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Abstract

In this paper we present a stationary bivariate minification process with
Marshall and Olkin exponential distribution. The process is given by

Xn = K min(Xn−1, Yn−1, ηn1),

Yn = K min(Xn−1, Yn−1, ηn2),

where {(ηn1, ηn2), n ≥ 1} is a sequence of independent and identically dis-
tributed random vectors, the random vectors (Xm, Ym) and (ηn1, ηn2) are
independent for m < n and λ1 > 0, λ2 > 0, λ12 > 0, K > (λ1 +λ2 +λ12)/λ12.
The innovation distribution, the joint distribution of random vectors (Xn, Yn)
and (Xn−j , Yn−j), j > 0, the autocovariance and the autocorrelation matrix
are obtained. The unknown parameters are estimated and their asymptotic
properties are obtained.

1. INTRODUCTION

A minification process of the first-order is given by

Xn = K min(Xn−1, εn), n ≥ 1,

where K > 1 and {εn, n ≥ 1} is an innovation process of independent and identi-
cally distributed (i.i.d.) random variables. Several authors have introduced mini-
fication processes with given marginals. Tavares [13] introduced the minification
process with exponential marginal distribution. Sim [10] introduced the minifica-
tion process with Weibull marginal distribution. Yeh, Arnold and Robertson [14]
introduced a Pareto minification process. Arnold and Robertson [1] introduced a
logistic minification process. Pillai [7] and Pillai, Jose and Jayakumar [8] introduced
semi-Pareto minification processes. Balakrishna [2] considered some properties of
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the semi-Pareto minification process of Pillai [7] and estimated the unknown pa-
rameters of the model. Lewis and McKenzie [5] introduced the minification process
with marginal distribution function FX0(x). Some bivariate and multivariate mini-
fication processes are introduced by Balakrishna and Jayakumar [3], Thomas and
Jose [11], [12] and Ristic [9].

In this paper we consider a stationary bivariate minification process of Ristić [9]
with the bivariate Marshall and Olkin exponential distributions BVE(λ1, λ2, λ12)
and K = L. Motivated by situations that arise in reliability theory such as the
failure of paired jet engines or the registration of an event by two adjacent geiger
counters, Marshall and Olkin [6] introduced the bivariate exponential distribution
with survival function

P{X > x, Y > y} = e−λ1x−λ2y−λ12 max(x,y), x, y > 0,

where λ1 > 0, λ2 > 0, λ12 > 0. The random variables are constructed such that X
and Y are dependent exponentially distributed random variables with parameters
λ1 + λ12 and λ2 + λ12, respectively. The important property of this distribution
is that it is not absolutely continuous distribution, since the probability P{X =
Y } = λ12/(λ1 + λ2 + λ2) is non-negative. The density function f(x, y) of the
BVE(λ1, λ2, λ12) distribution is given by

f(x, y) =





λ1(λ2 + λ12)e−λ1x−(λ2+λ12)y, y > x > 0,
λ2(λ1 + λ12)e−(λ1+λ12)x−λ2y, x > y > 0,
λ12e

−(λ1+λ2+λ12)x, x = y > 0.

This paper is organized as follows. The properties of the process are considered
in Section 2. In Section 3 we give the estimates of the parameters of the process.

2. PROPERTIES OF THE PROCESS

In this section we consider a stationary bivariate minification process with biva-
riate Marshall and Olkin exponential distribution BVE(λ1, λ2, λ12). The process is
given by

Xn = K min(Xn−1, Yn−1, ηn1),
Yn = K min(Xn−1, Yn−1, ηn2),

(1)

where λ1 > 0, λ2 > 0, λ12 > 0, K > λ/λ12, λ = λ1 +λ2 +λ12, {(ηn1, ηn2), n ≥ 1} is
a sequence of i.i.d. random vectors and the random vectors (Xm, Ym) and (ηn1, ηn2)
are independent for m < n.

Ristić [9] derived the innovation distribution of the random vector (ηn1, ηn2).
The random vector (ηn1, ηn2) has the bivariate Marshall and Olkin exponential
distribution BVE(λ1K,λ2K, λ12K − λ). The marginal distributions of the random
variables ηn1 and ηn2 are ε(c1) and ε(c2), respectively, where c1 = (λ1 + λ12)K − λ
and c2 = (λ2 +λ12)K−λ. Following Ristić [9], we obtain the joint survival function
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of the random vectors (Xn, Yn) and (Xn−j , Yn−j), j > 0. Denote the joint survival
function of (Xn, Yn) and (Xn−j , Yn−j) by

Sj(x1, y1, x2, y2; K) = P{Xn > x1, Yn > y1, Xn−j > x2, Yn−j > y2}. (2)

The joint survival function Sj(x1, y1, x2, y2;K), j ≥ 1, can be obtained recursively
as

Sj(x1, y1, x2, y2;K) =
F

(
max

(
x1
Kj , y1

Kj , x2

)
,max

(
x1
Kj , y1

Kj , y2

)) · F (x1, y1)
F

(
max

(
x1
Kj , y1

Kj

)
,max

(
x1
Kj , y1

Kj

)) ,

= S1(x1, y1, x2, y2;Kj).

It is obvious that the joint distribution and the properties of the random vector
(Xn, Yn, Xn−j , Yn−j) can be derived from the joint distribution and the properties
of the random vector (Xn, Yn, Xn−1, Yn−1) replacing K by Kj .

Now we discuss the autocovariance structure of the bivariate Marshall and Olkin
exponential minification process. We define the autocovariance matrix of a bivariate
process {(Xn, Yn), n ≥ 0} by

Γ(j) =
[

Cov(Xn, Xn−j) Cov(Xn, Yn−j)
Cov(Yn, Xn−j) Cov(Yn, Yn−j)

]
.

To derive the autocovariance matrix Γ(j) it suffices to derive the autocovariance
matrix Γ(1).

In order to compute the moment E(XnXn−1), we consider the conditional ex-
pectation E(Xn|Xn−1, Yn−1). From the definition of the process {(Xn, Yn), n ≥ 0},
we have that conditional distribution for Xn, given Xn−1 = x and Yn−1 = y, is given
by

P{Xn ≤ z|Xn−1 = x, Yn−1 = y} =
{

1− e−
c1z
K , z < K min(x, y),

1 , z ≥ K min(x, y).

Note that this is not an absolutely continuous distribution, since the probability

P{Xn = K min(Xn−1, Yn−1)|Xn−1 = x, Yn−1 = y} = P{ηn1 > min(x, y)}
= e−c1 min(x,y)

is non-negative. Now, the conditional expectation is

E(Xn|Xn−1 = x, Yn−1 = y) =
c1

K

K min(x,y)∫

0

ze−
c1z
K dz

+ K min(x, y)e−c1 min(x,y) =
K

c1

(
1− e−c1 min(x,y)

)
.

Using this it is easy to verify that

E(XnXn−1) =
K

c1
· E

[
Xn−1

(
1− e−c1 min(Xn−1,Yn−1)

)]
. (3)
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In order to compute the moment E(XnXn−1) we will need the following lemma.
Lemma 1. Let (X, Y ) be a random vector with bivariate Marshall and Olkin ex-

ponential distribution BV E(λ1, λ2, λ12). Let U = X, W = Y and V = min(X,Y ).
Then:

(i) the random vector (U, V ) has the survival function

P{U > x, V > y} = e−(λ1+λ12) max(x,y)−λ2y,

and
P{U = V } =

λ1 + λ12

λ
,

(ii) the random vector (W,V ) has the survival function

P{W > x, V > y} = e−λ1y−(λ2+λ12) max(x,y),

and
P{W = V } =

λ2 + λ12

λ
.

Proof. (i) From the definition of the random variables U and V , we have that

P{U > x, V > y} = P{X > max(x, y), Y > y}
= e−λ1 max(x,y)−λ2y−λ12 max(max(x,y),y)

= e−(λ1+λ12) max(x,y)−λ2y,

and
P{U = V } = P{X ≤ Y } =

λ1 + λ12

λ
.

(ii) The proof is very similar to the proof of (i). ¤
Now, setting U = Xn−1 and V = min(Xn−1, Yn−1) in (3) and using Lemma 1,

we have that

E(XnXn−1) =
K

c1
· E [

U
(
1− e−c1V

)]

=
K

c1
λ2(λ1 + λ12)

∞∫

0

u∫

0

u(1− e−c1v)e−(λ1+λ12)u−λ2vdvdu

+
K

c1
(λ1 + λ12)

∞∫

0

u(1− e−c1u)e−λudu

=
K + 1

K(λ1 + λ12)2
.

Using this result, we conclude that

Cov(Xn, Xn−1) =
1

K(λ1 + λ12)2
.
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Similarly, we can verify that

E(XnYn−1) =
K

c1
· E [

W
(
1− e−c1V

)]
=

K(λ1 + λ12) + λ2 + λ12

K(λ1 + λ12)2(λ2 + λ12)
,

and
Cov(Xn, Yn−1) =

1
K(λ1 + λ12)2

.

Let us consider now Cov(Yn, Xn−1) and Cov(Yn, Yn−1). The conditional distri-
bution for Yn, given Xn−1 = x and Yn−1 = y, is given by

P{Yn ≤ z|Xn−1 = x, Yn−1 = y} =
{

1− e−
c2z
K , z < K min(x, y),

1 , z ≥ K min(x, y).

Also, we have P{Yn = K min(Xn−1, Yn−1)|Xn−1 = x, Yn−1 = y} = e−c2 min(x,y).
Finally, we obtain

Cov(Yn, Xn−1) = Cov(Yn, Yn−1) =
1

K(λ2 + λ12)2

in a similar way as we have obtained Cov(Xn, Xn−1) and Cov(Xn, Yn−1).
Thus we obtain the autocovariance matrix Γ(1) as

Γ(1) =
1
K

[
1

(λ1+λ12)2
1

(λ1+λ12)2
1

(λ2+λ12)2
1

(λ2+λ12)2

]
.

If we replace K by Kj in Γ(1), then we will obtain the autocovariance matrix Γ(j)
as

Γ(j) =
1

Kj

[
1

(λ1+λ12)2
1

(λ1+λ12)2
1

(λ2+λ12)2
1

(λ2+λ12)2

]
.

We will now discuss the autocorrelation structure of the bivariate minification
process with bivariate Marshall and Olkin exponential distribution. We define the
autocorrelation matrix by

R(j) =
[

Corr(Xn, Xn−j) Corr(Xn, Yn−j)
Corr(Yn, Xn−j) Corr(Yn, Yn−j)

]
.

After elementary calculation we get

R(j) =
1

Kj

[
1 λ2+λ12

λ1+λ12
λ1+λ12
λ2+λ12

1

]
.

Now, we will derive the range of the correlations Corr(Xn, Xn−1), Corr(Xn, Yn−1),
Corr(Yn, Xn−1) and Corr(Yn, Yn−1). Since K > λ/λ12, it follows that

0 < Corr(Xn, Xn−1) = Corr(Yn, Yn−1) <
λ12

λ
< 1,

0 < Corr(Xn, Yn−1) <
λ12(λ2 + λ12)
(λ1 + λ12)λ

< 1,

0 < Corr(Yn, Xn−1) <
λ12(λ1 + λ12)
(λ2 + λ12)λ

< 1.
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3. ESTIMATION OF THE PARAMETERS

In this section we will estimate the unknown parameters K, λ1, λ2 and λ12.
Ristić [9] showed that our bivariate minification process is ergodic and uniformly
mixing. Let us consider the estimation of the unknown parameters. Let {(X0, Y0),
(X1, Y1), . . ., (XN−1, YN−1)} be a sample of size N . First, we estimate the para-
meter K. Ristić [9] used the estimate

K̂N = max
1≤n≤N−1

{
Xn

min(Xn−1, Yn−1)

}
.

He showed that the estimate K̂N is strongly consistent estimate and is not asymp-
totically normal. As an alternative strongly consistent estimator of K, we can
consider

K̃N = max
1≤n≤N−1

{
Yn

min(Xn−1, Yn−1)

}
.

Both estimators K̂N and K̃N can be used in practical situation, since the true values
of the parameters can be obtained for small N . Now we consider the estimation of
the parameters λ1, λ2 and λ12. We will use the estimates

XN =
1
N

N−1∑

i=0

Xi,

Y N =
1
N

N−1∑

i=0

Yi,

IN−1 =
1

N − 1

N−1∑

i=1

I(Xi > min(Xi−1, Yi−1)),

where

I(Xi > min(Xi−1, Yi−1)) =
{

1, Xi > min(Xi−1, Yi−1),
0, Xi ≤ min(Xi−1, Yi−1).

Since the bivariate minification process with bivariate Marshall and Olkin expo-
nential distribution is ergodic, it follows that the estimates XN , Y N and IN−1

are strongly consistent estimates of the parameters 1/(λ1 + λ12), 1/(λ2 + λ12) and
Kλ/(Kλ + K(λ1 + λ12) − λ). Also, since the bivariate minification process is sta-

tionary and uniformly mixing and
∞∑

i=1

φ1/2(h) < ∞, it follows from Theorem 20.1

(Billingsley [4]) that
√

N

[
XN − 1

λ1+λ12

Y N − 1
λ2+λ12

]

has asymptotically bivariate normal distribution N2(0, Σ), as N →∞, where

Σ =

[
K+1

(K−1)(λ1+λ12)2
σxy

σxy
K+1

(K−1)(λ2+λ12)2

]
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and

σxy =
λ12

λ(λ1 + λ12)(λ2 + λ12)
+

1
K − 1

[
1

(λ1 + λ12)2
+

1
(λ2 + λ12)2

]
.

Following Balakrishna and Jacob (2003), we can show that

√
N − 1

(
IN−1 − λK

c1 + λK

)

has asymptotically normal distribution with zero mean and variance

σ2 =
c1λK

(c1 + λK)2
+ 2c2

1

∞∑

h=1

[
Kh + 1

(c1 + λ)((c1 + λ)Kh + c1)
− 1

(c1 + λK)2

]
> 0 .

So, we can take the estimates of the parameters λ1, λ2 and λ12 as the solutions
of the system of the equations

XN =
1

λ1 + λ12
,

Y N =
1

λ2 + λ12
,

IN−1 =
Kλ

Kλ + K(λ1 + λ12)− λ
.

Now we present some numerical results. We simulated 10000 realizations of our
process for the true values: a) K = 2, λ1 = 0.2, λ2 = 0.5, λ12 = 0.8, b) K = 3,
λ1 = 0.5, λ2 = 1.5, λ12 = 2.5. The simulation was replicated 100 times and for each
data set we computed sample means of the estimates K̂N , K̃N , λ̂1, λ̂2, λ̂12 and the
standard errors (SE). The results are summarized in Table 1.
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