Faculty of Sciences and Mathematics, University of Nis, Serbia

Available at: http://www.pmf.ni.ac.rs/filomat

Filomat 25:1 (2011), 133-143 DOI: 10.2298/FIL1101133A

A CHARACTERIZATION THEOREM FOR LEVELWISE
STATISTICAL CONVERGENCE
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Abstract

In the present paper, we prove a characterization theorem which gives
a necessary and sufficient condition for a sequence of fuzzy numbers to be
levelwise statistically convergent in the space of fuzzy numbers. As an appli-
cation of this theorem we utilize the idea of statistical equi-continuity in order
to obtain a condition which guarantees the set of levelwise statistical cluster
points of a statistically bounded sequence to be nonempty and a levelwise
statistically Cauchy sequence to be levelwise statistically convergent.

1 Introduction

Several types of convergence in the space of fuzzy numbers have been introduced
so far (see [8, 15, 18, 24]). Among these types, the ones using different metrics on
fuzzy number spaces (see [8, 15, 18]), levelwise convergence, levelwise convergence
almost everywhere on [0,1] (see [16, 21, 24]) and the statistical convergence (see
[1,2,3,4,5,17, 19, 22]) are well known. Fang and Huang [9] have recently presented
a necessary and sufficient condition for a sequence of fuzzy numbers to be levelwise
convergent and established certain fundamental theorems in a fuzzy number space;
e.g. the levelwise monotone convergence theorem, the nested intervals theorem and
the Cauchy criterion for levelwise convergence.

In [6], we introduced the statistical analogue of the notion of levelwise conver-
gence, and investigated the relations between levelwise statistical convergence of a
sequence of fuzzy numbers and pointwise statistical convergence of the sequence of
corresponding a—cuts. In [7], we introduced the concepts of levelwise statistical
limit and levelwise statistical cluster points of a sequence of fuzzy numbers, and
examined the relations between the sets of ordinary limit points, levelwise limit
points, levelwise statistical limit points, statistical limit points, levelwise statistical
cluster points and statistical cluster points of a sequence of fuzzy numbers. Finally,
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as an example we have shown that Bolzano-Weierstrass Theorem is not valid in the
setting of levelwise statistical convergence.

In this work we introduce the notions of statistical equi-left and right-continuity
of a sequence of functions, and present a necessary and sufficient condition which
guarantees that given a sequence {X,} of fuzzy numbers satisfying st — lim X, =
f(e) and st —lim X, = g(a) for each « € [0,1], the pair of functions [f(a), g(c)]
determine a fuzzy number. To prove the above assertion we utilize the techniques
used in Lemma 4.1 and Theorem 4.1 of [9]. In the third section we apply the notion
of statistical equi-continuity of a sequence of functions in order to obtain a condi-
tion which guarantees the set of levelwise statistical cluster points of a statistically
bounded sequence to be non-empty and a levelwise statistically Cauchy sequence
to be levelwise statistically convergent.

2 Preliminaries, Background and Notations

Statistical convergence ([10, 20]) is a generalization of the usual notion of conver-
gence that parallels the theory of ordinary convergence, and is defined in terms of
the natural density of a set of positive integers.

If K is a subset of the set of all positive integers N, let us denote the set
{k € K : k <n} as K. The natural density of K is defined by §(K) := nler;olK—nl,
where |K,| denotes the number of elements in K,,. The upper density of the set K
is defined by 8(K) := limsup £zl (see [11]).

n
n—oo

A sequence (x,) of (real or complex) numbers is said to be statistically conver-
gent to some number [ if for each € > 0 the set {n € N: |z, — | > ¢} has natural
density zero; in this case we write st — limz,, :=1 (see [12]).

n

If (z,,(;)) is a subsequence of (z,) and K := {n(j) € N : j € N} then we
abbreviate (x,(;)) by {z}x. If 6(K) = 0, then {z}x is called a subsequence of
density zero or a thin subsequence. We say that {2}k is a non-thin subsequence of
(zy,) if K does not have density zero [13].

A real number « is called a statistical cluster point of a sequence (z,,) of real
numbers provided that for every € > 0

d{neN: |z, —v] <e}) #0.
The set of all statistical cluster points of a sequence (z,,) is denoted by T'; [13].

Theorem 1 ([13]). If (z,) is a sequence of real numbers which has a bounded
nonthin subsequence, then (x,) has a statistical cluster point.

Theorem 2 ([23]). Let (), (yn) and (z,) be sequences of real numbers. If x, <
Yn < zp, for alln € K C N such that 6(K) =1 and st — limx,, = st — limz, =1,
then we have st — limy, =I.

Corollary 1. Let K C N and §(K) # 0. If a < x,, < b for each n € K and
d({ne€ K : |z, —1| <e}) #0, then we have a <1 < b; where a,b € R and a < b.
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Theorem 3 ([23]). Let z,, <y, for alln € K C N, with §(K) = 1. If st — limx,
and st — limy, exist, then st —limz, < st —limy,.

Corollary 2. Let K C N andd (K) # 0. Ifz, <y, foreachn € K, é({n€ K : |z, =] <e}) #
Oandd({ne K : |y, —U'| <e}) #0 thenl <.

Now, we briefly recall some of the basic notions in the theory of fuzzy numbers
and refer readers to [4, 8, 18] for more details.

A fuzzy number is a function X from R to [0, 1], satisfying: X is normal, fuzzy
convex, upper semi-continuous and the closure of {x € R : X(x) > 0}, denoted by
XO is compact. These properties imply that for each a € (0,1], the a—level set

X ={zeR:X(x)>a}= [&a,ya} is a non-empty compact convex subset of
R. We denote the set of all fuzzy numbers by L(R).

Theorem 4 ([14]). Let X € L(R). Then the following are satisfied:

1. X% is a bounded left continuous nondecreasing function on (0, 1];

2. X" is a bounded left continuous nonincreasing function on (0, 1];

3. X and X* are right continuous at a = 0;

4. X' <X

Conversely, if the pair of functions f(a) and g(«) satisfy the conditions (1)-(4),
then there exists a unique X € L(R) such that X* = [f(a), g(«)] for each o € [0,1].

With respect to order-theoretical aspect, there are several possibilities to define
an order relation on the set of fuzzy numbers. As it is customary, we will basically
follow the order relation on L(R) defined by

X<Yiff X*<Y®and X" <Y for any o € [0,1].

The fuzzy numbers X and Y are said to be incomparable if neither X < Y nor
Y < X holds. In this case, we use the notation X ~ Y. We say that X <Y, if
X <Y and there exists an o € [0, 1] such that “X% <Y or X*° < Y.

A sequence {X,,} of fuzzy numbers is said to be statistically bounded from above
if there exists a fuzzy number p such that 6 ({n € N: X, > p} U{n e N: X, oo pu}) =
0. Statistical boundedness from below can be defined similarly. If a sequence {X,,}
is both statistically bounded from above and below, then it is called statistically
bounded. It is easy to see that if a sequence is bounded, it is also statistically
bounded.

Let {X,} be a sequence of fuzzy numbers. Then {X,} is said to be levelwise
convergent to Xy, written as [ — limX,, = Xy, provided that

lim X% =Xo*  and  lim X, =X
for every a € [0,1] (see [9, 16, 24]).

{X,} is said to be levelwise statistically convergent to X, written as

st — liann = X, if for every e > 0 and « € [0,1], the set

{neN:maX{\Xﬁ—XgL)Yz—YE;’}25} (1)
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has natural density zero.
The above condition (1) is equivalent to saying that

st — li}:ﬂ&ﬁ = X7 and st — lirrlnyz =X,
for each o € [0,1].

Since the natural density of a finite set is zero, levelwise convergence implies
levelwise statistical convergence. However, the converse does not hold in general
(see [6]).

{X,} is said to be a levelwise statistically Cauchy sequence if for every € > 0
and « € [0,1] there exists a number N = N (e, a) € N such that the set

{n eN: max{|gg —KQN\,‘Y: —Y;’} > 5}

has natural density zero (see [6]).
A fuzzy number p is called a levelwise statistical cluster point of {X,,} provided

that
} < 5}) £0 (2)

for every € > 0 and « € [0,1]. Condition (2) means that

} < 5}) >0 (see [7]).

We denote the set of all levelwise statistical cluster points of {X,} by I'k..

5({n€N:max{‘X%—Hg XD —mg

—a g
) Xn — Ho

5({71 eN: max{‘&ﬁ —Hf;

3 A Characterization Theorem

The levelwise statistical limit of a sequence {X,} of fuzzy numbers may not exist
even though st —lim X7 and st —lim YZ exist for each « € [0, 1]. In other words, for
a sequence { X, } of fuzzy numbers, the pair of functions st —lim X, and st —lim YZ
may not determine a fuzzy number as can be seen by the following example.

Example 1. Define a sequence {X,,} of fuzzy numbers as

z—=1 i
1+5= , ifzel0,1] } , if n is nonsquare

0 , otherwise
Xn(z) == 0 Jif v € (—oo,n = 1)U (n+1,00)
r—(n-1) Jifz€n—1,n] , otherwise

-4+ (n+1) ,ifze n,n+1]

It is easy to see that st —lim X and st —lim X, exist for each a € [0,1]. However,
the function st —lim X does not correspond to the left endpoint of the a-level set
of the fuzzy number
1 ,dfo<e<1
u(z) = { 0 , otherwise

when a = 1, since we have Hl =0# st — lim&i = 1. Consequently, the sequence
{X,} is not levelwise statistically convergent to the fuzzy number p.
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Now the question arises: Under what conditions do the pair of functions
st — lim X, and st — limyz determine a fuzzy number? We try to give an an-
swer to this question by Theorem 5. First, we define the notions of statistical
equi-left and right-continuity of a sequence of functions.

Definition 1. Let (f,) be a sequence of functions defined on [a,b] and ag € (a,b].
Then (f,) is said to be statistically equi-left continuous (SELC) at ag if for each
€ > 0 there exists €' > 0 such that

6 ({n e N:|fu(a) = fu(ao)| 2 €}) =0
whenever o € (g — €', ).
Statistical equi-right continuity (SERC) at g € [a,b) can be defined similarly.
Theorem 5 (Characterization Theorem). Let {X,} C L(R) and
d({neN: X5 - fla)[=e}) = 0,
5<{n€N: ‘YZ—g(a)‘ Ze}) =0
for each € > 0 and o € [0,1]. Then the pair of functions f(a) and g(«) determine

a fuzzy number iff the sequences of functions (X)) and (YZ) are SELC at each
a € (0,1] and SERC at « = 0.

Proof. (=) Suppose that there exists Xy € L(R) such that
d({neN:|X5—-X5|>e}) = 0 and (3)
6({n€N:‘Y3—Y§‘25}) 0
hold for each £ > 0 and each a € [0,1], where X§ = f(a) and Xy = g(c). Since X

is left continuous at a € (0, 1], we can say that for all € > 0 there exists a; € (0, @)
such that

|6 - x5

<z 4)

for each 3 € (aq,]. Taking 0 < € < o — a1, we get a — € € (e, a¢]. By the fact (3),
we can write

6({n€N:|X$—KS‘|2§}) = 0 and (5)

S

Let us denote K := K{ N K§ where K1 = K;(«,¢) = {n eN: X — X7 > %}
and Ky = Ky(a,e,8) = {neN: ‘gg—g—gg—g > 5}. Since Xy and X are

3
nondecreasing, using (3) and (5) we get

5 ({n eN: ’g:;*g _ X

€

g g =~ =~ £ ~
0 < Xz—g§<§+§;—z§s§+zg—zz—€<zg—5+§+3 X%7(6)
~ € -~ 2¢
Xaff-: 7_X047€ R
<X, +3 X, + 3 €

2¢e

= X§T XIS



138 Salih Aytar

for each 8 € (o — &,a] and each n € K. We also have 6(K) = 1 since §(K;) =
0(K3) = 0 implies §(K¢) = §(K5) = 1. By the relation (6) we can write

<e})=1
)

for each § € (o — €, a]. Hence, the sequence (X)) is SELC at « € (0, 1].
Similarly, it can be proved that (YZ) is SELC at o € (0,1].

Now we show that (X ) is SERC at 0. Since X§ is right continuous at oo = 0,
we can say that for all € > 0 there exists £; > 0 such that

s({nen: |xg - xf

implies

5({n€N:‘X§—K§

\55 - XS\ <:
3
for each 8 € [0,£71). Since X{ is nondecreasing, we have

0§£€—&8<§. (7)

Let us denote € := ‘%1 . Using (3), we get

5({n€N:‘X%—X8‘2§}) = 0 and (8)

25)

Now denote K’ := K§ N K§ where K3 = K3(¢) := {n € N: ‘X?l —XS} > £} and
Ki = Ki(e) i= {neN: ’gi - X
using (7) and (8) we get

0.

5({%1\1;‘5,%—&5

> %} . Since X, and X{ are nondecreasing,

0 < X}-X0<Xi-X0<Xi+--Xj<o+Xi+2-X§ (9)

= 2¢e € 2
= XE—XO e — _— =
0 0+3 <3+3 g

for each 8 € [0,€) and each n € K'. We also have §(K') = 1 since §(K3) = §(Ky) =0
implies 0(K§) = 6(K§) = 1. By the relation (6) we can write

<eb)=1

6({neN:‘§ﬁ—§2‘25}):0

5({neN;‘gZ—gg

which implies that

for each 8 € [0,€). Hence, the sequence (X%) is SERC at a = 0.
Similarly, it can be proved that (YZ) is SERC at a = 0.
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(<) In this part of the proof we show that the conditions of Theorem 4 are
satisfied for the pair of functions f(«) and g(«).

(i) Since the sequences (X9) and (X:) are SELC at each o € (0, 1], then for
any € > 0 there exists € > 0 such that
}) = 0 and

) -

hold for each 3 € («a — €, ). Denote M := K¢ N K§ where Ky = K;5(a, §8,€) :=
{nen: ‘X“ Xi| > e} and Ko = Kola,5.e) = {nGN:‘Xz x|z}
Since X is nondecreasing and X is nonincreasing with respect to «, we have

0 < X3-XP<e and (10)

0 < XV -X0<e

5({neN:‘X%—

5<{n€N:‘XZ

for each 8 € (o — €, and each n € M. Hence we get st —lim Xo = f(a),

n€M n—oo

st —lim X? = f(8), st—lim X, = g(a) and st—hm X g(B) for each

neM, n—oo neM, n—oo eEM, n—oo
a, B € [0,1], since 6(M) = 1. By Theorem 2 and the hnearlty of the statistical limit
operator, we get
0
0

fla) = f(B) <e,
9(B) —gla) <e

for each 8 € (a—&, . Thus the functions f(«) and g(«) are left continuous at each
€ (0,1].
(ii) Since the sequences (X%) and (X
there exists € > 0 such that

5({nEN:‘Xg—X§‘25}) = 0 and

5({n€N:72— }) = 0
hold for each 8 € [0,€). Let us write M’ := K¢ N K§ where K7 = K7(0,¢) :=
{neN ‘XO Xﬁ‘>5} and Kg — Kg(ﬂ, €)= {neN:’XO—Xﬂ

X is nondecreasing and X is nonincreasing with respect to o, we get

IN A

3) are SERC at a = 0, then for any € > 0

. Since

0 < XF-X%<e,
0 < Xo-Xo<e
for each 8 € [0,£), and each n € M’. By Theorem 2, we have

f(8)—f(0) <k,
9(0) —g(B) <e

0
0

IN A
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for each 8 € [0,€) since 6(M') = 1. Hence the functions f(«) and g(«) are right
continuous at a = 0.

(iii) Note that the function X, is nondecreasing for «, that is, we have X, <
X2 whenever a; < aw. By Theorem 3, we get f(a1) < f(az). Hence, the func-
tion f(«) is nondecreasing. Similarly it can be proved that the function g(a) is
nonincreasing.

(iv) Since X, is a fuzzy number, we have

X! <X,
for each n € N. By Theorem 3, we get

f(1) <g(1).

Consequently, the pair of functions f(«) and g(«) determine a fuzzy number by
Theorem 4. 0

4 Applications of Characterization Theorem

In this section, we apply certain conditions similar to those of Theorem 5 to two
results which are valid for sequences of real numbers but not for sequences of fuzzy
numbers. Hence we obtain modifications of these results which are also valid for
sequences of fuzzy numbers as can be seen by Theorems 6 and 7. These conditions
can be applied to some of the other results which are valid for sequences of real
numbers but are non-valid for sequences of fuzzy numbers.

The sequence { X, } considered in Example 1 is statistically bounded but we have
I'Y, = @. Using the same conditions and techniques similar to those of Theorem 5
we can make the set T'y, non-empty for a sequence {X,,} of fuzzy numbers.

Theorem 6. Let {X,} be a statistically bounded sequence of fuzzy numbers and
M be a subset of N such that (M) # 0. Then we have T, # @, if the following
conditions are satisfied:

(i) For each ag € (0,1] and each € > 0 there exists €' > 0 such that

X2 —X¥|<e  and ‘Y;’; ~X <
whenever o € (ag — €', 0] and n € M,
(it) There exists " > 0 such that
—a <0
| X0 —X0|<e and ’Xz—Xn <e

whenever o € [0,¢”) and n € M.

Proof. Since {X,,} is statistically bounded there exists a real number A such that

5({neN;|ﬁ|<Aana \Y,‘j <A}):1 (11)
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for each a € [0,1]. Denote M; := {n eM:|X;| < Aand ‘YZ < A}. Using (11)
and the fact that 6(M) # 0 we get 6(M;) # 0. Thus there exist bounded non-
thin subsequences of (X3) and (YZ) By Theorem 1, the sequences (X) and

(YS) have statistical cluster points f(a) and g(a) for each o € [0,1], respec-
tively. In the proof of Theorem 5, replacing the sets K5, K¢, K7 and Kg by the sets
{nem: ‘ggfgfj e} {nem: ]Yﬁfi >e}, {nem: lggfﬁ >}

and {n € M : ‘YZ — Yﬁ‘ > 5}7 respectively; and the role of Theorems 2 and 3 by

Corollaries 1 and 2 respectively, it can be proved that the pair of functions f(«)
and g(a) determine a fuzzy number. Note that for the same n (€ M), the subse-

quences (X)) and (YZ) have statistical cluster points and are equi-left-continuous

at each a € (0,1] and equi-right-continuous at o = 0. Let us denote X7 := f(«)
and X, := g(a) where X, € L(R).
Now we show that X, € T';. Since we have

S({neM;:|X®— X3 <)) # 0 and
5({neM1:‘XZ—Y§ <5}) £ 0

for each a € [0, 1], we then get

5({n€N:max{‘7§—7§

X - X351} <e}) 0.
Hence by definition of 'y, we have X € T'l. O

As a direct consequence of this theorem we state the following result.

Corollary 3. Under the hypothesis of Theorem 6, the sequence {X,,} has a levelwise
statistically convergent subsequence, i.e. levelwise statistical analogue of the Bolzano
Weierstrass Theorem is valid.

We can also apply Theorem 5 in order to get the levelwise statistical Cauchy
criteria for sequences of fuzzy numbers. It can be easily seen that the sequence
{X,} given in Example 1 is a levelwise statistically Cauchy sequence but it does
not converge levelwise statistically to any fuzzy number. If a levelwise statistically
Cauchy sequence satisfies the condition of Theorem 5, then it converges levelwise
statistically. We state this result as follows.

Theorem 7. Let {X,,} be a sequence of fuzzy numbers. If the sequences of functions
(X2 and (Yz) are SELC at each a € (0,1] and SERC at oo = 0, and the sequence
{X,} is a levelwise statistically Cauchy sequence then the sequence {X,} converges
levelwise statistically.

Proof. Since {X,,} is a levelwise statistically Cauchy sequence, the sequences (X))

and (yz> are statistically Cauchy sequences of real numbers for each o € [0,1].
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Since a statistically Cauchy sequence of real numbers is statistically convergent, we
say that st —lim X% and st —lim X, exist for each o € [0,1]. By Theorem 5, there
exists a fuzzy number Xy such that st — lim X¢ = X§ and st — lim X, = X, for
each « € [0,1]. Therefore the sequence {X,} is levelwise statistically convergent to

the fuzzy number Xj. O
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