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WEAKLY COMPATIBLE MAPPINGS
AND ALTMAN TYPE CONTRACTION

H. K. PATHAK∗, R. K. VERMA

Abstract

In this paper, a common fixed point theorem for two pairs of weakly com-
patible mappings satisfying Altman type contraction in metric space is proved.
Our result extends and improves several known results.

1. Introduction

Let A and S be two self-maps of a metric space (X, d). Sessa [14] defined A and
S to be weakly commuting if

d(ASx, SAx) ≤ d(Ax, Sx), (1)

for all x ∈ X.

Jungck [5] defined A and S to be compatible if

limnd(ASxn, SAxn) = 0, (2)

whenever there exists a sequence {xn} in X such that limnSxn = limnAxn = t,
for some t ∈ X. Clearly, commuting mappings are weakly commuting and weakly
commuting mappings are compatible but neither implication is reversible (see, for
instance, Example 1 of Sessa and Fisher [15] and Example 2.2 of Jungck [5]).

In 1993, Jungck, Murthy and Cho [7] defined A and S to be compatible of type
(A) if

limnd(ASxn, SSxn) = limnd(SAxn, AAxn) = 0, (3)
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whenever there exists a sequence {xn} in X such that limnSxn = limnAxn = t, for
some t ∈ X. Clearly, weakly commuting mappings are compatible of type (A) but
this implication is not reversible (see, for instance, Examples 2.1 and 2.2 of Jungck,
Murthy and Cho [7]). It follows from [7] that the notions of compatible maps and
compatible of type (A) are independent to each other (see also Examples 4.8 and
4.9 below).

In [9], the compatible maps of type (P) was introduced and compared with
compatible maps and compatible maps of type (A). The mappings A and S of a
metric space (X, d) are called compatible of type (P) if

limnd(AAxn, SSxn) = 0,

whenever there exists a sequence {xn} in X such that limnSxn = limnAxn = t,
for some t ∈ X.

It is easy to verify that compatible maps of type (P) is also independent to
compatible maps and compatible maps of type (A) (see examples in Pathak et. al.
[9]).

In 1998, Jungck and Rhoades [6] defined A and S to be weakly compatible if

SAx = ASx whenever Ax = Sx. (4)

The example of Popa [10, p.34] shows that weakly compatible maps need not be
compatible or compatible of type (A) or compatible of type (P) (see also Example
4.7 below).

The following Lemma asserts that the concept of weakly compatible mapping is
more general than the concepts of compatibility and compatibility of type (A) and
(P). So we will use the weakly compatible mapping in our theorems.

Lemma 1.1 [5] (resp. [7], [9]). Let A and S be compatible (resp. compatible of type
(A), compatible of type (P)) self-mappings of a metric space (X, d). If Ax = Sx for
some x ∈ X, then ASx = SAx.

Thus Ax = Sx, for some x ∈ X with compatibility (compatible of type (A) or
compatible of type (P)) implies that

ASx = SSx = SAx = AAx. (5)

2. Altman condition

In 1975, Altman [1] introduced a generalized contraction. Let (X, d) be a metric
space and f : X → X. Then f is called a generalized contraction if, for all x, y ∈ X,

d(fx, fy) ≤ G(d(x, y)), (6)
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where G is a real-valued non-decreasing function satisfying the following conditions:
(a) 0 < G(t) < t, for all t > 0, G(0) = 0,
(b) g(t) = t

t−G(t) is non-increasing on (0,∞),

(c)
∫ t1
0

g(t)dt < +∞ for each t1 > 0.
Henceforth, we shall denote by R, R+ and N the set of real numbers, the set of
nonnegative real numbers and the set of natural numbers, respectively. Let G0

denotes the family of real-valued functions G on set D−{0}, where D = cl(ran d),
that is,

G0 = {G : G(t) ∈ R, ∀ t ∈ D − {0}}.
The family G0 of G′s defined above is same as in Carbone et. al. [3].

After Altman’s theorem on metric space, Carbone and Singh [2], Rhoades and
Watson [12], Watson, Meade and Norris [16] etc. proved fixed point theorems
for generalized contractions. We will use more general contraction condition than
above.

3. Preliminaries

The following theorem was proved by Sahu and Dewangan [13].

Theorem A. Let S and T be self-mappings of a complete metric space (X, d).
Let {Ai}i∈N and {Bi}i∈N be sequences of self-maps on X satisfying the following
conditions:

(i) AiX ⊆ TX, BiX ⊆ SX,

(ii) d(Aix,Biy) ≤ G(m(x, y)),

for all x, y ∈ X, where G ∈ G0, the family of real-valued functions G, and

m(x, y) = max{d(Sx, Ty), d(Aix, Sx), d(Biy, Ty), 1
2 [d(Biy, Sx) + d(Aix, Ty)]},

(iii) one of Ai, Bi, S or T is continuous and

(iv) Ai and S and Bi and T are compatible of type (A).

Then each Ai, Bi, S and T have a unique common fixed point in X.

Let F is the set of all functions f : R+ → R+ such that
(*) f is isotone, i.e., if t1 ≤ t2 then f(t1) ≤ f(t2), for all t1, t2 ∈ R+,
(**) f is upper semi-continuous,
(***) f(t) < t, for each t > 0.
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In the light of above notation the following theorem was proved by Popa and
Pathak [11].

Theorem B. Let A, B, S and T be self-mappings of a complete metric space
(X, d) satisfying the conditions:

(i) AX ⊆ TX, BX ⊆ SX,

(ii) the inequality

[1 + p d(Sx, Ty)]d(Ax,By) ≤ pmax{d(Ax, Sx)d(By, Ty), d(Ax, Ty)d(By, Sx)}

+ f
(
max{d(Sx, Ty), d(Ax, Sx), d(By, Ty), 1

2 [d(By, Sx) + d(Ax, Ty)]}),

holds for all x, y ∈ X, where p ≥ 0 and f ∈ F ,

(iii) one of A, B, S or T is continuous, and

(iv) A and S are compatible of type (A) and B and T are compatible of type (A).

Then A, B, S and T have common fixed point z. Further, z is the unique com-
mon fixed point of A and S and of B and T .

Our aim of this paper is to prove a common fixed point theorem for two pairs
of weakly compatible mappings satisfying Altman type contraction condition and
to derive few known results as corollaries. In our main result we have dropped
the completeness of whole space X in Theorem B, by choosing the range space of
one of the four mappings complete; relaxed the duality of conditions on mappings
in compatibility of type (A) by taking weakly compatible mappings and dropped
requirement of the continuity of one of the four mappings.

4. Main Results

We now state and prove our main theorem.

Theorem 4.1. Let A, B, S and T be four self-mappings of a metric space (X, d)
satisfying the following conditions:

(i) AX ⊆ TX, BX ⊆ SX,

(ii) [1 + p d(Sx, Ty)]d(Ax,By) ≤

pmax{d(Ax, Sx)d(By, Ty), d(Ax, Ty)d(By, Sx)}+ G
(
m(x, y)

)
,
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for all x, y ∈ X, where p ≥ 0,

m(x, y) = max{d(Sx, Ty), d(Ax, Sx), d(By, Ty), 1
2 [d(Ax, Ty) + d(By, Sx)]},

and G ∈ G0 satisfies the Altman type conditions (a)-(c).

If one of AX, BX, SX or TX is a complete subspace of X, then

(iii) (A, S) have a coincidence point.

(iv) (B, T ) have a coincidence point.

Moreover, if both the pairs (A,S) and (B, T ) are weakly compatible then A, B,
S and T have a unique common fixed point.

Proof. Pick x0 ∈ X, then by condition (i) we can choose a sequence {xn} in X such
that

Ax2n = Tx2n+1 = y2n and Bx2n+1 = Sx2n+2 = y2n+1,

for all n = 0, 1, 2....

We now show that the sequence {yn} defined above is Cauchy in X.

Let us denote d(yn, yn+1) by dn, for each n = 0, 1, 2.... First we will show that
dn+1 ≤ G(dn) and then we claim that

limn→∞dn = 0 (7)

and then show that {yn} is a Cauchy sequence in X.

For this, putting x2n+2 for x and x2n+1 for y in (ii) we obtain

[1 + p d2n]d2n+1 ≤ pmax{d2n+1d2n, 0}+ G(max{d2n, d2n+1, d2n, 1
2d(y2n, y2n+2)}).

But, from the triangle inequality for metric d, we have

1
2d(y2n, y2n+2) ≤ 1

2 [d(y2n, y2n+1) + d(y2n+1, y2n+2)] = 1
2 [d2n + d2n+1]

≤ max{d2n, d2n+1}.

Using this in above, we obtain

[1 + p d2n]d2n+1 ≤ p d2nd2n+1 + G(max{d2n, d2n+1}).

If we choose d2n+1 as “max” in above then we have

d2n+1 ≤ G(d2n+1) < d2n+1,
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a contradiction. Hence,

d2n+1 ≤ G(d2n). (8)

Similarly, by setting x2n+2 for x and x2n+3 for y in (ii) we obtain

[1 + p d2n+1]d2n+2 ≤ pmax{d2n+1d2n+2, 0}+ G(max{d2n+1, d2n+1, d2n+2,
1
2d(y2n+1, y2n+3)}),

i.e., d2n+2 ≤ G(max{d2n+1, d2n+1, d2n+2,
1
2d(y2n+1, y2n+3)}) = G(d2n+1)

whence

d2n+2 ≤ G(d2n+1). (9)

Unifying (8) and (9) we obtain

dn+1 ≤ G(dn), (10)

for all n = 0, 1, 2....

Next, define a sequence {tn} by tn+1 = G(tn) with t1 = d0 = d(y0, y1). It then
follows by assumption (a) that, 0 < G(tn) = tn+1 < tn < t1,∀n ≥ 1.

Furthermore, by induction we will show that dn ≤ tn+1. If n = 1; then by putting
x2 for x and x1 for y in condition (ii), we have

[1 + p d(y1, y0)]d(y2, y1) ≤

pmax{d(y2, y1)d(y1, y0), 0}+ G
(
max{d(y1, y0), d(y2, y1), d(y1, y0), 1

2d(y2, y0)}
)
,

whence

d1 = d(y1, y2) ≤ G(max{d(y0, y1), d(y1, y2), 1
2d(y2, y0)}

≤ G(max{d(y0, y1), d(y1, y2)}) = G(d(y0, y1)) = G(d0) = G(t1) = t2;

because choosing of d(y1, y2) as “max” gives d1 ≤ G(d1) < d1, which is a contra-
diction.

Thus for n = 1, we observe that d1 ≤ t2.

Assume for some fixed n that, dn ≤ tn+1 is true. Then for induction; we have,
since G is non-decreasing,

dn+1 ≤ G(dn) ≤ G(tn+1) = tn+2.

This follows that dn ≤ tn+1, for all n ∈ N.
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Now, by conditions (a)-(c) and dn ≤ tn+1 = G(tn), n ∈ N which shows that
limn→∞tn = limn→∞dn = 0, it follows that {yn} is a Cauchy sequence.

In fact, if m,n ∈ N with m ≥ n, then

d(ym, yn) ≤ ∑m−1
k=n dk ≤

∑m−1
k=n tk+1 =

∑m
k=n+1 tk

=
m∑

k=n+1

tk(tk − tk+1)
tk −G(tk)

≤
m∑

k=n+1

∫ tk

tk+1

g(t)dt ≤
∫ tm

tn+2

g(t)dt.

Since the last term tends to zero as n → ∞, the sequence {tn} is convergent and∫ t1
0

g(t)dt < +∞ for each t1 ∈ D− {0} and hence {yn} is a Cauchy sequence in X.

Now, we suppose that the range of one of the four mappings is complete.

Case I. Suppose that TX is a complete subspace of X, then the subsequence
{y2n+1} = {Tx2n+1} is Cauchy in TX and hence converges to a limit (say z) in X.
Since {yn} is Cauchy and its subsequence {y2n+1} is convergent to z, so {yn} also
converges to z. Hence its subsequence {y2n+2} is also convergent to z. Thus we have

limn→∞Tx2n+1 = limn→∞Bx2n+1 = limn→∞Ax2n = limn→∞Sx2n = z.

Let v ∈ T−1z then Tv = z. We claim that Bv = z. For this, setting x = x2n

and y = v in (ii) we have

[1 + p d(Sx2n, T v)]d(Ax2n, Bv) ≤

pmax{d(Ax2n, Sx2n)d(Bv, Tv), d(Ax2n, T v)d(Bv, Sx2n)}+ G
(
m(x2n, v)

)
,

where m(x2n, v) = max{d(Sx2n, T v), d(Ax2n, Sx2n), d(Bv, Tv),
1
2 [d(Ax2n, T v) + d(Bv, Sx2n)]}.

Letting n →∞ it yields

d(z, Bv) ≤ G
(
d(z, Bv)

)
< d(z, Bv),

a contradiction. Thus d(Bv, z) = 0, so that Bv = z. Hence z = Bv = Tv, showing
that v is a coincidence point of (B, T ).

Further, since BX ⊆ SX, Bv = z implies that z ∈ SX. Let u = S−1z, then
Su = z. Now we claim that Au = z. For this, putting x = u and y = v in (ii) we
have

[1 + p.0]d(Au, z) ≤ pmax{0, 0}+ G(max{0, d(Au, z), 0, 1
2d(Au, z)}),
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i.e., d(Au, z) ≤ G(d(Au, z)) < d(Au, z)
a contradiction. Thus Au = z. Hence z = Au = Su, showing that u is a coincidence
point of (A,S).

Case II. If we assume SX a complete subspace of X, then analogous arguments
establishes the earlier conclusion. The remaining two cases are essentially the same
as the previous cases. Indeed, if AX is complete, then by (i), z ∈ AX ⊆ TX.
Similarly if BX is complete, then z ∈ BX ⊆ SX. Thus pairs (A,S) and (B, T )
have coincidence points. Hence in all we have

z = Au = Su = Bv = Tv. (11)

This proves our assertions (iii) and (iv).

Now, the weak compatibility of (A,S) gives Az = ASu = SAu = Sz; i.e.,

Az = Sz. (12)

Similarly, the weak compatibility of (B, T ) gives Bz = BTv = TBv = Tz; i.e.,

Bz = Tz. (13)

To show that z is a coincidence point of A, B, S and T we have to show that
Az = Bz. For this, putting x = z and y = z in (ii) we have

[1 + pd(Sz, Tz)]d(Az, Bz) ≤ pmax{d(Az, Sz)d(Bz, Tz), d(Az, Tz)d(Bz, Sz)}

+G
(
max{d(Sz, Tz), d(Az, Sz), d(Bz, Tz), 1

2 [d(Az, Tz) + d(Bz, Sz)]}
)
.

Using (12) and (13), we obtain

d(Az, Bz) ≤ G(d(Az,Bz)) < d(Az, Bz),

which is a contradiction. Thus Az = Bz. Hence from (12) and (13),

Az = Sz = Bz = Tz. (14)

To show that z is a common fixed point, putting x = z and y = v in (ii) we have

[1 + pd(Sz, Tv)]d(Az, Bv) ≤ p max{d(Az, Sz)d(Bv, Tv), d(Az, Tv)d(Bv, Sz)}

+G
(
max{d(Sz, Tv), d(Az, Sz), d(Bv, Tv), 1

2 [d(Az, Tv) + d(Bv, Sz)]}).

Using (11) it yields

d(Az, z) ≤ G
(
d(Az, z))

)
< d(Az, z),

a contradiction. Thus we obtain

z = Az = Bz = Sz = Tz. (15)
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Uniqueness of common fixed point z follows easily by (ii), as

[1 + pd(z, z′)]d(z, z′) ≤ pmax{0, d(z, z′)d(z, z′)}+

G
(
max{d(z, z′), d(z, z), d(z′, z′), 1

2 [d(z, z′) + d(z, z′)]}
)
.

i.e., d(z, z′) ≤ G(d(z, z′)) < d(z, z′),

a contradiction. Thus z is the unique common fixed point of A, B, S and T . This
completes the proof.

If p = 0, then our Theorem 4.1 reduces to the following Corollary.

Corollary 4.2. Let A, B, S and T be four self-mappings of a metric space (X, d)
satisfying the following conditions:

(i) AX ⊆ TX, BX ⊆ SX,

(ii) d(Ax, By) ≤ G(m(x, y)), for all x, y ∈ X, where

m(x, y) = max{d(Sx, Ty), d(Ax, Sx), d(By, Ty), 1
2 [d(Ax, Ty) + d(By, Sx)]}

and G ∈ G0 satisfies the Altman type conditions (a)-(c).

If one of AX, BX, SX or TX is a complete subspace of X, then

(iii) (A, S) have a coincidence point,

(iv) (B, T ) have a coincidence point.

Moreover, if both the pairs (A,S) and (B, T ) are weakly compatible then A, B,
S and T have a unique common fixed point.

Remark 4.3. If {Ai}i∈N, S and T be self-mappings of a metric space (X, d) then
we have the following Corollary as a generalization of Popa and Pathak [11].

Corollary 4.4. Let {Ai}i∈N, S and T be self-mappings of a metric space (X, d)
such that

(i) A1X ⊆ TX, A2X ⊆ SX,

(ii) [1 + pd(Sx, Ty)]d(Aix,Ai+1y) ≤ p max{d(Aix, Sx)d(Ai+1y, Ty),
(Aix, Ty)d(Ai+1y, Sx)}+ G

(
m(x, y)

)
,
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for all x, y ∈ X, where p ≥ 0, G ∈ G0 satisfies the Altman’s conditions and

m(x, y) = max{d(Sx, Ty), d(Aix, Sx), d(Ai+1y, Ty), 1
2 [d(Aix, Ty)+d(Ai+1y, Sx)]}.

If one of AiX, SX or TX is a complete subspace of X, and if the pairs (A1, S)
and (A2, T ) are weakly compatible then {Ai}i∈N, S and T have a unique common
fixed point.

Remark 4.5. If we take sequences {Ai}i∈N and {Bi}i∈N instead of A and B in
Theorem 4.1, then we get the following Corollary as a generalization of Theorem
A[13], in which the completeness of X and compatibility of type (A) are relaxed by
completeness of one subspace and weak compatibility.

Corollary 4.6. Let S and T be self-maps of a metric space (X, d). Let {Ai}i∈N
and {Bi}i∈N be two sequences of a metric space (X, d) satisfying the conditions:

(i) AiX ⊆ TX, BiX ⊆ SX,

(ii) [1 + pd(Sx, Ty)]d(Aix,Biy) ≤ pmax{d(Aix, Sx)d(Biy, Ty),
(Aix, Ty)d(Biy, Sx)}+ G(m(x, y)),

where p ≥ 0, G ∈ G0 satisfies the Altman type conditions (a)-(c) and

m(x, y) = max{d(Sx, Ty), d(Aix, Sx), d(Biy, Ty), 1
2 [d(Aix, Ty) + d(Biy, Sx)]}.

If one of AiX, BiX, SX or TX is a complete subspace of X, then

(iii) (Ai, S) and (Bi, T ) have coincidence points.

Moreover, if both the pairs (Ai, S) and (Bi, T ) are weakly compatible then Ai,
Bi, S and T have a unique common fixed point.

Now we give some examples to show the relative strength for various types of
compatible mappings and to validate for our main Theorem 4.1.

The following example shows that weakly compatible maps need not imply com-
patible, compatible of type (A) and compatible of type (P).

Example 4.7. Let X = R, with the usual metric d. Define A, S : R→ R by:

Ax = [x], ∀x ∈ R and Sx =





−2, if x ≤ 0,
0, if 0 < x < 2,

2, if x ≥ 2,

where [x] denotes the integral part of x.
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In the above if we put {xn} = { 1
n} then Axn = 0 = Sxn and SAxn = −2 =

SSxn 6=ASxn = AAxn = 0. Showing that pair (A,S) is neither compatible nor
compatible of type (A) nor compatible of type (P), but it is weakly compatible as
(A,S) commutes at their coincidence points x = ±2.

The following example shows that compatibility need not imply compatibility
of type (A) and type (P).

Example 4.8. Let X = R, with the usual metric d. Define A, S : R→ R by:

Ax = x, ∀x ∈ R and Sx =
{

0, if x is an integer,
1, if x is not an integer.

Then, for the sequences {xn} = {1 ± 1
n+1}, we see that Axn → 1, AAxn →

1, Sxn = ASxn = SAxn = 1 but SSxn = 0, as n → ∞. Showing that pair (A,S)
is compatible but neither compatible of type (A) nor type (P). However x = 0 is
the point of weak compatibility.

The following example shows that compatible mappings of type (A) need not
be compatible and compatible of type (P).

Example 4.9. Let X = R, with the usual metric d. Define A, S : R→ R by

Ax =
{

2, if x = 2 or x > 5,
6, if 2 < x ≤ 5,

and Sx =





2, if x = 2,
6, if 2 < x < 5,
x− 3, if, x ≥ 5.

Then, for the sequence {xn} = {5 + 1
n} we see that Sxn → 2, Axn = 2 =

SAxn = AAxn and ASxn = 6 = SSxn, as n →∞. Thus pair (A,S) is compatible
of type (A) but neither compatible nor compatible of type (P). However x = 2 is
the point of weak compatibility.

Now we give an example to show the validity of our main Theorem 4.1.

Example 4.10. Let A, B, S and T be four self-mappings of a metric space
X, endowed with the usual metric d. Let X = [0, 3

2 ]. Define the mappings
A,B, S, T : X → X by:

Ax = 1, Sx = x, Bx = 1 and Tx = 1
2 (1 + x), ∀x ∈ X.

Let G : [0,∞) → R be defined by G(t) = t
3 . Then we observe that:

(i) AX = {1} ⊆ TX =
[
1
2 , 5

4

] ⊆ X and BX = {1} ⊆ SX = [0, 3
2 ] ⊆ X;

(ii) Since, d(Ax,By) = 0, d(Sx, Ty) = 1
2 |2x−y−1|, d(Ax, Sx) = |1−x|, d(By, Ty) =

1
2 |1− y| = d(Ax, Ty) and d(By, Sx) = |1− x|, ∀x, y ∈ X; we have for condition
(ii) that,
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[1 + pd(Sx, Ty)]d(Ax,By) ≤ pmax{d(Ax, Sx)d(By, Ty), d(Ax, Ty)d(By, Sx)}
+ G(m(x, y))

or, 0 ≤ p
2 |1− x|.|1− y|+ G(m(x, y)),

where m(x, y) = max{1
2 |2x− y − 1|, |1− x|, 1

2 |1− y|, 1
2 (1

2 |1− y|+ |1− x|)} ≥ 0.

Thus condition (ii) is true for all x, y ∈ X and p ≥ 0.

Further, we see that m(x, y) = 0, if and only if,

1
2 |2x− y − 1| = 0 = |1− x| = 1

2 |1− y| = 1
2 ( 1

2 |1− y|+ |1− x|)

i.e., x = 1, y = 1. Thus m(1, 1) = 0 and therefore G(0) = 0.

We observe that SX and TX are complete subspaces of X. Further, we have
g(t) = 3

2 , so that
∫ t1
0

g(t)dt = 3
2 t1 < +∞ where t1 ∈ (0, 5

4 ].

We notice that the pairs (A,S) and (B, T ) have the coincidence point x = 1
where they commutes. So that (A,S) and (B, T ) are weakly compatible. Thus all
the conditions of Theorem 4.1 are satisfied. The only common fixed point of A, B, S
and T is x = 1. This validates Theorem 4.1.

The following example also shows the validity of our main Theorem 4.1.

Example 4.11. Let A, B, S and T be four self-mappings on X = [−1, 1] with
|.| is the usual metric. Let G0 denotes the family of real-valued functions G with
0 < G(t) < t. Suppose that G(t) = t/2 for all t > 0 and G(0) = 0. So that
g(t) = t

t−G(t) = 2 for all t > 0, and so
∫ t1
0

g(t)dt = 2t1 < +∞ where t1 ∈ (0, 1].

Let us define the four mappings by:

Ax = 1, Sx = 1
4 (3 + x) , Bx = 1 and Tx = 1

2 (1 + x), ∀x ∈ [−1, 1] = X.

Then we observe that:

(i) AX = {1} ⊆ TX = [0, 1] and BX = {1} ⊆ SX = [ 12 , 1].

(ii) Now, d(Sx, Ty) = 1
4 |1 + x − 2y|, d(Ax,By) = 0, d(Ax, Sx) = 1

4 |1 − x| =
d(By, Sx) and d(By, Ty) = 1

2 |1−y| = d(Ax, Ty), for all x, y ∈ X. Then condition
(ii) is easily satisfied. Further,

m(x, y) = 0 ⇐⇒ max{1
4 |1 + x− 2y|, 1

4 |1− x|, 1
2 |1− y|, 1

2 [ 12 |1− y|+ 1
4 |1− x|]} = 0
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⇐⇒ each of the values 1
4 |1 + x− 2y|, 1

4 |1− x|, 1
2 |1− y| and

[ 14 |1− y|+ 1
8 |1− x|] must be equal to zero,

⇐⇒ x = 1, y = 1.

i.e., G(0) = G(m(1, 1)) = 0.

Thus all the conditions of Theorem 4.1 are satisfied. The point x = 1 is a coin-
cidence point of pairs (A,S) and (B, T ) and that x = 1 is the only common fixed
point of A,B, S and T in X = [−1, 1]. This validates Theorem 4.1.

Remark 4.12. Our Theorem 4.1 is remain true if the pairs (A,S) and (B, T ) are
R-weakly commuting [8] instead of weakly compatible.

Remark 4.13. The implicit relation of Popa [10] can also be applied to our theo-
rems instead of inequality (ii) as in Imdad, Kumar and Khan [4].

Acknowledgment. The authors are highly indebted to the learned referee for his
valuable comments and helpful suggestions.
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