and g the co-analytic part of $f(z) = h(z) + \overline{g(z)}$.

For fixed positive integer p, let $H(p)$ denote the family of functions $f(z) = h(z) + \overline{g(z)}$ that are harmonic, orientation preserving and p-valent in the open unit disk $U = \{z : |z| < 1\}$ with the normalization

$$h(z) = z^p + \sum_{n=2}^{\infty} a_{n+p-1}z^{n+p-1}, \quad g(z) = \sum_{n=1}^{\infty} b_{n+p-1}z^{n+p-1}, \quad |b_p| < 1. \quad (1.1)$$

Motivated by recent work of Rosy et al [9], we define a new subclass as follows:

Let $G_H(p, \gamma)$ denote the subclass of $H(p)$ consisting of functions f in $H(p)$ that satisfy the condition

$$\Re \left\{ (1 + e^{i\alpha}) \frac{zf''(z)}{zf'(z)} - pe^{i\alpha} \right\} \geq p\gamma, \quad (1.2)$$

where $z' = \frac{\partial}{\partial \theta}(z = re^{i\theta})$, $f'(z) = \frac{\partial}{\partial \theta}(f(z) = f(re^{i\theta}))$, $p \geq 1$, $0 \leq r < 1$ and α, θ are real.

We further let $G_H(p, \gamma)$ denote the subclass of $G_H(p, \gamma)$, consisting of functions $f(z) = h(z) + \overline{g(z)}$ such that h and g are of the form

$$h(z) = z^p - \sum_{n=2}^{\infty} d_{n+p-1}z^{n+p-1}, \quad g(z) = \sum_{n=1}^{\infty} b_{n+p-1}z^{n+p-1}. \quad (1.3)$$

For $p=1$ and $g \equiv 0$ that is, if f is analytic, the family $G_H(1, 0)$ is uniformly starlike in U and was first studied by Goodman [3]. In [8], Ronning investigated the uniformly starlike functions of order γ, $0 \leq \gamma < 1$. Later, Jahangiri et al [5] constructed a class of harmonic close to convex functions and studied basic properties. Recently, Jahangiri [4], Silverman
Silverman and Silvia [11] studied the harmonic starlike functions. Ahuja and Jahangiri [1] proved that if, \(f(z) = h(z) + g(z) \) is given by (1.1) and if,

\[
\sum_{n=1}^{\infty} (n+m-1)(|a_{n+m-1}| + |b_{n+m-1}|) \leq 2m
\]
(1.4)

then \(f \) is harmonic, \(p \)-valent and starlike of order \(\gamma \) in \(U \). This condition is proved to be also necessary if \(h \) and \(g \) are of the form (1.3). In the present paper we have obtained coefficient bounds, extreme points, distortion bounds, convolution conditions and convex combinations for the class \(G_{p,h}(p,\gamma) \).

2. COEFFICIENT BOUNDS

We being with a sufficient coefficient bounds for the class \(G_{h}(p,\gamma) \). These conditions are shown to be necessary for the functions in \(G_{h}(p,\gamma) \).

Theorem 1. Let \(f = h + \overline{g} \) with \(h \) and \(g \) are given by (1.1). If

\[
\sum_{n=1}^{\infty} \left[\frac{2n+p-2-\gamma}{p-\gamma} a_{n+p-1} + \frac{2n+3p-2+\gamma}{p-\gamma} b_{n+p-1} \right] \leq 2 ,
\]
(2.1)

where \(|a_1| = 1, 0 \leq \gamma < 1 \). Then \(f \) is harmonic \(p \)-valent in \(U \) and \(f \in G_{h}(p,\gamma) \).

Proof: Suppose that (2.1) holds. Then we have

\[
\text{Re} \left\{ \frac{1 + e^{i\alpha} \left(zh'(z) - zg'(z) - pe^{i\alpha} (h(z) + \overline{g(z)}) \right)}{h(z) + \overline{g(z)}} \right\} = \text{Re} \frac{A(z)}{B(z)} \geq p\gamma,
\]
(2.2)

as \(f(z) \in H(p) \), \(h(z) + \overline{g(z)} \neq 0 \).

where \(z = re^{i\theta}, \ 0 \leq r < 1, 0 \leq \gamma < 1, 0 \leq \theta < 2\pi \).

Here, we let
\[A(z) = \left(1 + e^{ia}\right) \left(z h'(z) - z g'(z)\right) - p e^{ia} \left(h(z) + g(z)\right) \]

and

\[B(z) = h(z) + g(z). \]

Using the fact that \(\text{Re} \omega \geq \rho \gamma \), if and only if \(|p - \gamma + \omega| \geq |p + \gamma - \omega| \), it suffices to show that

\[
\left| A(z) + (p - \gamma) B(z) \right| - \left| A(z) - (p + \gamma) B(z) \right| \geq 0. \tag{2.3}
\]

Substituting for \(A(z) \) and \(B(z) \) in (2.3), we obtain

\[
\left| \left(p - \gamma\right) h(z) + (1 + e^{ia}) z h'(z) - p e^{ia} h(z) + \left(p - \gamma\right) g(z) - (1 + e^{ia}) z g'(z) - p e^{ia} g(z) \right|
\]

\[
- \left| \left(p + \gamma\right) h(z) - (1 + e^{ia}) z h'(z) + p e^{ia} h(z) + \left(p + \gamma\right) g(z) + (1 + e^{ia}) z g'(z) + p e^{ia} g(z) \right|
\]

\[
= \left(2p - \gamma\right) z^n + \sum_{n=2}^{n} \left[(n + 2p - 1 - \gamma) + e^{ia} (n - 1) \right] a_{n+p-1} z^{n+p-1} + \sum_{n=1}^{n} \left[(n - 1 + \gamma) + e^{ia} (n + 2p - 1) \right] b_{n+p-1} z^{n+p-1}
\]

\[
- \left(\gamma z^n - \sum_{n=2}^{n} \left[(n - 1 - \gamma) + e^{ia} (n - 1) \right] a_{n+p-1} z^{n+p-1} + \sum_{n=1}^{n} \left[(n + 2p - 1 + \gamma) + e^{ia} (n + 2p - 1) \right] b_{n+p-1} z^{n+p-1} \right)
\]

\[
\geq 2 \left(p - \gamma \right) |z|^p - \sum_{n=2}^{n} \left[(4n + 2p - 4 - 2\gamma) \right] a_{n+p-1} |z|^{n+p-1} - \sum_{n=1}^{n} \left[(4n + 6p - 4 - 2\gamma) \right] b_{n+p-1} |z|^{n+p-1}
\]

\[
= 2 \left(p - \gamma \right) |z|^p \left\{ 1 - \sum_{n=2}^{n} \frac{2n + p - 2 - \gamma}{p - \gamma} a_{n+p-1} |z|^{n+p-1} + \sum_{n=1}^{n} \frac{2n + 3p - 2 + \gamma}{p - \gamma} b_{n+p-1} |z|^{n+p-1} \right\}
\]

\[
\geq 2 \left(p - \gamma \right) |z|^p \left\{ 1 - \left[\sum_{n=2}^{n} \frac{2n + p - 2 - \gamma}{p - \gamma} a_{n+p-1} + \sum_{n=1}^{n} \frac{2n + 3p - 2 + \gamma}{p - \gamma} b_{n+p-1} \right] \right\} \geq 0, \text{ by (2.1).}
\]

The functions
where

\[\sum_{n=2}^{\infty} |x_{n+p-1}| + \sum_{n=2}^{\infty} |y_{n+p-1}| = 1, \]

show that the coefficient bound given by (2.1) is sharp.

The functions of the form (2.4) are in \(G_{\Pi} (p, \gamma) \) because

\[\sum_{n=2}^{\infty} \left(\frac{2n + p - 2 - \gamma}{p - \gamma} |a_{n+p-1}| + \frac{2n + 3p - 2 + \gamma}{p - \gamma} |b_{n+p-1}| \right) = 1 + \sum_{n=2}^{\infty} |x_{n+p-1}| + \sum_{n=2}^{\infty} |y_{n+p-1}| = 2. \]

We next show that the condition (2.1) is also necessary for the function in \(G_{\Pi} (p, \gamma) \).

Theorem 2. Let \(f = h + \overline{g} \) be so that \(h \) and \(g \) are given by (1.3). Then \(f(z) \in G_{\Pi} (p, \gamma) \), if and only if the inequality (2.1) holds for the coefficient of \(f = h + \overline{g} \).

Proof. In view of Theorem 1, we need only show that \(f(z) \not\in G_{\Pi} (p, \gamma) \) if the condition (2.1) does not holds. We note that a necessary condition for \(f = h + \overline{g} \) given by (1.3) to be in \(G_{\Pi} (p, \gamma) \) is that

\[\Re \left\{ \left(1 + e^{i\alpha} \right) \frac{z f'(z)}{z' f(z)} - pe^{i\alpha} \right\} \geq p \gamma. \]

This is equivalent to

\[\Re \left\{ \left(1 + e^{i\alpha} \right) \left(z h'(z) - z' g'(z) \right) - p e^{i\alpha} \left(h(z) + \overline{g(z)} \right) \right\} \]

\[= \Re \left\{ \frac{2(p - \gamma) |\alpha| - \sum_{n=2}^{\infty} 2n + p - 2 - \gamma |a_{n+p-1}| \|z\|^{n+p-1} - \sum_{n=1}^{\infty} 2n + 3p - 2 + \gamma |b_{n+p-1}| \|z\|^{n+p-1}}{|\alpha| - \sum_{n=2}^{\infty} |a_{n+p-1}| \|z\|^{n+p-1} + \sum_{n=2}^{\infty} |b_{n+p-1}| \|z\|^{n+p-1}} \right\} \geq 0. \]
The above condition must hold for all values of z, $|z| = r < 1$.

Upon choosing the values of z on the positive real axis, we must have

$$2(p - \gamma) - \sum_{n=2}^{\infty} 2n + p - 2 - \gamma |a_{n+p-1}| r^{n+p-2} - \sum_{n=1}^{\infty} 2n + 3p - 2 - \gamma |b_{n+p-1}| r^{n+p-2}$$

$$\geq 0. \quad (2.5)$$

If the condition (2.1) does not hold, then the numerator in (2.5) is negative for r sufficiently close to 1. Thus there exists a $z_0 = r_0 > 1$, for which the quotient in (2.5) is negative. This contradicts the condition for $f(z) \in G_\Pi(p, \gamma)$ and so the proof is complete.

3. DISTORTION BOUNDS AND EXTREME POINTS

In this section, we shall obtain distortion bounds for functions in $G_\Pi(p, \gamma)$ and also we determine the extreme points of the closed convex hulls of denoted by $clco G_\Pi(p, \gamma)$.

Theorem 3. If $f(z) \in G_\Pi(p, \gamma)$, then

$$|f(z)| \leq \left(1 + |b_p|\right) r^p + \left(\frac{p - \gamma}{2 + p - \gamma} - \frac{3p + \gamma}{2 + p - \gamma} |b_p|\right) r^{p+1}, \quad |z| = r < 1$$

and

$$|f(z)| \geq \left(1 - |b_p|\right) r^p - \left(\frac{p - \gamma}{2 + p - \gamma} - \frac{3p + \gamma}{2 + p - \gamma} |b_p|\right) r^{p+1}, \quad |z| = r < 1.$$

Proof. We only prove the right hand inequality. The argument for left hand inequality is similar and will be omitted. Let $f(z) \in G_\Pi(p, \gamma)$. Taking the absolute value of f, we obtain
\[|f(z)| \leq (1 + |b_p|)r^p + \sum_{n=2}^{\infty} \left(|a_{n+p-1}| + |b_{n+p-1}| \right) r^{n+p-1} \]

\[\leq (1 + |b_p|)r^p + \sum_{n=2}^{\infty} \left(|a_{n+p-1}| + |b_{n+p-1}| \right) r^{n+p-1} \]

\[= (1 + |b_p|)r^p + \frac{p - \gamma}{2 + p - \gamma} \sum_{n=2}^{\infty} \left[\frac{2 + p - \gamma}{p - \gamma} |a_{n+p-1}| + \frac{3p + \gamma}{p - \gamma} |b_{n+p-1}| \right] r^{n+p-1} \]

\[\leq (1 + |b_p|)r^p + \frac{p - \gamma}{2 + p - \gamma} \sum_{n=2}^{\infty} \left[\frac{2 + p - 2 - \gamma}{p - \gamma} |a_{n+p-1}| + \frac{2n + 3p - 2 + \gamma}{p - \gamma} |b_{n+p-1}| \right] r^{n+p-1} \]

\[\leq (1 + |b_p|)r^p + \frac{p - \gamma}{2 + p - \gamma} \left(1 - \frac{3p + \gamma}{p - \gamma} |b_{n+p-1}| \right) r^{p+1} \text{ by (2.1)} \]

\[= (1 + |b_p|)r^p + \left(\frac{p - \gamma}{2 + p - \gamma} - \frac{3p + \gamma}{2 + p - \gamma} |b_p| \right) r^{p+1}. \]

Theorem 4. \(f \in clco G_\Pi(p, \gamma), \) if and only if \(f \) can be expressed as

\[f(z) = \sum_{n=1}^{\infty} x_{n+p-1}h_{n+p-1} + y_{n+p-1}g_{n+p-1} \quad (3.1) \]

where \(z \in U, \)

\[h_{p-1}(z) = z^p, \quad h_{n+p-1}(z) = z^p - \frac{p - \gamma}{2n + p - 2 - \gamma} z^{n+p-1}. \]

\((n = 2, 3, 4, \ldots), \quad g_{n+p-1}(z) = z^p + \frac{p - \gamma}{2n + 3p - 2 + \gamma} z^{n+p-1}. \)

\((n = 1, 2, 3, 4, \ldots), \quad \sum_{n=1}^{\infty} (x_{n+p-1} + y_{n+p-1}) = 1, \quad x_{n+p-1} \geq 0 \text{ and } y_{n+p-1} \geq 0. \)

Proof. For the functions \(f \) given by (3.1), we may write
\[f(z) = \sum_{n=1}^{\infty} \left(x_{n+p-1} z^{n+p-1} + y_{n+p-1} z^{n+p-1} \right) \]
\[= x_{p-1} h_{p-1}(z) + y_{p-1} g_{p-1}(z) + \sum_{n=2}^{\infty} x_{n+p-1} \left(z^n + \frac{p-\gamma}{2n + p - 2 - \gamma} \right) z^{n+p-1} \]
\[+ \sum_{n=1}^{\infty} y_{n+p-1} \left(z^n - \frac{p-\gamma}{2n + 3p - 2 + \gamma} \right) z^{n+p-1} \]
\[= \sum_{n=1}^{\infty} \left(x_{n+p-1} + y_{n+p-1} \right) z^n - \sum_{n=2}^{\infty} \frac{p-\gamma}{2n + p - 2 - \gamma} x_{n+p-1} z^{n+p-1} \]
\[+ \sum_{n=1}^{\infty} \frac{p-\gamma}{2n + 3p - 2 + \gamma} y_{n+p-1} z^{n+p-1}. \]

Then
\[= \sum_{n=2}^{\infty} \frac{2n + p - 2 - \gamma}{p - \gamma} \left(\frac{p-\gamma}{2n + p - 2 - \gamma} x_{n+p-1} \right) + \sum_{n=1}^{\infty} \frac{2n + 3p - 2 + \gamma}{p - \gamma} \left(\frac{p-\gamma}{2n + 3p - 2 + \gamma} y_{n+p-1} \right) \]
\[= \sum_{n=2}^{\infty} x_{n+p-1} + \sum_{n=2}^{\infty} y_{n+p-1} = 1 - x_i \leq 1, \]
and so \(f \in clco G_{\gamma}(p, \gamma). \)

Conversely, suppose that \(f \in clco G_{\gamma}(p, \gamma). \) Set
\[x_{n+p-1} = \frac{2n + p - 2 - \gamma}{p - \gamma} \left| a_{n+p-1} \right| \quad (n = 2, 3, \ldots) \]
and
\[y_{n+p-1} = \frac{2n + 3p - 2 + \gamma}{p - \gamma} \left| b_{n+p-1} \right| \quad (n = 1, 2, 3, \ldots). \]

Then note that by Theorem 2,
0 ≤ x_{p-1} ≤ 1 and y_{p-1} = 1 - x_{p-1} - \sum_{n=1}^{\infty} (x_{n+p-1} + y_{n+p-1}).

Consequently, we obtain \(f(z) = \sum_{n=1}^{\infty} \left(x_{n+p-1} h_{n+p-1} + y_{n+p-1} g_{n+p-1} \right) \). Using Theorem 2, it is easily seen that \(G_\Pi(p, \gamma) \) is convex and closed, so \(\text{clco} G_\Pi(p, \gamma) = G_\Pi(p, \gamma) \).

4. CONVOLUTION AND CONVEX LINEAR COMBINATION

In this section, we show that the class \(G_\Pi(p, \gamma) \) is invariant under convolution and convex combinations of its members.

For harmonic functions

\[
f(z) = z^p - \sum_{n=1}^{\infty} a_{n+p-1} z^{n+p-1} + \sum_{n=1}^{\infty} b_{n+p-1} \bar{z}^{n+p-1} \quad \text{and} \quad F(z) = z^p - \sum_{n=1}^{\infty} A_{n+p-1} z^{n+p-1} + \sum_{n=1}^{\infty} B_{n+p-1} \bar{z}^{n+p-1}
\]

we define the convolution of \(f \) and \(F \) as

\[
(f * F)(z) = z^p - \sum_{n=1}^{\infty} a_{n+p-1} A_{n+p-1} z^{n+p-1} + \sum_{n=1}^{\infty} b_{n+p-1} B_{n+p-1} \bar{z}^{n+p-1}.
\]

Using this definition, we show that the class \(G_\Pi(p, \gamma) \) is closed under convolution.

Theorem 5. For \(0 ≤ \beta ≤ \gamma < 1 \), let \(f(z) \in G_\Pi(p, \gamma) \) and \(F(z) \in G_\Pi(p, \beta) \). Then

\[
f * F \in G_\Pi(p, \gamma) \subset G_\Pi(p, \beta).
\]

Proof. Let

\[
f(z) = z^p - \sum_{n=1}^{\infty} a_{n+p-1} z^{n+p-1} + \sum_{n=1}^{\infty} b_{n+p-1} \bar{z}^{n+p-1} \quad \text{be in} \quad G_\Pi(p, \gamma)
\]

and

\[
F(z) = z^p - \sum_{n=1}^{\infty} A_{n+p-1} z^{n+p-1} + \sum_{n=1}^{\infty} B_{n+p-1} \bar{z}^{n+p-1} \quad \text{be in} \quad G_\Pi(p, \beta).
\]
Note that $A_{n+p-1} \leq 1$ and $B_{n+p-1} \leq 1$. Obviously, the coefficients of f and F must satisfy conditions similar to the inequality (2.1). So for the coefficients of $f \ast F$ we can write

$$\sum_{n=1}^{\infty} \left[\frac{2n + p - 2 - \gamma}{p - \gamma} |a_{n+p-1}| + \frac{2n + 3p - 2 + \gamma}{p - \gamma} |b_{n+p-1}| \right]$$

$$\leq \sum_{n=1}^{\infty} \left[\frac{2n + p - 2 - \gamma}{p - \gamma} |a_{n+p-1}| + \frac{2n + 3p - 2 + \gamma}{p - \gamma} |b_{n+p-1}| \right].$$

This right hand side of the above inequality is bounded by 2 because $f(z) \in G_{p,\gamma}$. By the same token, we then conclude that $f \ast F \in G_{p,\gamma} \subset G_{p,\beta}$.

Finally, we show that $G_{p,\gamma}$ is closed under convex combination of its members.

Theorem 6. The family $G_{p,\gamma}$ is closed under convex combination.

Proof. For $i = 1, 2, 3, ..., let f_i \in G_{p,\gamma}$ where f_i is given by

$$f_i(z) = z^p - \sum_{n=2}^{\infty} |a_{i,n+p-1}| z^{n+p-1} + \sum_{n=1}^{\infty} |b_{i,n+p-1}| z^{n+p-1}.$$

Then, by (2.1),

$$\sum_{n=1}^{\infty} \frac{2n + p - 2 - \gamma}{p - \gamma} |a_{i,n+p-1}| + \frac{2n + 3p - 2 + \gamma}{p - \gamma} |b_{i,n+p-1}| \leq 2, \quad (4.2)$$

for $\sum_{i=1}^{\infty} t_i = 1, \ 0 \leq t_i \leq 1$, the convex combination of f_i may be written as

$$\sum_{n=1}^{\infty} t_i f_i(z) = z^p - \sum_{n=2}^{\infty} \left(\sum_{i=1}^{\infty} t_i |a_{i,n+p-1}| \right) z^{n+p-1} + \sum_{n=1}^{\infty} \left(\sum_{i=1}^{\infty} t_i |b_{i,n+p-1}| \right) z^{n+p-1}.$$

Then, by (4.2),

202
\[
\sum_{n=1}^{\infty} \left[\frac{2n + p - 2 - \gamma}{p - \gamma} \left| \sum_{i=1}^{\infty} t_i \left| a_{i,n+p-1} \right| \right| + \frac{2n + 3p - 2 + \gamma}{p - \gamma} \left| \sum_{n=1}^{\infty} t_i \left| b_{i,n+p-1} \right| \right| \right] \\
= \sum_{i=1}^{\infty} t_i \left[\sum_{n=1}^{\infty} \frac{2n + p - 2 - \gamma}{p - \gamma} \left| a_{i,n+p-1} \right| + \frac{2n + 3p - 2 + \gamma}{p - \gamma} \left| b_{i,n+p-1} \right| \right] \\
\leq 2 \sum_{n=1}^{\infty} t_i = 2.
\]

This is the condition required by (2.1) and so \(\sum_{i=1}^{\infty} t_i f_i \in G_{p}(p, \gamma) \).

ACKNOWLEDGMENTS: The authors wish to express their sincere thanks to the referee of this paper for several useful comments and suggestions.

REFERENCES

Address

S. B. Joshi:

Department of Mathematics
Walchand College of Engineering,
Sangli, (M.S) India 416 415.
E-mail: joshisb@hotmail.com

N. D. Sangle:

Department of Mathematics
Annasaheb Dange College of Engineering,
Ashta, Sangli, (M.S) India 416 301.
E-mail: navneet_sangle@rediffmail.com