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A COHEN TYPE INEQUALITY FOR
LEGENDRE-SOBOLEV EXPANSIONS

Bujar Xh. Fejzullahu

Abstract

Let introduce the Sobolev-type inner product

〈f, g〉 =

Z 1

−1

f(x)g(x)dx + N [f ′(1)g′(1) + f ′(−1)g′(−1)],

where N ≥ 0. In this paper we prove a Cohen type inequality for Fourier
expansion in terms of the polynomials associated to the Sobolev inner
product.

1 Introduction and Main Result

The purpose of this paper is to derive a lower bound for the norm associated
to the Sobolev spaces of the polynomial expansions relative to Sobolev inner
product. For classical orthogonal expansions such inequalities were proved by
Dreseler and Soardi [5] and Markett [7].

Let us first introduce some notation. We shall say that f ∈ Lp if f is
measurable on the [−1, 1] and ‖f‖Lp< ∞, where

‖f‖Lp=





(∫ 1

−1
|f(x)|pdx

) 1
p

if 1 ≤ p < ∞,

ess sup
−1<x<1

|f(x)| if p = ∞.

Now let us introduce the Sobolev spaces

Sp = {f : ‖f‖p
Sp

= ‖f‖p
Lp+N [|f ′(1)|p + |f ′(−1)|p] < ∞}, 1 ≤ p < ∞,

S∞ = {f : ‖f‖S∞= ‖f‖L∞(dµ)< ∞}, p = ∞.
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We also introduce the discrete Sobolev-type inner product

〈f, g〉 =
∫ 1

−1

f(x)g(x)dx + N [f ′(1)g′(1) + f ′(−1)g′(−1)] (1)

for any functions f, g for which the right side makes sense and N ≥ 0. We de-
note by B̂n the orthonormal polynomials with respect to the inner product (1)
(see [2], [3], [6]). We call these polynomials the Legendre-Sobolev polynomials.
For N = 0, denoted by pn, we have classical Legendre orthonormal polynomials.

For f ∈ S1, the Fourier expansion in Legendre-Sobolev polynomials is

∞∑

k=0

f̂(k)B̂k(x), (2)

f̂(k) = 〈f, B̂k〉.
The Cesàro means of order δ of the expansion (2) are defined by (see [9, p.

76-77])

σδ
nf(x) =

n∑

k=0

Aδ
n−k

Aδ
n

f̂(k)B̂k(x),

where Aδ
k =

(
k+δ

k

)
.

For a function f ∈ Sp and a given sequence {ck,n}n
k=0 of complex numbers

with |cn,n| > 0, we define the operator TN
n by

TN
n (f) =

n∑

k=0

ck,nf̂(k)B̂k.

Now we formulate main result

Theorem 1. Let 1 ≤ p ≤ ∞. There exists a positive constant c, independent of
n, such that

‖TN
n ‖[Sp]≥ c|cn,n|





n
2
p− 3

2 if 1 ≤ p < 4/3

(log n)
1
4 if p = 4/3, p = 4

n
1
2− 2

p if 4 < p ≤ ∞,

where by [Sp] we denote the space of all bounded, linear operators from a space
Sp into itself, furnished with the usual operator norm || · ||[Sp].

Corollary 1. Let 1 ≤ p ≤ ∞. For ck,n = 1, k = 0, ..., n, and for p outside the
Pollard interval (4/3, 4)

‖Sn‖[Sp]→∞, n →∞,

where Sn denotes the nth partial sum of expansion (2).
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For ck,n = Aδ
n−k

Aδ
n

, 0 ≤ k ≤ n, the Theorem 1 yield:

Corollary 2. Let given numbers p and δ such that 1 ≤ p ≤ ∞;
{

0 < δ < 2
p − 3

2 if 1 ≤ p < 4/3
0 < δ < 1

2 − 2
p if 4 < p ≤ ∞.

Then, for p /∈ [4/3, 4]
‖σδ

n‖[Sp]→∞, n →∞.

2 Preliminaries

We summarize the properties of Legendre-Sobolev polynomials we need, cf. [6]
(see also [2], [3]).

Let µ be the Gegenbauer (or ultraspherical) measure, dµ(x) = (1− x2)αdx,

α > −1, and let p
(α)
n the corresponding Gegenbauer orthonormal polynomials.

The representation of B̂n is

B̂n(x) = An(1− x2)2p(4)
n−4(x) + Bn(1− x2)p(2)

n−2(x) + Cnpn(x) (3)

where
An

∼= 1, Bn
∼= −2, Cn

∼= −1

and by un
∼= vn we mean that the sequence un/vn converges to 1.

The maximum of B̂n on [−1, 1] is

max
x∈[−1,1]

|B̂n(x)| ∼ n1/2 (4)

where by un ∼ vn we mean that there exist some positive constants c1 and c2

such that c1un ≤ vn ≤ c2un for sufficiently large n.
The polynomials B̂n satisfy the estimate

|B̂n(cosθ)| =
{

O(θ−1/2) if c/n ≤ θ ≤ π/2
O(n1/2) if 0 ≤ θ ≤ c/n

(5)

and c is positive constant.
The formula of Mehler-Heine type for Gegenbauer orthonormal polynomials

is (see [8, Theorem 8.1.1] and [8, (4.3.4)])

lim
n→∞

n−α−1/2p(α)
n (cos

z

n
) = z−αJα(z), (6)

where α real number and Jα(z) is the Bessel function. This formula holds
uniformly for |z| ≤ R, R fixed.

From (6) it can be shown that

lim
n→∞

n−α−1/2p(α)
n (cos

z

n + j
) = z−αJα(z) (7)

holds uniformly for |z| ≤ R, R fixed, and j ∈ N ∪ {0}.
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Lemma 1. Let N > 0. Then

lim
n→∞

n−1/2B̂n(cos
z

n
) = J4(z)− 2J2(z)− J0(z)

which holds uniformly for |z| ≤ R, R fixed.

Proof. From (3) we have

n−1/2B̂n(cos
z

n
) = An sin4(

z

n
) n−1/2p

(4)
n−4(cos

z

n
)

+ Bn sin2(
z

n
) n−1/2p

(2)
n−2(cos

z

n
) + Cnn−1/2pn(cos

z

n
).

Finally, we take the limit n →∞ and use (3) and (7) to obtain

lim
n→∞

n−1/2B̂n(cos
z

n
)

= z4z−4J4(z)− 2 z2z−2J2(z)− J0(z) = J4(z)− 2J2(z)− J0(z).

We also need to know the Sp norms for Jacobi-Sobolev polynomials

‖B̂n‖p
Sp

=
∫ 1

−1

|B̂n(x)|pdx + N |(B̂n)′(1)|p + N |(B̂n)′(−1)|p (8)

where 1 ≤ p < ∞. Hence, it is sufficient to estimate just the Lp norms for
B̂n. For N = 0 the calculation of these norms is in [8, p.391. Exercise 91] (see
also [7, (2.2)]).

Lemma 2. Let N ≥ 0. Then

∫ 1

0

|B̂n(x)|pdx ∼





c if p < 4,

log n if p = 4,

np/2−2 if p > 4.

Proof. From (5), for p 6= 4, we have

∫ 1

0

|B̂n(x)|pdx ∼
∫ π/2

0

θ |B̂n(cosθ)|pdθ

= O(1)
∫ n−1

0

θ np/2dθ + O(1)
∫ π/2

n−1
θ θ−p/2dθ

= O(np/2−2) + O(1),

and for p = 4 we have
∫ 1

0

|B̂n(x)|pdx = O(log n).
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On the other hand, according to Lemma 1, we have

∫ π/2

0

θ|B̂n(cosθ)|pdθ >

∫ n−1

0

θ|B̂n(cosθ)|pdθ

∼= c

∫ 1

0

(z/n)np/2 n−1|J4(z)− 2J2(z)− J0(z)|pdz ∼ np/2−2.

Using a similar argument as above, for p = 4, we have

∫ π/2

0

θ|B̂n(cosθ)|4dx > c

∫ n−1/2

0

θ|B̂n(cosθ)|4dx

∼= c

∫ n1/2

0

z|J4(z)− 2J2(z)− J0(z)|4dz ∼ n ≥ c log n.

Finally, from (3) and [8, Theorem 8.21.8] we obtain

∫ π/2

0

θ |B̂n(cosθ)|pdθ >

∫ π/2

π/4

θ |B̂n(cosθ)|pdθ ∼ c.

3 Proof of Theorem 1

For the proof of Theorem 1 we will use the test function

gj
n(x) = (1− x2)jp(j)

n (x)

where j ∈ N\{1}. From (2) and (3) the Fourier coefficients of the function gj
n(x)

can be written as

(gj
n)ˆ(k) =

∫ 1

−1

(1− x2)jp(j)
n (x)B̂k(x)dx

= Ak

∫ 1

−1

(1− x2)jp(j)
n (x) (1− x2)2p(4)

k−4(x)dx

+ Bk

∫ 1

−1

(1− x2)jp(j)
n (x) (1− x2)p(2)

k−2(x)dx

+ Ck

∫ 1

−1

(1− x2)jp(j)
n (x)pk(x)dx = Ik,n

1 + Ik,n
2 + Ik,n

3

where it is assumed p
(α)
i (x) = 0, for i = −1,−2,−3,−4.

For k ≥ 4, according to the [8, (4.3.4)] we obtain

Ik,n
1 = Ak {hj,j

n }−1/2 {h4,4
k−4}−1/2

∫ 1

−1

(1− x2)jP (j)
n (x) (1− x2)2P (4)

k−4(x)dx,
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where hα,α
n = 22αn−1.

On the other hand, from [7, (2.8)]

(1− x2)jP (j)
n (x) =

2j∑
m=0

bm,j(0, 0, n)Pn+m(x) (9)

and

(1− x2)2P (4)
k−4(x) =

4∑

l=0

bl,2(2, 2, k − 4)P (2)
k+l−4(x),

where

b0,j(α, α, n) = 4j (Γ(n + α + j + 1))2

(Γ(n + α + 1))2
Γ(2n + 2α + 2)

Γ(2n + 2α + 2j + 2)
∼= 4j ,

b2j,j(α, α, n) = (−4)j Γ(n + 2j + 1)
Γ(n + 1)

Γ(2n + 2α + 2j + 1)
Γ(2n + 2α + 4j + 1)

∼= (−4)j .

Thus {
Ik,n
1 = 0, 4 ≤ k ≤ n− 1

In,n
1 = 0, n ≥ 4, 0 < m ≤ 2j.

Let k = n ≥ 4 and m = 0. Then

In,n
1 =An {hj,j

n }−1/2{h4,4
n−4}−1/2b0,j(0, 0, n) b4,2(2, 2, n− 4)

∫ 1

−1

Pn(x) P (2)
n (x)dx

Since (see [1, p. 359, Theorem 7.1.4])

P (2)
n (x) =

16(n + 1/2)(n + 3/2)
(n + 3)(n + 4)

Pn + Qn−1(x),

we get

In,n
1 =

16An(n + 1/2)(n + 3/2)
(n + 3)(n + 4)

{hj,j
n }−1/2{h4,4

n−4}−1/2 h0,0
n

× b0,j(0, 0, n) b4,2(2, 2, n− 4) ∼= 16 · 2j .

In similar way, for k ≥ 2, using [8, (4.3.4)] and (9)

Ik,n
2 =Bk {hj,j

n }−1/2 {h2,2
k−2}−1/2

2j∑
m=0

bm,j(0, 0, n)
∫ 1

−1

Pn+m(x) (1−x2) P
(2)
k−2(x)dx.

Again, as applications of [7, (2.8)] and [1, p. 359, Theorem 7.1.4] we point out
the following relations

(1− x2) P
(2)
k−2(x) =

2∑

l=0

bl,1(1, 1, k − 2)P (1)
k+l−2(x).
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and
P (1)

n (x) =
4n + 2
n + 2

Pn + Qn−1(x).

Thus




Ik,n
2 = 0, 2 ≤ k ≤ n− 1

In,n
2 = (4n+2)Bn

n+2 {hj,j
n }−1/2{h2,2

n−2}−1/2 h0,0
n

× b0,j(0, 0, n) b2,1(1, 1, n− 2) ∼= 8 · 2j n ≥ 2, m = 0
In,n
2 = 0 n ≥ 2, 0 < m ≤ 2j.

Finally, for k ≥ 0

Ik,n
3 = Ck {hj,j

n }−1/2 {h0,0
k }−1/2

2j∑
m=0

bm,j(0, 0, n)
∫ 1

−1

Pn+m(x) Pk(x)dx.

Thus




Ik,n
3 = 0, 0 ≤ k ≤ n− 1

In,n
3 = Cn{hj,j

n }−1/2{h0,0
n }1/2 b0,j(0, 0, n) ∼= −2j , n ≥ 0, m = 0

In,n
3 = 0, n ≥ 0, 0 < m ≤ 2j.

As a conclusion




(gj
n)ˆ(k) = 0, 0 ≤ k ≤ n− 1

(gj
n)ˆ(n) ∼= −2j , n = 0, 1

(gj
n)ˆ(n) ∼= 6 · 2j , n = 2, 3

(gj
n)ˆ(n) ∼= 23 · 2j , n ≥ 4.

(10)

On the other hand, from [8, p.391. Exercise 91] (see also [7, (2.2)])

‖gj
n‖p

Sp
= ‖gj

n‖p
Lp=

∫ 1

−1

(1− x)jp(1 + x)jp|p(j)
n (x)|pdx

≤ c1

∫ 1

0

(1− x)jp|p(j)
n (x)|pdx

+ c2

∫ 0

−1

(1 + x)jp|p(j)
n (x)|pdx ≤ c. (11)

for j > 1/2− 2/p and 4 ≤ p < ∞.
It is well known (see, for example, [4, Theorem 1]) that

|p(j)
n (x)| ≤ c(1− x2)−j/2−1/4

for x ∈ (−1, 1).
Therefore

‖gj
n‖S∞= ‖gj

n‖L∞≤ c(1− x2)j/2−1/4 ≤ c, (12)
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for j > 1/2.
Now we are in position to prove our main result:
Proof of Theorem 1. By duality, it suffices to assume that 4 ≤ p ≤ ∞.

Now we apply the operator TN
n to the test function gj

n for some j > 1/2− 2/p.
Hence, from (10), (11) and (12), we have

‖TN
n ‖[Sp]≥ [‖gj

n‖Sp
]−1‖TN

n gj
n‖Sp

≥ c|cn,n| ‖B̂n‖Sp
. (13)

From (8) and Lemma 2 we obtain that

‖B̂n‖Sp
≥ c

{
(log n)1/p if p = 4,

n1/2−2/p if 4 < p < ∞.

On combining this and (4) with (13), the statement is seen to be true.

References

[1] G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge Uni-
versity Press, Cambridge, (1999).

[2] H. Bavinck and H. G. Meijer, Orthogonal polynomials with respect to a
symmetric inner product involving derivatives, Appl. Anal. 33 (1989), 103-
117.

[3] H. Bavinck and H. G. Meijer, On orthogonal polynomials with respect to an
inner product involving derivatives: zeros and recurrence relations, Indag.
Math. N. S. I. (1990), 7-14.
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