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A POSTERIORI BOUNDS OF APPROXIMATE
SOLUTION TO VARIATIONAL AND

QUASI-VARIATIONAL INEQUALITIES

Milojica Jaćimović and Izedin Krnić

Abstract

In this paper we present some bounds of an approximate solution to
variational and quasi-variational inequalities. The measures of errors can
be used for construction of iterative and continuous procedures for solving
variational (quasi-variational) inequalities and formulation of corresponding
stopping rules. We will also present some methods based on linearization for
solving quasi-variational inequalities.

We are concerned with variational inequality: find x∗ ∈ C such that

〈F (x∗), y − x∗〉 ≥ 0, ∀y ∈ C, (1)

where C is a closed convex set in Hilbert space H and F : H 7→ H is an operator of
H. In case F (x) = c ∈ Rn and C = {x ∈ Rn : Ax ≤ b,Bx = d} variational inequal-
ity (1) is a linear programming problem. It is well known that if F (x) = f ′(x) is
potential operator, then (1) can be understood as a necessary condition of optimal-
ity in the problem of minimization of the function f on C. As a consequence this
fact, many methods for solving optimization problems can be adapted for solving
variational inequalities.

We will also consider so called quasi-variational inequality, when C : H 7→ 2H

is a set-valued mapping with nonempty closed and convex values. In this case the
problem can be formulated as it follows:

Find x∗ ∈ C(x∗) such that

〈F (x∗), y − x∗〉 ≥ 0, ∀y ∈ C(x∗), (2)

Let us note that the approximation theory for quasi varational inequalities re-
quires a variational inequality and a fixed point problem should be solved simultane-
ously. Consequently, many techniques for variational inequalities are not convenient
for quasi-variational inequalities [5], [2].
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There are many results that can be considered as the bounds how close is an
arbitrary point to the the set of solution of (1). For example Pang in [6], proposed
three so called projection measures of closeness of an arbitrary vector to the unique
solution of (1) when C is polyhedron, Jianghua and Xiaoguo in [4] proposed some
bounds measuring the distance between any point and the solution set for cocoercive
variational inequalities. Some modifications of the results from [6] were presented
in [3]. In this paper we will present the measures of closeness that include both the
measures from [6] and [3].

1 Gap Functions and Projection Measures

Note that almost all questions and results that are presented in this paper can be
formulated in terms of gap functions.

A function r : C 7→ R is a gap function for (1) if
(i) r(x) ≥ 0, for all x ∈ C;
(ii) (r(x) = 0 if and only if x is a solution of (1)

Using gap function r, inequality (1) can be formulated as an optimization prob-
lem

minimize r(x) on C.

The first example of gap function

r(x) = sup{〈F (x), x− y〉 : y ∈ C}

was proposed by Auslender [1] and it has been extensively studied in various context
(continuity, differentiability, convexity ...). Regularized gap functions for (1) of the
type

r(x) = sup
{
〈F (x), x− y〉 − 1

2
〈y − x,G(y − x)〉 : y ∈ C

}
,

where G : H 7→ H is a positive symmetric linear operator were proposed by
Fukushima (see for example [2], [7]). In [5] regularized gap functions were used
for construction of methods for solving variational and quasi-variational inequali-
ties.

Construction of a gap functions of a projection type is based on well known fact
that x∗ is a solution of (1) if and only if

x∗ = ΠC(x∗ − βF (x∗)), β > 0,

where ΠC : H 7→ H is the operator of projection on the set C. As a consequence of
this fact we have that z ia a solution of (1) if and only if

r(z) := z −ΠC(z − βF (z)) = 0. (3)

Hence, ‖r(z)‖ can be used as a measure of closeness of z to the set C∗ of solutions
of (1). But, very simple examples show it is possible that ‖r(z)‖ is small while at
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the same time the distance d(z, C∗) can be very large. So, r(z) can be used as a
residual measure only for some classes of the variational inequalities (1).

Let us start with one theorem related to one projection measure based on the
methods and estimates from [5].

Theorem 1. Suppose that C ⊆ H is a closed and convex set and the operator
F : H 7→ H satisfies the conditions

〈F (x)− F (y), x− y〉 ≥ α‖x− y‖2, (α > 0) (4)

‖F (x)− F (y)‖ ≤ L‖x− y‖,∀x, y ∈ Rn, (L > 0) (5)

Then
‖z − x∗‖ ≤ k1‖r(z)‖, ‖r(z)‖ ≤ αβk1‖z − x∗‖, (6)

where x∗ is a unique solution of (1) and

k1 = k(α, L, β) =
Lβ + 1 +

√
(Lβ + 1)2 − 4αβ

2αβ.
(7)

Proof. By definition of r(z),

〈βF (z)− r(z), y − (z − r(z))〉 ≥ 0, ∀y ∈ C,

from where, for y = x∗ ∈ C, we obtain

〈βF (z)− r(z), x∗ − (z − r(z))〉 ≥ 0.

Therefore, taking into account condition (4), we get

〈−r(z), x∗ − (z − r(z))〉 ≥ β〈F (z),−r(z)〉+ β〈F (z), z − x∗〉 =

β〈F (z),−r(z)〉+ β〈F (z)− F (x∗), z − x∗〉+ β〈F (x∗), z − x∗〉 ≥
αβ‖z − x∗‖2 + β〈F (z)− F (x∗),−r(z)〉+ β〈F (x∗), z − r(z)− x∗〉 ≥

αβ‖z − x∗‖2 + β〈F (z)− F (x∗),−r(z)〉.
Hence,

〈−r(z), x∗ − z〉 − ‖r(z)‖2 ≥ αβ‖z − x∗‖2 − βL‖z − x∗‖‖r(z)‖,

and
αβ‖z − x∗‖2 + ‖r(z)‖2 ≤ (Lβ + 1)‖r(z)‖‖z − x∗‖,

from where (6) follows.
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Remark 1. Note that (Lβ + 1)2 ≥ 4αβ is an immediate consequence of L ≥ α.
Remark 2. From (6) it follows the estimate ‖z − x∗‖ ≤ Lβ+1

αβ ‖r(z‖; for β = 1,
we obtain the estimate from ([6]).

Remark 3. In [9], [10] and [4] authors consider problem of the bounds measuring
the distance between any point and the set of solution C∗ of so-called cocoercive
variational inequality (1). Let us mention that the map F : H
mapstoH is said to be cocoercive if there exists γ > 0 such that

〈f(x)− f(y), x− y〉 ≥ γ‖f(x)− f(y)‖2, ∀x, y ∈ H.

The cocoercivity plays an important role in the convergence analysis of algorithms.
Note that any cocoercive map with modulus γ is monotone (but not strongly mono-
tone) and Lipschitz continuous with Lipschitz constant L = 1

γ . For solving such
variational inequalities one can apply Tikhonov regularization method, replacing
the map F (x) with F (x) + εx, x ∈ H, ε > 0, which is strongly monotone with
modulus ε. If xε is a unique point such that

〈F (xε) + εxε, y − xε〉 ≥ 0, ∀y ∈ C,

and
rε(z) = z −ΠC(z − β(F (z) + εz)),

then,
‖z − xε‖ ≤ k2‖rε(z)‖,

where k2 = k(ε, γ−1 + ε, β). In [9] and [4] is proved that, in case of H = Rn, if the
set of solutions of (1) is nonempty and bounded, then for sufficiently small ε, the
following estimate holds

dist(xε, C∗) ≤ β

Consequently, in this case, as a measure of the closeness of any point z to the set
C∗ one can use the estimate

dist(z, C∗) ≤ k2‖rε(z)‖+ β.

2 Linearization and Projection Measures

Application of the projection measures is possible only if it is not difficult to realize a
projection onto C. If the set C is given by nonlinear convex differentiable constraints
gi : H 7→ R,

C = {x ∈ C0 : g(x) ≤ 0}, g = (g1, g2, . . . , gm) : H 7→ Rm, (8)

where C0 ⊆ H is a closed and convex set of simple structure (for example C0 is a ball
or polyhedron in Rn), then one can replace the projection onto C with projection
onto its linear approximations

C(z) = {y ∈ C0 : g(z) + 〈g′(z), y − z〉 ≤ 0}
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Then a posteriori estimate of the arbitrary vector z to set C∗ of the the solutions
of (1) may be calculated using a residual [3]

rL,G(z) = z −ΠC(z)(z −G−1F (z)),

where G : H 7→ H is a symmetric linear operator satisfying to

m‖ξ‖2 ≤ 〈Gξ, ξ〉 ≤ M‖ksi‖2, 0 ≤ m < M, (9)

and ΠL,G is a projection onto C(z) in the norm ‖x‖G :=
√
〈Gx, x〉. Let us note

that in case of C = C0, this problem was considered in Theorem 1.
Idea of linearization is widely used for construction of the numerical algorithm

for solving equations, variational inequalities, problems of optimization ([2], [3], [8]).
In the course of the proof of the next theorem we will also prove that z is a

solution of (1) if and only if rL,G(z) = 0.

Theorem 2. Suppose:
C0 ⊆ H is a closed and convex set;
F : H 7→ H is strongly monotone Lipschitz continuous operator:

〈F (x)− F (y), x− y〉 ≥ α‖x− y‖2, , (α > 0)

‖F (x)− F (y)‖ ≤ L‖x− y‖, (L > 0);

gi : H 7→ R, i = 1, . . . ,m are convex and differentiable function such that

‖g′i(x)− g′i(y)‖ ≤ Li‖x− y‖, ∀x, y ∈ H;

there is x ∈ C0, such that gi(x) < 0, i = 1, 2, . . . , m (Slater condition);
C is given by (8).

Then
‖z − x∗‖2 ≤ kL‖rL,G(z)‖2, (10)

where x∗ is a unique solution of (1),

kL =

(
L + α

4
−m +

Mε

2
+

m∑

i=1

λ∗i Li

)
:
(

Lα

L + α
− M

2ε

)

and λ∗ = (λ1∗, . . . , λ∗m) are Lagrange multipliers for the point x∗.

Proof. Since x∗ is a (unique) solution of (1) and z − rL,G(z) ∈ C0, (see [8], Lemma
5.5., p. 117) there exist λ∗ = (λ1, λ

∗
2, . . . , λ

∗
m), λ∗ 6= 0, such that

〈
F (x∗) +

m∑

i=1

λ∗i g
′
i(x∗), z − rL,G(z)− x∗

〉
≥ 0, (11)

λ∗i gi(x∗) = 0, λ∗i ≥ 0, gi(x∗) ≤ 0, i = 1, 2, . . . , m. (12)
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Further, from the condition of convexity, it follows that gi(z)+〈g′i(z), x−z〉 ≤ gi(x),
for all x ∈ C0. Therefore, C ⊆ C(z) and Slater condition is also fulfilled for the
set C(z). Applying Kuhn-Tucker theorem to the problem of projection of the point
z−G−1F (z) onto C(z), we obtain that there is ξ∗ = (ξ∗1 , ξ∗2 , . . . , ξ∗m) ∈ Rm, ξ∗ 6= 0,
such that

〈
−GrL,G(z) + F (z) +

m∑

i=1

ξ∗i g′i(z), y − (z − rL,G(z))

〉
≥ 0 for all y ∈ C0. (13)

ξ∗i (gi(z) + 〈g′i(z),−rL,G(z)〉) = 0, i = 1, 2, . . . , m. (14)

ξ∗ ≥ 0, gi(z) + 〈g′i(z),−rL,G(z) ≤ 0, (15)

Putting y = x∗ in (13), and adding (11) and (13) we obtain

〈GrL,G(z), z − rL,G(z)− x∗〉+ 〈F (z)− F (x∗), x∗ − z + rL,G(z)〉+
〈

m∑

i=1

λ∗i g
′
i(x∗), z − rL,G(z)− x∗

〉
+

〈
m∑

i=1

ξ∗i g′i(z), x∗ − z + rL,G(z)

〉
≥ 0. (16)

Now, we are going to estimate all terms in (16). First, combining (14) and (15),
having in mind the convexity of the functions gi, we have

〈
m∑

i=1

ξ∗i g′i(z), x∗ − z + rL,G(z)

〉
=

〈
m∑

i=1

ξ∗i g′i(z), x∗ − z

〉
+

m∑

i=1

ξ∗i gi(z) ≤
m∑

i=1

ξ∗i gi(x∗) ≤ 0 (17)

In the similar, combining (11) and the condition of convexity (see [8], Lemma 2.3.1,
p. 93), we obtain 〈

m∑

i=1

λ∗i g
′
i(x∗), z − rL,G(z)− x∗

〉
=

〈
m∑

i=1

λ∗i (gi(x∗) + g′i(x∗), z − rL,G(z)− x∗

〉
≤ 1

2

m∑

i=1

λ∗i Li‖rL,G(z)‖2. (18)

The second term in (16) can be estimated by

〈GrL,G(z), z − rL,G(z)− x∗〉 = 〈GrL,G(z),−rL,G〉+ 〈GrL,G(z), z − x∗〉 ≤

−m‖rL,G(z)‖2 +
Mε‖rL,G(z)‖2

2
+

M‖z − x∗‖2
2ε

, (19)

where ε > 0.
Finally, from the conditions (4) and (5), we obtain the following inequality (see

[8], p. 181, proof of Theorem 3.4.5.)

〈F (z)− F (x∗), x∗ − z − rL,G(z)〉 ≤ L + α

4
‖rL,G(z)‖2 − Lα

L + α
‖z − x∗‖2. (20)
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Now, combining (17) - (20), we get
(

Lα

L + α
− M

2ε

)
‖z − x∗‖2 ≤

(
L + α

4
−m +

Mε

2
+

m∑

i=1

λ∗i Li

)
‖rL,G(z)‖2. (21)

The previous estimates are valid if the parameters are chosen such that

Lα

L + α
− M

2ε
> 0, and

L + α

4
−m +

M

2ε
+

m∑

i=1

λ∗i Li > 0.

In this case, the statement of Theorem is a consequence of (21).

Remark 4. Let us observe that an applications of this estimate requires the
knowledge of Lagrange multipliers. Sometimes, they have physical or geometrical
meaning, and this fact can be useful to get the estimates of their values.

Remark 5. For C = C0, we have new estimates for the distance between any
point and the set C∗ of the solutions of (1).

3 Projection Measures for Quasi-variational Inequalites

The theorem about existence of solutions show a notable difference between vari-
ational and quasi-variational inequalities. For example, if F is strongly monotone
on closed and convex set, then variational inequality (1) has a unique solution. On
the other hand, in our knowledge the following statement is the best result related
to the existence of solutions of quasi-variational inequaliites (2) (see [5]):

If the map F is strongly monotone and Lipschitz continuous with constants α >
0, L ≥ 0, and C : Rn 7→ Rn is a set-valued mapping with nonempty closed and
convex values, such that

‖ΠC(x)(z)−ΠC(y)(z)‖ ≤ γ‖x− y‖, γ <
α

L
, ∀x, y and z, (22)

then quasi-variational (2) has a unique solution.
Assuming that the conditions of existence are fulfilled, we will derive the esti-

mates of the closeness of any point to the solution of (2).
Theorem 3. If the conditions (4), (5) and (22) are satisfied, then
(i)

‖z − x∗‖ ≤ kQ‖rQ(z)‖2, (23)

where
rQ(z) = z −ΠC(z)(z − βF (z)), β > 0,

and
kQ =

(
1− βγL−

√
1− 2βγ + L2β2

)−1

(ii)
‖z − x∗‖ ≤ kT

α

α− γL
‖rT (z)(z)‖, (24)
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where T (z) ∈ C(z),

〈F (T (z)), y − T (z)〉 ≥ 0 ∀y ∈ C(z),

rT (z)(z) = z −ΠC(z)(z − βF (z)),

and kT is the constant k1 from Theorem 1 for the variational inequality (1) on the
set C(z).

Proof. (i) We suppose that the parameter β > 0 is sufficiently small, such that a
constant kQ is positive.

Let us start with notice that x∗ is a solution of (refQV I) if and only if x∗ =
rQ(x∗). Then, using (22) and (5), we have

‖z − x∗‖ = ‖r(z) + ΠC(z)(z − βF (z))−ΠC(x∗)(x∗ − βF (x∗))‖ ≤

‖r(z)‖+ ‖ΠC(z)(z − βF (z))−ΠC(x∗)(z − βF (z))‖+
‖ΠC(x∗)(z − βF (z))−ΠC(x∗)(x∗ − βF (x∗))‖ ≤

‖r(z)‖+ βγL‖z − x∗‖+ ‖ΠC(x∗)(z − βF (z))−ΠC(x∗)(x∗ − βF (x∗))‖. (25)

Since F is strongly monotone and Lipschitz continuous, we have

‖ΠC(x∗)(z − βF (z))−ΠC(x∗)(x∗ − βF (x∗))‖2 ≤

‖(z − x∗)− β(F (z))− F (x∗))‖2 =

‖z − x∗‖2 − 2β〈F (z))− F (x∗), z − x∗〉+ β2‖F (z))− F (x∗)‖2 ≤
(1− 2βL + β2L2)‖z − x∗‖2.

Now, from (25), we obtain (23).
(ii) In [5] has been proved that the operator T : H 7→ H defined by conditions

〈F (T (z)), y − T (z)〉 ≥ 0, ∀y ∈ C(z)

is a contraction with modulus of contraction γ L
α < 1. Furthermore, x∗ is a solution

of (2) if and only if x∗ = T (x∗). Consequently,

‖z−x∗‖ = ‖z−T (x∗)‖ ≤ ‖z−T (z)‖+ ‖T (z)−T (x∗)‖ ≤ ‖z−T (z)‖+
γL

α
‖z−x∗‖.

Finally, since T (z) is a unique solution of (1) on the set C(z), we have

‖z − x∗‖ ≤
(

1− γL

α

)
‖z − T (z)‖ ≤ kT ‖rT (z)‖,

from where estimate (24) follows.
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