Starting from the study of the Shepard nonlinear operator of max-prod type in [6], [7], in the book [8], Open Problem 5.5.4, pp. 324-326, the Favard-Szász-Mirakjan max-prod type operator is introduced and the question of the approximation order by this operator is raised. In the recent paper [1], by using a pretty complicated method to this open question an answer is given by obtaining an upper pointwise estimate of the approximation error of the form $C\omega_1(f; \sqrt{n})$ (with an unexplicit absolute constant $C > 0$) and the question of improving the order of approximation $\omega_1(f; \sqrt{n})$ is raised. The first aim of this note is to obtain the same order of approximation but by a simpler method, which in addition presents, at least, two advantages: it produces an explicit constant in front of $\omega_1(f; \sqrt{n})$ and it can easily be extended to other max-prod operators of Bernstein type. Also, we prove by a counterexample that in some sense, in general this type of order of approximation with respect to $\omega_1(f; \cdot)$ cannot be improved. However, for some subclasses of functions, including for example the bounded, nondecreasing concave functions, the essentially better order $\omega_1(f; 1/n)$ is obtained. Finally, some shape preserving properties are obtained.

1 Introduction

Starting from the study of the Shepard nonlinear operator of max-prod type in [6], [7], by the Open Problem 5.5.4, pp. 324-326 in the recent monograph [8], the following nonlinear Favard-Szász-Mirakjan max-prod operator is introduced (here \vee means maximum)

$$F_n^{(M)}(f)(x) = \vee_{k=0}^{\infty} \frac{(nx)^k}{k!} \frac{f \left(\frac{x}{n} \right)}{\vee_{k=0}^{\infty} \frac{(nx)^k}{k!}}.$$
for which by a pretty complicated method in [1], Theorem 8, the order of pointwise approximation \(\omega_1(f; \sqrt{x}/\sqrt{n}) \) is obtained. Also, by Remark 9, 2) in the same paper [1], the question if this order of approximation could be improved is raised.

The first aim of this note is to obtain the same order of approximation but by a simpler method, which in addition presents, at least, two advantages: it produces an explicit constant in front of \(\omega_1(f; \sqrt{x}/\sqrt{n}) \) and it can easily be extended to various max-prod operators of Bernstein type, see [2] – [5]. Also, one proves by a counterexample that in some sense, in general this type of order of approximation with respect to \(\omega_1(f; \cdot) \) cannot be improved, giving thus a negative answer to a question raised in [1] (see Remark 9, 2) there). However, for some subclasses of functions, including for example the bounded, nondecreasing concave functions, the essentially better order \(\omega_1(f; 1/n) \) is obtained. This allows us to put in evidence large classes of functions (e.g. bounded, nondecreasing concave polygonal lines on \([0, \infty)\)) for which the order of approximation given by the max-product Favard-Szász-Mirakjan operator, is essentially better than the order given by the linear Favard-Szász-Mirakjan operator. Finally, some shape preserving properties are presented.

Section 2 presents some general results on nonlinear operators, in Section 3 we prove several auxiliary lemmas, Section 4 contains the approximation results, while in Section 5 we present some shape preserving properties.

2 Preliminaries

For the proof of the main result we need some general considerations on the so-called nonlinear operators of max-prod kind. Over the set of positive reals, \(\mathbb{R}_+ \), we consider the operations \(\vee \) (maximum) and \(\cdot \), product. Then \((\mathbb{R}_+, \vee, \cdot)\) has a semiring structure and we call it as Max-Product algebra.

Let \(I \subset \mathbb{R} \) be a bounded or unbounded interval, and

\[
CB_+(I) = \{ f : I \to \mathbb{R}_+ ; f \text{ continuous and bounded on } I \}.
\]

The general form of \(L_n : CB_+(I) \to CB_+(I) \), (called here a discrete max-product type approximation operator) studied in the paper will be

\[
L_n(f)(x) = \bigvee_{i=0}^n K_n(x, x_i) \cdot f(x_i),
\]

or

\[
L_n(f)(x) = \bigvee_{i=0}^\infty K_n(x, x_i) \cdot f(x_i),
\]

where \(n \in \mathbb{N}, f \in CB_+(I), K_n(\cdot, x_i) \in CB_+(I) \) and \(x_i \in I, \) for all \(i. \) These operators are nonlinear, positive operators and moreover they satisfy a pseudo-linearity condition of the form

\[
L_n(\alpha \cdot f \vee \beta \cdot g)(x) = \alpha \cdot L_n(f)(x) \vee \beta \cdot L_n(g)(x), \forall \alpha, \beta \in \mathbb{R}_+, f, g : I \to \mathbb{R}_+.
\]
In this section we present some general results on these kinds of operators which will be useful later in the study of the Favard-Szász-Mirakjan max-product kind operator considered in Introduction.

Lemma 2.1. ([1]) Let \(I \subset \mathbb{R} \) be a bounded or unbounded interval,
\[
CB_+ (I) = \{ f : I \rightarrow \mathbb{R}_+ ; f \text{ continuous and bounded on } I \},
\]
and \(L_n : CB_+(I) \rightarrow CB_+(I) \), \(n \in \mathbb{N} \) be a sequence of operators satisfying the following properties :

(i) if \(f, g \in CB_+(I) \) satisfy \(f \leq g \) then \(L_n(f) \leq L_n(g) \) for all \(n \in \mathbb{N} \);
(ii) \(L_n(f + g) \leq L_n(f) + L_n(g) \) for all \(f, g \in CB_+(I) \).

Then for all \(f, g \in CB_+(I) \), \(n \in \mathbb{N} \) and \(x \in I \) we have
\[
|L_n(f)(x) - L_n(g)(x)| \leq L_n(|f - g|(x)).
\]

Proof. Since is very simple, we reproduce here the proof in [1]. Let \(f, g \in CB_+(I) \).
We have \(f = f - g + g \leq |f - g| + g \), which by the conditions (i) - (ii) successively implies \(L_n(f)(x) \leq L_n(|f - g|)(x) + L_n(g)(x) \), that is \(L_n(f)(x) - L_n(g)(x) \leq L_n(|f - g|)(x) \).

Writing now \(g = g - f + f \leq |f - g| + f \) and applying the above reasonings, it follows \(L_n(g)(x) - L_n(f)(x) \leq L_n(|f - g|)(x) \), which combined with the above inequality gives \(|L_n(f)(x) - L_n(g)(x)| \leq L_n(|f - g|)(x) \).

Remarks. 1) It is easy to see that the Favard-Szász-Mirakjan max-product operator satisfy the conditions in Lemma 2.1, (i), (ii). In fact, instead of (i) it satisfies the stronger condition
\[
L_n(f \lor g)(x) = L_n(f)(x) \lor L_n(g)(x), \; f, g \in CB_+(I).
\]

Indeed, taking in the above equality \(f \leq g \), \(f, g \in CB_+(I) \), it easily follows \(L_n(f)(x) \leq L_n(g)(x) \).

2) In addition, it is immediate that the Favard-Szász-Mirakjan max-product operator is positive homogenous, that is \(L_n(\lambda f) = \lambda L_n(f) \) for all \(\lambda \geq 0 \).

Corollary 2.2. ([1]) Let \(L_n : CB_+(I) \rightarrow CB_+(I) \), \(n \in \mathbb{N} \) be a sequence of operators satisfying the conditions (i)-(ii) in Lemma 1 and in addition being positive homogenous. Then for all \(f \in CB_+(I) \), \(n \in \mathbb{N} \) and \(x \in I \) we have
\[
|f(x) - L_n(f)(x)| \leq \left[\frac{1}{\delta} L_n(\varphi_x)(x) + L_n(e_0)(x) \right] \omega_1(f; \delta) f + f(x) \cdot |L_n(e_0)(x) - 1|,
\]
where \(\delta > 0 \), \(e_0(t) = 1 \) for all \(t \in I \), \(\varphi_x(t) = |t - x| \) for all \(t \in I \), \(x \in I \), \(\omega_1(f; \delta) = \max\{|f(x) - f(y)| ; x, y \in I, |x - y| \leq \delta\} \) and if \(I \) is unbounded then we suppose that there exists \(L_n(\varphi_x)(x) \in \mathbb{R}_+ \cup \{+\infty\} \), for any \(x \in I \), \(n \in \mathbb{N} \).

Proof. The proof is identical with that for positive linear operators and because of its simplicity we reproduce it below. Indeed, from the identity
\[
L_n(f)(x) - f(x) = [L_n(f)(x) - f(x) \cdot L_n(e_0)(x)] + f(x)[L_n(e_0)(x) - 1],
\]
it follows (by the positive homogeneity and by Lemma 2.1)
\[|f(x) - L_n(f(x))| \leq |L_n(f(x))(x) - L_n(f(t))(x)| + |f(x)| \cdot |L_n(e_0)(x) - 1| \leq L_n(|f(t) - f(x)|)(x) + |f(x)| \cdot |L_n(e_0)(x) - 1|. \]

Now, since for all \(t, x \in I \) we have
\[|f(t) - f(x)| \leq \omega_1(f; |t - x|)_I \leq \left[\frac{1}{\delta} |t - x| + 1 \right] \omega_1(f; \delta)_I, \]
replacing above we immediately obtain the estimate in the statement. □

An immediate consequence of Corollary 2.2 is the following.

Corollary 2.3. ([1]) Suppose that in addition to the conditions in Corollary 2.2, the sequence \(\{L_n\}_n \) satisfies \(L_n(e_0) = e_0 \), for all \(n \in N \). Then for all \(f \in CB^+(I) \), \(n \in N \) and \(x \in I \) we have
\[|f(x) - L_n(f(x))| \leq \left[1 + \frac{1}{\delta} L_n(\varphi_x)(x) \right] \omega_1(f; \delta)_I. \]

3 Auxiliary Results

Since it is easy to check that \(F_n^{(M)}(f)(0) - f(0) = 0 \) for all \(n \), notice that in the notations, proofs and statements of the all approximation results, that is in Lemmas 3.1-3.3, Theorem 4.1, Lemma 4.2, Corollary 4.4, Corollary 4.5, in fact we always may suppose that \(x > 0 \).

For each \(k, j \in \{0, 1, 2, \ldots, \} \) and \(x \in \left[j/n, j/n + 1 \right] \), let us denote \(s_{n,k}(x) = \frac{(nx)^k}{k!} \),
\[M_{k,n,j}(x) = \frac{s_{n,k}(x) \{ k/n - x \}}{s_{n,j}(x)}, m_{k,n,j}(x) = \frac{s_{n,k}(x)}{s_{n,j}(x)}. \]

It is clear that if \(k \geq j + 1 \) then
\[M_{k,n,j}(x) = \frac{s_{n,k}(x) \{ k/n - x \}}{s_{n,j}(x)} \]
and if \(k \leq j - 1 \) then
\[M_{k,n,j}(x) = \frac{s_{n,k}(x) \{ x - k/n \}}{s_{n,j}(x)}. \]

Lemma 3.1. For all \(k, j \in \{0, 1, 2, \ldots, \} \) and \(x \in \left[j/n, j/n + 1 \right] \) we have
\[m_{k,n,j}(x) \leq 1. \]

Proof. We have two cases: 1) \(k \geq j \) and 2) \(k \leq j \).
Case 1. Since clearly the function $h(x) = \frac{1}{x}$ is nonincreasing on $[j/n, (j+1)/n]$, it follows
\[
\frac{m_{k,n,j}(x)}{m_{k+1,n,j}(x)} = \frac{k+1}{n} \cdot \frac{1}{x} \geq \frac{k+1}{n} \cdot \frac{n}{j+1} = \frac{k+1}{j+1} \geq 1,
\]
which implies $m_{j,n,j}(x) \geq m_{j+1,n,j}(x) \geq m_{j+2,n,j}(x) \geq \ldots$.

Case 2). We get
\[
\frac{m_{k,n,j}(x)}{m_{k-1,n,j}(x)} = \frac{nx}{k} \geq \frac{n}{k} = \frac{j}{k} \geq 1,
\]
which immediately implies
\[
m_{j,n,j}(x) \geq m_{j-1,n,j}(x) \geq m_{j-2,n,j}(x) \geq \ldots \geq m_{0,n,j}(x).
\]
Since $m_{j,n,j}(x) = 1$, the conclusion of the lemma is immediate. \hfill \Box

Lemma 3.2. Let $x \in [\frac{j}{n}, \frac{j+1}{n}]$.

(i) If $k \in \{j+1, j+3, \ldots, \}$ is such that $k - \sqrt{k+1} \geq j$, then $M_{k,n,j}(x) \geq M_{k+1,n,j}(x)$.

(ii) If $k \in \{1, 2, \ldots, j-1\}$ is such that $k + \sqrt{k} \leq j$, then $M_{k,n,j}(x) \geq M_{k-1,n,j}(x)$.

Proof. (i) We observe that
\[
\frac{M_{k,n,j}(x)}{M_{k+1,n,j}(x)} = \frac{k+1}{n} \cdot \frac{1}{x} \cdot \frac{k-n}{x} \geq \frac{k-n}{x}.
\]
Since the function $g(x) = \frac{1}{x} \cdot \frac{k-x}{x}$ is clearly nonincreasing, it follows that $g(x) \geq g(\frac{j+1}{n}) = \frac{n}{j+1} \cdot \frac{k-j-1}{k-j}$ for all $x \in [\frac{j}{n}, \frac{j+1}{n}]$.

Then, since the condition $k - \sqrt{k+1} \geq j$ implies $(k+1)(k-j-1) \geq (j+1)(k-j)$, we obtain
\[
\frac{M_{k,n,j}(x)}{M_{k+1,n,j}(x)} \geq \frac{k+1}{j+1} \cdot \frac{k-j-1}{k-j} \geq 1.
\]

(ii) We observe that
\[
\frac{M_{k,n,j}(x)}{M_{k-1,n,j}(x)} = \frac{n}{k} \cdot \frac{x}{x} \cdot \frac{x-k}{x} = \frac{k-n}{x}.
\]
Since the function $h(x) = x \cdot \frac{x-k}{x}$ is nondecreasing, it follows that $h(x) \geq h(\frac{j}{n}) = \frac{j-k}{n}$ for all $x \in [\frac{j}{n}, \frac{j+1}{n}]$.

Then, since the condition $k + \sqrt{k} \leq j$ implies $j(j-k) \geq k(j-k+1)$, we obtain
\[
\frac{M_{k,n,j}(x)}{M_{k-1,n,j}(x)} \geq \frac{n}{k} \cdot \frac{j}{j-k+1} \geq 1,
\]
which proves the lemma. \hfill \Box

Also, a key result in the proof of the main result is the following.
Lemma 3.3. Denoting \(s_{n,k}(x) = \frac{(nx)^k}{k!} \), we have

\[
\sum_{k=0}^{\infty} \frac{(nx)^k}{k!} = s_{n,j}(x), \quad \text{for all } x \in \left[\frac{j}{n}, \frac{j+1}{n} \right], \quad j = 0, 1, \ldots.
\]

Proof. First we show that for fixed \(n \in \mathbb{N} \) and \(0 \leq k \) we have

\[
0 \leq s_{n,k+1}(x) \leq s_{n,k}(x), \quad \text{if and only if } x \in [0, (k+1)/n].
\]

Indeed, the inequality one reduces to

\[
0 \leq \frac{(nx)^{k+1}}{(k+1)!} \leq \frac{(nx)^k}{k!},
\]

which after simplifications is obviously equivalent to

\[
0 \leq x \leq \frac{k+1}{n}.
\]

By taking \(k = 0, 1, \ldots \), in the inequality just proved above, we get

\[
s_{n,1}(x) \leq s_{n,0}(x), \quad \text{if and only if } x \in [0, 1/n],
\]

\[
s_{n,2}(x) \leq s_{n,1}(x), \quad \text{if and only if } x \in [0, 2/n],
\]

\[
s_{n,3}(x) \leq s_{n,2}(x), \quad \text{if and only if } x \in [0, 3/n],
\]

so on,

\[
s_{n,k+1}(x) \leq s_{n,k}(x), \quad \text{if and only if } x \in [0, (k+1)/n],
\]

and so on.

From all these inequalities, reasoning by recurrence we easily obtain :

if \(x \in [0, 1/n] \) then \(s_{n,k}(x) \leq s_{n,0}(x) \), for all \(k = 0, 1, \ldots \),

if \(x \in [1/n, 2/n] \) then \(s_{n,k}(x) \leq s_{n,1}(x) \), for all \(k = 0, 1, \ldots \),

if \(x \in [2/n, 3/n] \) then \(s_{n,k}(x) \leq s_{n,2}(x) \), for all \(k = 0, 1, \ldots \),

and so on, in general

if \(x \in [j/n, (j+1)/n] \) then \(s_{n,k}(x) \leq s_{n,j}(x) \), for all \(k = 0, 1, \ldots \),

which proves the lemma. \(\square \)
4 Approximation Results

If $F_n^M(f)(x)$ represents the nonlinear Favard-Szász-Mirakjan operator of max-product kind defined in Introduction, then the main result is the following.

Theorem 4.1. Let $f : [0, \infty) \to \mathbb{R}_+$ be bounded and continuous on $[0, \infty)$. Then we have the estimate

$$|F_n^M(f)(x) - f(x)| \leq 8\omega_1 \left(f, \frac{\sqrt{x}}{\sqrt{n}} \right), \text{ for all } n \in \mathbb{N}, x \in [0, \infty),$$

where

$$\omega_1(f, \delta) = \sup\{|f(x) - f(y)| ; x, y \in [0, \infty), |x - y| \leq \delta\}.$$

Proof. It is easy to check that the max-product Favard-Szász-Mirakjan operators fulfil the conditions in Corollary 2.3 and we have

$$|F_n^M(f)(x) - f(x)| \leq \left(1 + \frac{1}{\delta_n} F_n^M(\varphi_x)(x) \right) \omega_1(f, \delta_n),$$

where $\varphi_x(t) = |t - x|$. So, it is enough to estimate

$$E_n(x) := F_n^M(\varphi_x)(x) = \frac{\infty}{k=0} \frac{(nx)^k |x_n - x|}{k!}, x \in [0, \infty).$$

Let $x \in [j/n, (j + 1)/n]$, where $j \in \{0, 1, \ldots, \}$ is fixed, arbitrary. By Lemma 3.3 we easily obtain

$$E_n(x) = \max_{k=0,1,\ldots} \{ M_{k,n,j}(x) \}, x \in [j/n, (j + 1)/n].$$

In all what follows we may suppose that $j \in \{1, 2, \ldots, \}$, because for $j = 0$ we get $E_n(x) \leq \frac{\sqrt{x}}{\sqrt{n}}$, for all $x \in [0, 1/n]$. Indeed, in this case we obtain $M_{k,n,0}(x) = \frac{(nx)^k |x - x_n|}{k!}$, which for $k = 0$ gives $M_{k,n,0}(x) = x = \sqrt{x} \cdot \sqrt{x} \leq \sqrt{x} \cdot \frac{1}{\sqrt{n}}$. Also, for any $k \geq 1$ we have $\frac{k^k}{n^k} \leq \frac{k}{n^k} \leq \frac{k}{n^k}$ and we obtain

$$M_{k,n,0}(x) \leq \frac{(nx)^k}{k!} \cdot \frac{k}{n} = \sqrt{x} \cdot \frac{n^{k-1}x^{k-1/2}}{(k-1)!} \leq \sqrt{x} \cdot \frac{n^{k-1}}{(k-1)!} \cdot \frac{1}{\sqrt{n}}.$$

So it remains to obtain an upper estimate for each $M_{k,n,j}(x)$ when $j = 1, 2, \ldots$, is fixed, $x \in [j/n, (j + 1)/n]$ and $k = 0, 1, \ldots$. In fact we will prove that

$$M_{k,n,j}(x) \leq \frac{4\sqrt{x}}{\sqrt{n}}, \text{ for all } x \in [j/n, (j + 1)/n], k = 0, 1, \ldots,$$

which immediately will imply that

$$E_n(x) \leq \frac{4\sqrt{x}}{\sqrt{n}} \text{ for all } x \in [0, \infty), n \in \mathbb{N},$$
and taking $\delta_n = \frac{4\sqrt{x}}{\sqrt{n}}$ in (1) we immediately obtain the estimate in the statement.

In order to prove (2) we distinguish the following cases:

1) $k = j$; 2) $k \geq j + 1$ and 3) $k \leq j - 1$.

Case 1). If $k = j$ then $M_{j,n,j}(x) = \lfloor \frac{j}{n} - x \rfloor$. Since $x \in [\frac{j}{n}, \frac{j+1}{n})$, it easily follows that $M_{j,n,j}(x) \leq \frac{1}{n}$. Now, since $j \geq 1$ we get $x \geq \frac{1}{n}$, which implies $\frac{k}{n} = \frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{n}} \leq \sqrt{x} \cdot \frac{1}{\sqrt{n}}$.

Case 2). Subcase a). Suppose first that $k - \sqrt{k + 1} < j$. We get

$$M_{k,n,j}(x) = m_{k,n,j}(x)(\frac{k}{n} - x) \leq \frac{k}{n} - x \leq \frac{k}{n} - \frac{j}{n} \leq \frac{k - \sqrt{k + 1}}{n} = \sqrt{k + 1}.$$

But we necessarily have $k \leq 3j$. Indeed, if we suppose that $k > 3j$, then because $g(x) = x - \sqrt{x + 1}$ is nondecreasing, it follows $j > k - \sqrt{k + 1} \geq 3j - \sqrt{3j + 1}$, which implies the obvious contradiction $j > 3j - \sqrt{3j + 1}$.

In conclusion, we obtain

$$M_{k,n,j}(x) \leq \frac{\sqrt{k + 1}}{n} \leq \frac{\sqrt{3j + 1}}{n} \leq 2\frac{\sqrt{j}}{n} \leq 2\frac{\sqrt{x}}{\sqrt{n}},$$

taking into account that $\sqrt{x} \geq \frac{\sqrt{j}}{\sqrt{n}}$.

Subcase b). Suppose now that $k - \sqrt{k + 1} \geq j$. Since the function $g(x) = x - \sqrt{x + 1}$ is nondecreasing on the interval $[0, \infty)$ it follows that there exists $k \in \{1, 2, ..., \}$, of maximum value, such that $k - \sqrt{k + 1} < j$. Then for $k_1 = k + 1$ we get $k_1 - \sqrt{k_1 + 1} \geq j$ and

$$M_{k_1,n,j}(x) = m_{k_1,n,j}(x)(\frac{k_1 - \sqrt{k_1 + 1}}{n} - x) \leq \frac{k_1 + 1}{n} - x \leq \frac{k_1 + 1}{n} - \frac{j}{n} \leq \frac{k_1 + 1}{n} - \frac{\sqrt{k_1 + 1}}{n} \leq 3\frac{\sqrt{x}}{\sqrt{n}}.$$

The last above inequality follows from the fact that $k - \sqrt{k + 1} < j$ necessarily implies $k \leq 3j$ (see the similar reasonings in in the above subcase a). Also, we have $k_1 \geq j + 1$. Indeed, this is a consequence of the fact that g is nondecreasing and because is easy to see that $g(j) < j$.

By Lemma 3.2, (i) it follows that $M_{k_1,n,j}(x) \geq M_{k_1+2,n,j}(x) \geq ...$. We thus obtain $M_{k,n,j}(x) \leq 3\frac{\sqrt{x}}{\sqrt{n}}$ for any $k \in \{k + 1, k + 2, ..., \}$.

Case 3). Subcase a). Suppose first that $k + \sqrt{k} > j$. Then we obtain

$$M_{k,n,j}(x) = m_{k,n,j}(x)(x - \frac{k}{n}) \leq \frac{j + 1}{n} - \frac{k}{n} \leq \frac{k + \sqrt{k} + 1}{n} - \frac{k}{n} \leq \frac{\sqrt{k} + 1}{n} \leq \frac{\sqrt{j - 2} + 1}{n} \leq \frac{1}{\sqrt{n}} \cdot \frac{\sqrt{j - 2} + 1}{\sqrt{n}} \leq 2\frac{\sqrt{x}}{\sqrt{n}}.$$
taking into account that \(\sqrt{\frac{k+1}{n}} \leq 2 \sqrt{\frac{k}{n}} \leq 2 \sqrt{\frac{k}{n}}. \)

Subcase b). Suppose now that \(k + \sqrt{k} \leq j. \) Let \(\tilde{k} \in \{0, 1, ...\} \) be the minimum value such that \(\tilde{k} + \sqrt{k} > j. \) Then \(k_2 = \tilde{k} - 1 \) satisfies \(k_2 + \sqrt{k_2} \leq j \) and

\[
M_{k_2,n,j}(x) = m_{k_2,n,j}(x)(x - \frac{\tilde{k} - 1}{n}) \leq \frac{j + 1 - \tilde{k} - 1}{n} \leq \frac{\sqrt{k + 1} + 1}{n} = \frac{\sqrt{k + 2}}{n} \leq 4 \frac{\sqrt{\frac{k}{n}}}{\sqrt{n}}.
\]

For the last inequality we used the obvious relationship \(\tilde{k} - 1 = k_2 \leq k_2 + \sqrt{k_2} \leq j, \) which implies \(\tilde{k} \leq j + 1 \) and \(\sqrt{k + 2} \leq \sqrt{j + 1 + 2} \leq 4 \sqrt{\frac{j}{n}}. \) Also, because \(j \geq 1 \) it is immediate that \(k_2 \leq j - 1. \)

By Lemma 3.2, (ii) it follows that \(M_{k_2,n,j}(x) \geq M_{k_2-1,n,j}(x) \geq ... \geq M_{0,n,j}(x). \)

We thus obtain \(M_{k,n,j}(x) \leq 4 \frac{\sqrt{\frac{k}{n}}}{\sqrt{n}} \) for any \(k \leq j - 1 \) and \(x \in \left[\frac{j}{n}, \frac{j+1}{n} \right]. \)

Collecting all the above estimates we get (2), which completes the proof. □

Remark. It is clear that on each compact subinterval \([0, a]\), with arbitrary \(a > 0, \) the order of approximation in Theorem 4.1 is \(O(1/\sqrt{n}). \) In what follows, we will prove that this order cannot be improved. In this sense, first we observe that

\[
M_{k,n,j}(x) = (nx)^{k-j} \frac{j!}{k!} \left| \frac{k}{n} - x \right| = (nx)^{k-j} \frac{1}{(j+1)(j+2)...k} \left| \frac{k}{n} - x \right|
\]

for any \(k > j. \)

Now, for \(n \in \mathbb{N} \) and \(a > 0, \) let us denote \(j_n = [na], k_n = [na] + [\sqrt{n}], x_n = \frac{[na]}{n}. \) Then

\[
M_{k_n,n,j_n}(x_n) \geq \left(\frac{[na]}{[na] + [\sqrt{n}]} \right)^{\sqrt{n}} \frac{\sqrt{n}}{n} \geq \left(\frac{na - 1}{na + \sqrt{n}} \right)^{\sqrt{n}} \frac{\sqrt{n}}{n} - 1
\]

for any \(n \geq \max\{4, 1/a\}. \) Because \(\lim_{n \to \infty} \left(\frac{na - 1}{na + \sqrt{n}} \right)^{\sqrt{n}} = e^{-1/a} \) it follows that there exists \(n_0 \in \mathbb{N}, \) \(n_0 \geq \max\{4, 1/a\}, \) such that

\[
\left(\frac{na - 1}{na + \sqrt{n}} \right)^{\sqrt{n}} \geq e^{-1-1/a},
\]

for any \(n \geq n_0. \) Then we get

\[
M_{k_n,n,j_n}(x_n) \geq \frac{1}{2} e^{-1-1/a} \frac{1}{\sqrt{n}}.
\]
Since \(x_n \leq a \) and \(\lim_{n \to \infty} x_n = a \), we get \(x_n \in [0, a] \) for any \(n \in \mathbb{N} \), and combining that with the relationship (2) in the proof of Theorem 4.1, it easily implies that \(\frac{1}{\sqrt{n}} \), the order of \(\max_{x \in [0, a]} \{ E_n(x) \} \), cannot be made smaller. Finally, this implies that the order of approximation \(\omega_1(f; 1/\sqrt{n}) \) on \([0, a]\) obtained by the statement of Theorem 4.1, cannot be improved.

In what follows we will prove that for some subclasses of functions \(f \), the order of approximation \(\omega_1(f; \sqrt{x}/\sqrt{n}) \) in Theorem 4.1 can essentially be improved to \(\omega_1(f; 1/n) \).

For this purpose, for any \(k, j \in \{0, 1, \ldots, \} \), let us define the functions \(f_{k,n,j} : [\frac{j}{n}, \frac{j+1}{n}] \to \mathbb{R} \),

\[
f_{k,n,j}(x) = m_{k,n,j}(x)f\left(\frac{k}{n}\right) = \frac{s_{n,k}(x)}{s_{n,j}(x)}f\left(\frac{k}{n}\right) = \frac{j!}{k!} \cdot (nx)^{k-j} f\left(\frac{k}{n}\right).
\]

Then it is clear that for any \(j \in \{0, 1, \ldots, \} \) and \(x \in [\frac{j}{n}, \frac{j+1}{n}] \) we can write

\[
F_n^{(M)}(f)(x) = \bigvee_{k=0}^{\infty} f_{k,n,j}(x).
\]

Also, we need the following auxiliary lemmas.

Lemma 4.2. Let \(f : [0, \infty) \to [0, \infty) \) be bounded and such that

\[
F_n^{(M)}(f)(x) = \max\{f_{j,n,j}(x), f_{j+1,n,j}(x)\} \quad \text{for all } x \in [j/n, (j+1)/n].
\]

Then

\[
\left| F_n^{(M)}(f)(x) - f(x) \right| \leq \omega_1\left(f; \frac{1}{n}\right), \quad \text{for all } x \in [j/n, (j+1)/n],
\]

where \(\omega_1(f; \delta) = \max\{|f(x) - f(y)|; x, y \in [0, \infty), |x - y| \leq \delta\} < \infty. \)

Proof. We distinguish two cases:

Case (i). Let \(x \in [j/n, (j+1)/n] \) be fixed such that \(F_n^{(M)}(f)(x) = f_{j,n,j}(x) \). Because by simple calculation we have \(0 \leq x - \frac{k}{n} \leq \frac{1}{n} \) and \(f_{j,n,j}(x) = f\left(\frac{j}{n}\right) \), it follows that

\[
\left| F_n^{(M)}(f)(x) - f(x) \right| \leq \omega_1\left(f; \frac{1}{n}\right).
\]

Case (ii). Let \(x \in [j/n, (j+1)/n] \) be such that \(F_n^{(M)}(f)(x) = f_{j+1,n,j}(x) \). We have two subcases:

(\(ii_a\)) \(F_n^{(M)}(f)(x) \leq f(x) \), when evidently \(f_{j,n,j}(x) \leq f_{j+1,n,j}(x) \leq f(x) \) and we immediately get

\[
\left| F_n^{(M)}(f)(x) - f(x) \right| = \left| f_{j+1,n,j}(x) - f(x) \right|
\]

\[
= f(x) - f_{j+1,n,j}(x) \leq f(x) - f(j/n) \leq \omega_1\left(f; \frac{1}{n}\right).
\]

(iii_b) \(F_n^{(M)}(f)(x) > f(x) \), when

\[
\left| F_n^{(M)}(f)(x) - f(x) \right| = f_{j+1,n,j}(x) - f(x) = m_{j+1,n,j}(x)f\left(\frac{j+1}{n}\right) - f(x)
\]
$f\left(\frac{j+1}{n}\right) - f(x)$.

Because $0 \leq \frac{j+1}{n} - x \leq \frac{1}{n}$ it follows $f\left(\frac{j+1}{n}\right) - f(x) \leq \omega_1 \left(f; \frac{1}{n}\right)$, which proves the lemma.

Lemma 4.3. If the function $f : [0, \infty) \rightarrow [0, \infty)$ is concave, then the function $g : (0, \infty) \rightarrow (0, \infty)$, $g(x) = \frac{f(x)}{x}$ is nonincreasing.

Proof. Let $x, y \in (0, \infty)$ be with $x \leq y$. Then

$$f(x) = f\left(\frac{x}{y} + \frac{y-x}{y}0\right) \geq \frac{x}{y}f(y) + \frac{y-x}{y}f(0) \geq \frac{x}{y}f(y),$$

which implies $\frac{f(x)}{x} \geq \frac{f(y)}{y}$. □

Corollary 4.4. If $f : [0, \infty) \rightarrow [0, \infty)$ is bounded, nondecreasing and such that the function $g : (0, \infty) \rightarrow (0, \infty)$, $g(x) = \frac{f(x)}{x}$ is nonincreasing, then

$$|F_n^{(M)}(f)(x) - f(x)| \leq \omega_1 \left(f; \frac{1}{n}\right), \text{ for all } x \in [0, \infty).$$

Proof. Since f is nondecreasing it follows (see the proof of Theorem 5.4 in the next section)

$$F_n^{(M)}(f)(x) = \bigvee_{k \geq j} f_{k,n,j}(x), \text{ for all } x \in [j/n, (j+1)/n].$$

Let $x \in [0, \infty)$ and $j \in \{0, 1, \ldots\}$ such that $x \in \left[\frac{j}{n}, \frac{j+1}{n}\right]$. Let $k \in \{0, 1, \ldots, n\}$ be with $k \geq j$. Then

$$f_{k+1,n,j}(x) = \frac{j!}{(k+1)!}(nx)^{k+1-j}f\left(\frac{k+1}{n}\right) = \frac{(nx)^j}{(k+1)!}(nx)^{k-j}f\left(\frac{k+1}{n}\right).$$

Since $g(x)$ is nonincreasing we get $\frac{f(k+1)}{x} \leq \frac{f(k)}{x}$ that is $f\left(\frac{k+1}{n}\right) \leq \frac{k+1}{k}f\left(\frac{k}{n}\right)$. From $x \leq \frac{j+1}{n}$ it follows

$$f_{k+1,n,j}(x) \leq \frac{(j+1)!}{(k+1)!}(nx)^{k-j} \cdot \frac{k+1}{k}f\left(\frac{k}{n}\right) = f_{k,n,j}(x)\frac{j+1}{k}.$$

It is immediate that for $k \geq j+1$ we have $f_{k,n,j}(x) \geq f_{k+1,n,j}(x)$. Thus we obtain

$$f_{j+1,n,j}(x) \geq f_{j+2,n,j}(x) \geq \cdots \geq f_{n,n,j}(x) \geq \cdots$$

that is

$$F_n^{(M)}(f)(x) = \max\{f_{j,n,j}(x), f_{j+1,n,j}(x)\}, \text{ for all } x \in [j/n, (j+1)/n],$$

and from Lemma 4.2 we obtain

$$\left|F_n^{(M)}(f)(x) - f(x)\right| \leq \omega_1 \left(f; \frac{1}{n}\right).$$
Corollary 4.5. Let \(f : [0, \infty) \to [0, \infty) \) be a bounded, nondecreasing concave function. Then

\[
\left| F_n^{(M)}(f)(x) - f(x) \right| \leq \omega_1 \left(f; \frac{1}{n} \right), \quad \text{for all } x \in [0, \infty).
\]

Proof. The proof is immediate by Lemma 4.3 and Corollary 4.4.

Remarks. 1) If we suppose, for example, that in addition to the hypothesis in Corollary 4.5, \(f : [0, \infty) \to [0, \infty) \) is a Lipschitz function, that is there exists \(M > 0 \) such that \(|f(x) - f(y)| \leq M|x - y| \), for all \(x, y \in [0, \infty) \), then it follows that the order of uniform approximation on \([0, \infty)\) by \(F_n^{(M)}(f)(x) \) is \(\frac{1}{n} \), which is essentially better than the order \(\frac{1}{\sqrt{n}} \) obtained from Theorem 4.1 on each compact subinterval \([0, a]\) for \(f \) Lipschitz function on \([0, \infty)\).

2) It is known that for the linear Favard-Szász-Mirakjan operator given by

\[
F_n(f)(x) = e^{-nx} \sum_{k=0}^{\infty} \frac{(nx)^k}{k!} f(k/n),
\]

the best possible uniform approximation result is given by the equivalence (see [10]),

\[
\|F_n(f) - f\| \sim \omega_2^\varphi(f; 1/\sqrt{n}),
\]

where \(\|f\| = \sup\{|f(x)|; x \in [0, \infty)\} \) and \(\omega_2^\varphi(f; \delta) \) is the Ditzian-Totik second order modulus of smoothness on \([0, \infty)\) given by

\[
\omega_2^\varphi(f; \delta) = \sup \{ \sup\{|f(x + h\varphi(x)) - 2f(x) + f(x - h\varphi(x))|; x \in [h^2, \infty)\}; h \in [0, \delta]\},
\]

with \(\varphi(x) = \sqrt{x}, \ \delta \leq 1 \).

Now, if \(f \) is, for example, a nondecreasing concave polygonal line on \([0, \infty)\), constant on an interval \([a, \infty)\), then by simple reasonings we get that \(\omega_2^\varphi(f; \delta) \sim \delta \) for \(\delta \leq 1 \), which shows that the order of approximation obtained in this case by the linear Favard-Szász-Mirakjan operator is exactly \(\frac{1}{\sqrt{n}} \). On the other hand, since such of function \(f \) obviously is a Lipschitz function on \([0, \infty)\) (as having bounded all the derivative numbers) by Corollary 4.5 we get that the order of approximation by the max-product Favard-Szász-Mirakjan operator is less than \(\frac{1}{n} \), which is essentially better than \(\frac{1}{\sqrt{n}} \). In a similar manner, by Corollary 4.4 we can produce many subclasses of functions for which the order of approximation given by the max-product Favard-Szász-Mirakjan operator is essentially better than the order of approximation given by the linear Favard-Szász-Mirakjan operator. Intuitively, the max-product Favard-Szász-Mirakjan operator has better approximation properties than its linear counterpart, for non-differentiable functions in a finite number of points (with the graphs having some “corners”), as for example for functions defined as a maximum of a finite number of continuous functions on \([0, \infty)\).

3) Since it is clear that a bounded nonincreasing concave function on \([0, \infty)\) necessarily one reduces to a constant function, the approximation of such functions is not of interest.
5 Shape Preserving Properties

In this section we will present some shape preserving properties. First we have the following simple result.

Lemma 5.1. For any arbitrary bounded function \(f : [0, \infty) \to \mathbb{R}_+ \), the max-product operator \(F_n^{(M)}(f)(x) \) is positive, bounded, continuous on \([0, \infty)\) and satisfies \(F_n^{(M)}(f)(0) = f(0) \).

Proof. The positivity of \(F_n^{(M)}(f)(x) \) is immediate. Also, if \(f(x) \leq K \) for all \(x \in [0, \infty) \) it is immediate that \(F_n^{(M)}(f)(x) \leq K \), for all \(x \in [0, \infty) \).

From Lemma 3.3, taking into account that \(s_{n,j}((j+1)/n) = s_{n,j+1}((j+1)/n) \), we immediately obtain that the denominator is a continuous function on \([0, \infty)\). Also, since \(s_{n,k}(x) > 0 \) for all \(x \in (0, \infty) \), \(n \in \mathbb{N} \), \(k \in \{0, 1, ..., \} \), it follows that the denominator \(\bigvee_{k=0}^{\infty} s_{n,k}(x) > 0 \) for all \(x \in (0, \infty) \) and \(n \in \mathbb{N} \).

To prove the continuity on \([0, \infty)\) of the numerator, let us denote \(h(x) = \bigvee_{k=0}^{\infty} s_{n,k}(x)f(k/n) \), and for each \(m \in \mathbb{N} \), \(h_m(x) = \bigvee_{k=0}^{m} s_{n,k}(x)f(k/n) \). It is clear that for each \(m \in \mathbb{N} \), the function \(h_m(x) \) is continuous on \([0, \infty)\), as a maximum of finite number of continuous functions. Also, fix \(a > 0 \) arbitrary and consider \(x \in [0, a] \). First, since

\[
0 \leq h(x) = \max \left\{ \bigvee_{k=0}^{m} s_{n,k}(x)f(k/n), \bigvee_{k=m+1}^{\infty} s_{n,k}(x)f(k/n) \right\} \\
\leq \bigvee_{k=0}^{m} s_{n,k}(x)f(k/n) + \bigvee_{k=m+1}^{\infty} s_{n,k}(x)f(k/n),
\]

it follows that for all \(m \in \mathbb{N} \) we have

\[
0 \leq h(x) - h_m(x) \leq \bigvee_{k=m+1}^{\infty} s_{n,k}(x)f(k/n) \leq \bigvee_{k=m+1}^{\infty} \frac{(na)^k}{k!} K, \text{ for all } x \in [0, a],
\]

where \(0 \leq f_m(x) \leq K \) for all \(x \in [0, \infty) \).

Now, fix \(\varepsilon > 0 \). Since \(s_{n,k+1}(a) = s_{n,k}(a) \) there exists an index \(k_0 > 0 \) (independent of \(x \)), such that \(\frac{na}{k+1} < \varepsilon, \) for all \(k \geq k_0 \). Choose now \(m = k_0 \). It is immediate that

\[
\bigvee_{k=m+1}^{\infty} \frac{(na)^k}{k!} K < \varepsilon \cdot \frac{K(na)^{k_0}}{k_0!}, \text{ which implies that}
\]

\[
0 \leq h(x) - h_m(x) < \varepsilon \cdot \frac{K(na)^{k_0}}{k_0!}, \text{ for all } x \in [0, a] \text{ and } m \geq k_0.
\]

This implies that the numerator \(h(x) \) is the uniform limit (as \(m \to \infty \)) of a sequence of continuous functions on \([0, a]\), \(h_m(x), m \in \mathbb{N} \), which implies the continuity of \(h(x) \) on \([0, a]\). Because \(a > 0 \) was chosen arbitrary, it follows the continuity of \(h(x) \) on \([0, \infty)\).
As a first conclusion, we get the continuity of $F_n^{(M)}(f)(x)$ on $(0, \infty)$.

To prove now the continuity of $F_n^{(M)}(f)(x)$ at $x = 0$, we observe that $s_{n,k}(0) = 0$ for all $k \in \{1, 2, \ldots \}$ and $s_{n,k}(0) = 1$ for $k = 0$, which implies that $\bigvee_{k=0}^{\infty} s_{n,k}(x) = 1$ if $x = 0$. Thus the fact that $F_n^{(M)}(f)(x)$ coincides with $f(x)$ at $x = 0$ immediately follows from the above considerations, proving the theorem.

Remark. Note that because of the continuity of $F_n^{(M)}(f)(x)$ on $[0, \infty)$, it suffices to prove the shape properties of $F_n^{(M)}(f)(x)$ on $(0, \infty)$ only. As a consequence, in the notations and proofs below we always may suppose that $x > 0$.

As in Section 4, for any $k, j \in \{0, 1, \ldots \}$, let us consider the functions $f_{k,n,j} : [\frac{j}{n}, \frac{j+1}{n}] \to \mathbb{R}$,

$$f_{k,n,j}(x) = m_{k,n,j}(x)f\left(\frac{k}{n}\right) = \frac{s_{n,k}(x)}{s_{n,j}(x)} f\left(\frac{k}{n}\right) = \frac{j!}{k!} \cdot (nx)^{k-j} f\left(\frac{k}{n}\right).$$

For any $j \in \{0, 1, \ldots \}$ and $x \in [\frac{j}{n}, \frac{j+1}{n}]$ we can write

$$F_n^{(M)}(f)(x) = \bigvee_{k=0}^{\infty} f_{k,n,j}(x).$$

Lemma 5.2. If $f : [0, \infty) \to \mathbb{R}_+$ is a nondecreasing function then for any $k, j \in \{0, 1, \ldots \}$ with $k \leq j$ and $x \in [\frac{j}{n}, \frac{j+1}{n}]$ we have $f_{k,n,j}(x) \geq f_{k-1,n,j}(x)$.

Proof. Because $k \leq j$, by the proof of Lemma 3.1, case 2), it follows that $m_{k,n,j}(x) \geq m_{k-1,n,j}(x)$. From the monotonicity of f we get $f\left(\frac{k}{n}\right) \geq f\left(\frac{k-1}{n}\right)$. Thus we obtain

$$m_{k,n,j}(x)f\left(\frac{k}{n}\right) \geq m_{k-1,n,j}(x)f\left(\frac{k-1}{n}\right),$$

which proves the lemma.

Corollary 5.3. If $f : [0, \infty) \to \mathbb{R}_+$ is nonincreasing then $f_{k,n,j}(x) \geq f_{k+1,n,j}(x)$ for any $k, j \in \{0, 1, \ldots \}$ with $k \geq j$ and $x \in [\frac{j}{n}, \frac{j+1}{n}]$.

Proof. Because $k \geq j$, by the proof of Lemma 3.1, case 1), it follows that $m_{k,n,j}(x) \geq m_{k+1,n,j}(x)$. From the monotonicity of f we get $f\left(\frac{k}{n}\right) \geq f\left(\frac{k+1}{n}\right)$. Thus we obtain

$$m_{k,n,j}(x)f\left(\frac{k}{n}\right) \geq m_{k+1,n,j}(x)f\left(\frac{k+1}{n}\right),$$

which proves the corollary.

Theorem 5.4. If $f : [0, \infty) \to \mathbb{R}_+$ is nondecreasing and bounded on $[0, \infty)$ then $F_n^{(M)}(f)$ is nondecreasing (and bounded).

Proof. Because $F_n^{(M)}(f)$ is continuous (and bounded) on $[0, \infty)$, it suffices to prove that on each subinterval of the form $[\frac{j}{n}, \frac{j+1}{n}]$, with $j \in \{0, 1, \ldots \}$, $F_n^{(M)}(f)$ is nondecreasing.
So let \(j \in \{0, 1, \ldots \} \) and \(x \in \left[\frac{j}{n}, \frac{j+1}{n}\right] \). Because \(f \) is nondecreasing, from Lemma 5.2 it follows that
\[
f_{j,n,j}(x) \geq f_{j-1,n,j}(x) \geq f_{j-2,n,j}(x) \geq \ldots \geq f_{0,n,j}(x).
\]
But then it is immediate that
\[
F_n^{(M)}(f)(x) = \bigvee_{k \geq j} f_{k,n,j}(x),
\]
for all \(x \in \left[\frac{j}{n}, \frac{j+1}{n}\right] \). Clearly that for \(k \geq j \) the function \(f_{k,n,j} \) is nondecreasing and since \(F_n^{(M)}(f) \) is defined as supremum of nondecreasing functions, it follows that it is nondecreasing. \(\square \)

Corollary 5.5. If \(f : [0, \infty) \to \mathbb{R}_+ \) is nonincreasing then \(F_n^{(M)}(f) \) is nonincreasing.

Proof. By hypothesis, \(f \) implicitly is bounded on \([0, \infty)\). Because \(F_n^{(M)}(f) \) is continuous and bounded on \([0, \infty)\), it suffices to prove that on each subinterval of the form \([\frac{j}{n}, \frac{j+1}{n}]\), with \(j \in \{0, 1, \ldots \} \), \(F_n^{(M)}(f) \) is nonincreasing.

So let \(j \in \{0, 1, \ldots \} \) and \(x \in \left[\frac{j}{n}, \frac{j+1}{n}\right] \). Because \(f \) is nonincreasing, from Corollary 5.3 it follows that
\[
f_{j,n,j}(x) \geq f_{j+1,n,j}(x) \geq f_{j+2,n,j}(x) \geq \ldots
\]
But then it is immediate that
\[
F_n^{(M)}(f)(x) = \bigvee_{k \geq 0} f_{k,n,j}(x),
\]
for all \(x \in \left[\frac{j}{n}, \frac{j+1}{n}\right] \). Clearly that for \(k \leq j \) the function \(f_{k,n,j} \) is nonincreasing and since \(F_n^{(M)}(f) \) is defined as the maximum of nonincreasing functions, it follows that it is nonincreasing. \(\square \)

In what follows, let us consider the following concept generalizing the monotonicity and convexity.

Definition 5.6. Let \(f : [0, \infty) \to \mathbb{R} \) be continuous on \([0, \infty)\). One says that \(f \) is quasi-convex on \([0, \infty)\) if it satisfies the inequality
\[
f(\lambda x + (1 - \lambda)y) \leq \max\{f(x), f(y)\}, \text{ for all } x, y \in [0, \infty) \text{ and } \lambda \in [0, 1].
\]
(see e.g. the book [8], p. 4, (iv)).

Remark. By [9], the continuous function \(f \) is quasi-convex on the bounded interval \([0, a]\), equivalently means that there exists a point \(c \in [0, a] \) such that \(f \) is nonincreasing on \([0, c]\) and nondecreasing on \([c, a]\). But this property easily can be extended to continuous quasiconvex functions on \([0, \infty)\), in the sense that there exists \(c \in [0, \infty) \) (\(c = \infty \) by convention for nonincreasing functions on \([0, \infty)\)) such that \(f \) is nonincreasing on \([0, c]\) and nondecreasing on \([c, \infty)\). This easily follows
from the fact that the quasiconvexity of \(f \) on \([0, \infty)\) means the quasiconvexity of \(f \) on any bounded interval \([0, a]\), with arbitrary large \(a > 0\).

The class of quasi-convex functions includes the both classes of nondecreasing functions and of nonincreasing functions (obtained from the class of quasi-convex functions by taking \(c = 0 \) and \(c = \infty \), respectively). Also, it obviously includes the class of convex functions on \([0, \infty)\).

Corollary 5.7. If \(f : [0, \infty) \to \mathbb{R}_+ \) is continuous, bounded and quasi-convex on \([0, \infty)\) then for all \(n \in \mathbb{N} \), \(F_n^{(M)}(f) \) is quasi-convex on \([0, \infty)\).

Proof. If \(f \) is nonincreasing (or nondecreasing) on \([0, \infty)\) (that is the point \(c = \infty \) (or \(c = 0 \)) in the above Remark) then by the Corollary 5.5 (or Theorem 5.4, respectively) it follows that for all \(n \in \mathbb{N} \), \(F_n^{(M)}(f) \) is nonincreasing (or nondecreasing) on \([0, \infty)\).

Suppose now that there exists \(c \in (0, \infty) \), such that \(f \) is nonincreasing on \([0, c]\) and nondecreasing on \([c, \infty)\). Define the functions \(F, G : [0, \infty) \to \mathbb{R}_+ \) by \(F(x) = f(x) \) for all \(x \in [0, c]\), \(F(x) = f(c) \) for all \(x \in [c, \infty) \) and \(G(x) = f(c) \) for all \(x \in [0, c] \), \(G(x) = f(x) \) for all \(x \in [c, \infty) \).

It is clear that \(F \) is nonincreasing and continuous on \([0, \infty)\), \(G \) is nondecreasing and continuous on \([0, \infty)\) and that \(f(x) = \max\{F(x), G(x)\} \), for all \(x \in [0, \infty) \).

But it is easy to show (see also Remark 1 after the proof of Lemma 2.1) that
\[
F_n^{(M)}(f)(x) = \max\{F_n^{(M)}(F)(x), F_n^{(M)}(G)(x)\}, \text{ for all } x \in [0, \infty),
\]
where by the Corollary 5.5 and Theorem 5.4 , \(F_n^{(M)}(F)(x) \) is nonincreasing and continuous on \([0, \infty)\) and \(F_n^{(M)}(G)(x) \) is nondecreasing and continuous on \([0, \infty)\).

We have two cases: 1) \(F_n^{(M)}(F)(x) \) and \(F_n^{(M)}(G)(x) \) do not intersect each other ; 2) \(F_n^{(M)}(F)(x) \) and \(F_n^{(M)}(G)(x) \) intersect each other.\footnote{This is clear that \(F_n^{(M)}(f)(x) \) is quasi-convex on \([0, \infty)\).

Case 1. We have \(\max\{F_n^{(M)}(F)(x), F_n^{(M)}(G)(x)\} = F_n^{(M)}(f)(x) \) for all \(x \in [0, \infty) \) or \(\max\{F_n^{(M)}(F)(x), F_n^{(M)}(G)(x)\} = F_n^{(M)}(f)(x) \) for all \(x \in [0, \infty) \), which obviously proves that \(F_n^{(M)}(f)(x) \) is quasi-convex on \([0, \infty)\).

Case 2. In this case it is clear that there exists a point \(c' \in [0, \infty) \) such that \(F_n^{(M)}(f)(x) \) is nonincreasing on \([0, c']\) and nondecreasing on \([c', \infty)\), which by the considerations in the above Remark implies that \(F_n^{(M)}(f)(x) \) is quasiconvex on \([0, \infty)\) and proves the corollary.\footnote{It is of interest to exactly calculate \(F_n^{(M)}(f)(x) = e_0(x) = 1 \) and for \(e_1(x) = x \). In this sense we can state the following.}

Lemma 5.8. For all \(x \in [0, \infty) \) and \(n \in \mathbb{N} \) we have \(F_n^{(M)}(e_0)(x) = 1 \) and \(F_n^{(M)}(e_1)(x) = x \).

Proof. The formula \(F_n(e_0)(x) = 1 \) is immediate by the definition of \(F_n^{(M)}(f)(x) \). To find the formula for \(F_n^{(M)}(e_1)(x) \), we observe that
\[
\lim_{k \to \infty} s_{n,k}(x) = \lim_{k \to \infty} s_{n,k}(x) = x \cdot \lim_{k \to \infty} s_{n,k-1}(x) = x \lim_{j \to \infty} s_{n,j}(x),
\]
which implies
\[F_n^{(M)}(e_1)(x) = x \cdot \frac{\sum_{j=0}^{\infty} s_{n,j}(x)}{\sum_{k=0}^{\infty} s_{n,k}(x)} = x. \]

Also, we can prove the interesting property that for any arbitrary function \(f \), the max-product Bernstein operator \(F_n^{(M)}(f) \) is piecewise convex on \([0, \infty)\). In this sense the following result holds.

Theorem 5.9. For any function \(f : [0, \infty) \to [0, \infty) \), \(F_n^{(M)}(f) \) is convex on any interval of the form \([\frac{j}{n}, \frac{j+1}{n}]\), \(j = 0, 1, \ldots \).

Proof. For any \(k, j \in \{0, 1, \ldots \} \) let us consider the functions \(f_{k,n,j} : [\frac{j}{n}, \frac{j+1}{n}] \to \mathbb{R} \),
\[f_{k,n,j}(x) = m_{k,n,j}(x)f(\frac{k}{n}) = \frac{j!(nx)^{k-j}}{k!}f(\frac{k}{n}). \]
Clearly we have
\[F_n^{(M)}(f)(x) = \sup_{k=0}^{\infty} f_{k,n,j}(x), \]
for any \(j \in \{0, 1, \ldots \} \) and \(x \in [\frac{j}{n}, \frac{j+1}{n}] \).

We will prove that for any fixed \(j \), each function \(f_{k,n,j}(x) \) is convex on \([\frac{j}{n}, \frac{j+1}{n}]\), which will imply that \(F_n^{(M)}(f) \) can be written as a supremum of some convex functions on \([\frac{j}{n}, \frac{j+1}{n}]\).

Since \(f \geq 0 \) and \(f_{k,n,j}(x) = \frac{j!(nx)^{k-j}}{k!} \cdot x^{k-j} \cdot f(k/n) \), it suffices to prove that the functions \(g_{k,j} : [0, 1] \to \mathbb{R}_+ \), \(g_{k,j}(x) = x^{k-j} \) are convex on \([\frac{j}{n}, \frac{j+1}{n}]\).

For \(k = j \), \(g_{j,j} \) is constant so is convex.

For \(k = j + 1 \) we get \(g_{j+1,j}(x) = x \) for any \(x \in [\frac{j}{n}, \frac{j+1}{n}] \), which obviously is convex.

For \(k = j - 1 \) it follows \(g_{j-1,j}(x) = \frac{1}{x} \) for any \(x \in [\frac{j}{n}, \frac{j+1}{n}] \). Then \(g_{j-1,j}(x) = \frac{2}{x^2} > 0 \) for any \(x \in [\frac{j}{n}, \frac{j+1}{n}] \).

If \(k \geq j + 2 \) then \(g''_{k,j}(x) = (k-j)(k-j-1)x^{k-j-2} > 0 \) for any \(x \in [\frac{j}{n}, \frac{j+1}{n}] \).

If \(k \leq j - 2 \) then \(g''_{k,j}(x) = (k-j)(k-j-1)x^{k-j-2} > 0 \) for any \(x \in [\frac{j}{n}, \frac{j+1}{n}] \).

Since all the functions \(g_{k,j} \) are convex on \([\frac{j}{n}, \frac{j+1}{n}]\), we get that \(F_n^{(M)}(f) \) is convex on \([\frac{j}{n}, \frac{j+1}{n}]\) as maximum of these functions, proving the theorem. □

References

Addresses:

Barnabás Bede
Department of Mathematics, The University of Texas-Pan American, 1201 West University, Edinburg, Tx, 78539, USA
E-mail: bedeb@utpa.edu

Lucian Coroianu and Sorin G. Gal:
Department of Mathematics and Computer Science, University of Oradea, Str. Universitatii No. 1, 410087 Oradea, Romania
E-mails: lcoroianu@uoradea.ro and galso@uoradea.ro