STRONG CONVERGENCE THEOREMS OF THREE-STEP ITERATIONS FOR MULTI-VALUED MAPPINGS IN BANACH SPACES

S. Homaeipour and A. Razani

Abstract

In this paper, two classes of three-step iteration schemes for multi-valued mappings in a uniformly convex Banach space are presented. Moreover, their strong convergence are proved.

1 Introduction

Iterative methods for approximating fixed points of multi-valued mappings in Banach spaces have been studied by some authors [2, 3, 6, 7]. In 2009, Shahzad and Zegeye [4] improved the results of [3, 6]. They introduced the following iteration scheme.

Let D be a nonempty convex subset of a Banach space $X, T: D \to CB(D)$ a quasinonexpansive multi-valued mapping and $\alpha_n, \beta_n \in [0, 1]$. The sequence of Ishikawa iterates is defined by $x_1 \in D$,

$$y_n = \beta_n z_n + (1 - \beta_n) x_n, \quad n \ge 1, x_{n+1} = \alpha_n z'_n + (1 - \alpha_n) x_n, \quad n \ge 1,$$
(1)

where $z_n \in T(x_n)$ and $z'_n \in T(y_n)$.

Next, they introduced the following iteration scheme.

Let D be a nonempty convex subset of a Banach space $X, T: D \to P(D)$ a multivalued mapping and $P_T(x) = \{y \in T(x); ||x - y|| = d(x, T(x))\}$ and $\alpha_n, \beta_n \in [0, 1]$. The sequence of Ishikawa iterates is defined by $x_1 \in D$,

$$y_n = \beta_n z_n + (1 - \beta_n) x_n, \quad n \ge 1, x_{n+1} = \alpha_n z'_n + (1 - \alpha_n) x_n, \quad n \ge 1,$$
(2)

Received: October 10, 2010

Communicated by Vladimir Rakočević

²⁰¹⁰ Mathematics Subject Classifications. 47H10.

Key words and Phrases. Nonexpansive multi-valued mapping; Uniformly convex Banach space; Iteration.

The second author would like to thank the School of Mathematics of the Institute for Research in Fundamental Sciences, Tehran, Iran, for supporting this research (Grant No. 89470126).

where $z_n \in P_T(x_n)$ and $z'_n \in P_T(y_n)$.

They proved strong convergence theorems for these iteration schemes in uniformly convex Banach spaces. Inspired and motivated by the above facts, we introduce the following iteration scheme.

Let D be a nonempty convex subset of a Banach space X and $T: D \to CB(D)$ a multi-valued mapping. For a given $x_1 \in D$, compute the sequences $\{x_n\}, \{y_n\}$ and $\{z_n\}$ by the iteration scheme

$$z_{n} = a_{n}w_{n}^{(1)} + (1 - a_{n})x_{n}, n \ge 1,$$

$$y_{n} = b_{n}w_{n}^{(2)} + c_{n}w_{n}^{(3)} + (1 - b_{n} - c_{n})x_{n}, n \ge 1,$$

$$x_{n+1} = \alpha_{n}w_{n}^{(4)} + \beta_{n}w_{n}^{(5)} + (1 - \alpha_{n} - \beta_{n})x_{n}, n \ge 1,$$

$$(3)$$

where $w_n^{(1)}, w_n^{(3)} \in T(x_n), w_n^{(2)}, w_n^{(5)} \in T(z_n), w_n^{(4)} \in T(y_n)$ and $\{a_n\}, \{b_n\}, \{c_n\}, \{\alpha_n\}$ and $\{\beta_n\}$ are appropriate sequences in [0,1].

If $a_n = c_n = \beta_n = 0$, then (3) reduces to (1). Next, we introduce the following iteration scheme.

Let D be a nonempty convex subset of a Banach space X and $T: D \to P(D)$ a multi-valued mapping. For a given $x_1 \in D$, compute the sequences $\{x_n\}, \{y_n\}$ and $\{z_n\}$ by the iteration scheme

$$z_{n} = a_{n}w_{n}^{(1)} + (1 - a_{n})x_{n}, n \ge 1,$$

$$y_{n} = b_{n}w_{n}^{(2)} + c_{n}w_{n}^{(3)} + (1 - b_{n} - c_{n})x_{n}, n \ge 1,$$

$$x_{n+1} = \alpha_{n}w_{n}^{(4)} + \beta_{n}w_{n}^{(5)} + (1 - \alpha_{n} - \beta_{n})x_{n}, n \ge 1,$$

$$(4)$$

where $w_n^{(1)}, w_n^{(3)} \in P_T(x_n), w_n^{(2)}, w_n^{(5)} \in P_T(z_n), w_n^{(4)} \in P_T(y_n)$ and $\{a_n\}, \{b_n\}, \{c_n\}, \{a_n\} \text{ and } \{\beta_n\}$ are appropriate sequences in [0,1].

If $a_n = c_n = \beta_n = 0$, then (4) reduces to (2). In this paper, we prove strong convergence theorems for these new iteration schemes.

Let D be a nonempty subset of a Banach space X. A single-valued mapping $T: D \to D$ is called nonexpansive if $\|T(x) - T(y)\| \le \|x - y\|$ for $x, y \in D$. Let CB(D) denotes the family of nonempty, closed and bounded subsets of D. The set D is called proximinal if for each $x \in X$, there exists an element $y \in D$ such that $\|x - y\| = d(x, D)$, let P(D) denotes nonempty, proximinal and bounded subsets of D. The Hausdorff metric on CB(D) is defined by

$$H(A_1, A_2) = \max \left\{ \sup_{x \in A_1} d(x, A_2), \sup_{y \in A_2} d(y, A_1) \right\},$$

for $A_1,A_2\in CB(D)$, where $d(x,A_1)=\inf\{\|x-y\|;y\in A_1\}$. The multi-valued mapping $T:D\to CB(D)$ is called nonexpansive if

$$H(T(x), T(y)) \le ||x - y|| \quad \forall x, y \in D.$$

An element $p \in D$ is called a fixed point of $T:D \to D$ (respectively, $T:D \to CB(D)$) if p=T(p) (respectively, $p \in T(p)$). The set of fixed points of T is

represented by F(T). The multi-valued mapping $T:D\to CB(D)$ is called quasi-nonexpansive [5] if $F(T)\neq\emptyset$ and $H(T(x),T(p))\leq\|x-p\|$ for all $x\in D$ and all $p\in F(T)$. It is clear that every nonexpansive multi-valued map T with $F(T)\neq\emptyset$ is quasi-nonexpansive. But there exist quasi-nonexpansive mappings that are not nonexpansive.

Example 1. Let $D = [0, \infty)$ with the usual metric and $T: D \to CB(D)$ be defined by

$$T(x) = \begin{cases} \{0\}, & x \le 1; \\ [x - \frac{3}{4}, x - \frac{1}{3}], & x > 1. \end{cases}$$

Then, clearly $F(T) = \{0\}$ and $H(T(x), T(0)) \le |x - 0|$ for all x, hence T is quasi-nonexpansive. However, if x = 2, y = 1 we get that H(T(x), T(y)) > |x - y| = 1, hence T is not nonexpansive.

The mapping $T:D\to CB(D)$ with $F=F(T)\neq\emptyset$ satisfies condition (I) if there is a nondecreasing function $f:[0,\infty)\to[0,\infty)$ with $f(0)=0,\,f(r)>0$ for $r\in(0,\infty)$ such that

$$d(x,T(x)) \ge f(d(x,F))$$
 for all $x \in D$.

2 Main results

We use the following lemma to prove our main results.

Lemma 1. [1] Let X be a uniformly convex Banach space and $B_r = \{x \in X : \|x\| \le r\}, r > 0$. Then there exists a continuous, strictly increasing and convex function $g: [0, \infty) \to [0, \infty), g(0) = 0$ such that

$$\|\alpha x + \beta y + \gamma z\|^2 \le \alpha \|x\|^2 + \beta \|y\|^2 + \gamma \|z\|^2 - \alpha \beta g(\|x - y\|),$$

for all $x, y, z \in B_r$ and all $\alpha, \beta, \gamma \in [0, 1]$ with $\alpha + \beta + \gamma = 1$.

Lemma 2. Let X be a uniformly convex Banach space and D a nonempty, closed and convex subset of X. Suppose $T:D\to CB(D)$ is a nonexpansive multivalued mapping with $F=F(T)\neq\emptyset$ and $T(q)=\{q\}$ for each $q\in F$. Let $\{a_n\},\{b_n\},\{c_n\},\{\alpha_n\}$ and $\{\beta_n\}$ be real sequences in [0,1], such that b_n+c_n and $\alpha_n+\beta_n$ are in [0,1] for all $n\geq 1$. For a given $x_1\in D$, let $\{x_n\},\{y_n\}$ and $\{z_n\}$ be the sequences defined as in (3), then $\lim_{n\to\infty}\|x_n-q\|$ exists for each $q\in F$.

Proof. Let $q \in F$. We have

$$||z_{n} - q|| = ||a_{n}(w_{n}^{(1)} - q) + (1 - a_{n})(x_{n} - q)||$$

$$\leq a_{n}||w_{n}^{(1)} - q|| + (1 - a_{n})||x_{n} - q||$$

$$= a_{n}d(w_{n}^{(1)}, T(q)) + (1 - a_{n})||x_{n} - q||$$

$$\leq a_{n}H(T(x_{n}), T(q)) + (1 - a_{n})||x_{n} - q||$$

$$\leq a_{n}||x_{n} - q|| + (1 - a_{n})||x_{n} - q||$$

$$= ||x_{n} - q||,$$

and

$$||y_{n} - q|| = ||b_{n}(w_{n}^{(2)} - q) + c_{n}(w_{n}^{(3)} - q) + (1 - b_{n} - c_{n})(x_{n} - q)||$$

$$\leq b_{n}||w_{n}^{(2)} - q|| + c_{n}||w_{n}^{(3)} - q|| + (1 - b_{n} - c_{n})||x_{n} - q||$$

$$= b_{n}d(w_{n}^{(2)}, T(q)) + c_{n}d(w_{n}^{(3)}, T(q)) + (1 - b_{n} - c_{n})||x_{n} - q||$$

$$\leq b_{n}H(T(z_{n}), T(q)) + c_{n}H(T(x_{n}), T(q)) + (1 - b_{n} - c_{n})||x_{n} - q||$$

$$\leq b_{n}||z_{n} - q|| + c_{n}||x_{n} - q|| + (1 - b_{n} - c_{n})||x_{n} - q||$$

$$\leq b_{n}||x_{n} - q|| + c_{n}||x_{n} - q|| + (1 - b_{n} - c_{n})||x_{n} - q||$$

$$= ||x_{n} - q||.$$

Therefore

$$||x_{n+1} - q|| = ||\alpha_n(w_n^{(4)} - q) + \beta_n(w_n^{(5)} - q) + (1 - \alpha_n - \beta_n)(x_n - q)||$$

$$\leq \alpha_n ||w_n^{(4)} - q|| + \beta_n ||w_n^{(5)} - q|| + (1 - \alpha_n - \beta_n)||x_n - q||$$

$$= \alpha_n d(w_n^{(4)}, T(q)) + \beta_n d(w_n^{(5)}, T(q)) + (1 - \alpha_n - \beta_n)||x_n - q||$$

$$\leq \alpha_n H(T(y_n), T(q)) + \beta_n H(T(z_n), T(q))$$

$$+ (1 - \alpha_n - \beta_n)||x_n - q||$$

$$\leq \alpha_n ||y_n - q|| + \beta_n ||z_n - q|| + (1 - \alpha_n - \beta_n)||x_n - q||$$

$$\leq \alpha_n ||x_n - q|| + \beta_n ||x_n - q|| + (1 - \alpha_n - \beta_n)||x_n - q||$$

$$= ||x_n - q||.$$
(5)

Hence $\{\|x_n - q\|\}$ is a nonincreasing sequence, so $\lim_{n\to\infty} \|x_n - q\|$ exists for any $q \in F(T)$. Also $\{x_n\}$ is bounded.

Theorem 1. Let X be a uniformly convex Banach space and D a nonempty, closed and convex subset of X. Suppose $T:D\to CB(D)$ is a nonexpansive multi-valued mapping with $F=F(T)\neq\emptyset$ and $T(q)=\{q\}$ for each $q\in F$. Let $\{a_n\},\{b_n\},\{c_n\},\{\alpha_n\}$ and $\{\beta_n\}$ be real sequences in [0,1], such that b_n+c_n and $\alpha_n+\beta_n$ are in [0,1] for all $n\geq 1$ and $\lim_{n\to\infty}c_n=0$. For a given $x_1\in D$, let $\{x_n\},\{y_n\}$ and $\{z_n\}$ be the sequences defined as in (3). Suppose T satisfies condition (I). If $0<\liminf_{n\to\infty}b_n\leq\limsup_{n\to\infty}(b_n+c_n)<1$ and $0<\liminf_{n\to\infty}\alpha_n\leq\limsup_{n\to\infty}(\alpha_n+\beta_n)<1$, then $\{x_n\}$ converges strongly to a fixed point of T.

Proof. Let $q \in F(T)$. Then, as in the proof of Lemma 2, $\{x_n\}, \{y_n\}$ and $\{z_n\}$ are bounded. Therefore, there exists R > 0 such that $x_n - q, y_n - q, z_n - q \in B_R(0)$ for all $n \ge 1$. Applying Lemma 1, there is a continuous, strictly increasing and convex

function $g:[0,\infty)\to[0,\infty), g(0)=0$, such that

$$||y_{n} - q||^{2} = ||b_{n}(w_{n}^{(2)} - q) + c_{n}(w_{n}^{(3)} - q) + (1 - b_{n} - c_{n})(x_{n} - q)||^{2}$$

$$\leq b_{n}||w_{n}^{(2)} - q||^{2} + c_{n}||w_{n}^{(3)} - q||^{2} + (1 - b_{n} - c_{n})||x_{n} - q||^{2}$$

$$-b_{n}(1 - b_{n} - c_{n})g(||w_{n}^{(2)} - x_{n}||)$$

$$= b_{n}(d(w_{n}^{(2)}, T(q)))^{2} + c_{n}(d(w_{n}^{(3)}, T(q)))^{2} + (1 - b_{n} - c_{n})||x_{n} - q||^{2}$$

$$-b_{n}(1 - b_{n} - c_{n})g(||w_{n}^{(2)} - x_{n}||)$$

$$\leq b_{n}(H(T(z_{n}), T(q)))^{2} + c_{n}(H(T(x_{n}), T(q)))^{2}$$

$$+(1 - b_{n} - c_{n})||x_{n} - q||^{2} - b_{n}(1 - b_{n} - c_{n})g(||w_{n}^{(2)} - x_{n}||)$$

$$\leq b_{n}||z_{n} - q||^{2} + c_{n}||x_{n} - q||^{2} + (1 - b_{n} - c_{n})||x_{n} - q||^{2}$$

$$-b_{n}(1 - b_{n} - c_{n})g(||w_{n}^{(2)} - x_{n}||).$$

$$(6)$$

Therefore

$$||x_{n+1} - q||^{2} = ||\alpha_{n}(w_{n}^{(4)} - q) + \beta_{n}(w_{n}^{(5)} - q) + (1 - \alpha_{n} - \beta_{n})(x_{n} - q)||^{2}$$

$$\leq \alpha_{n}||w_{n}^{(4)} - q||^{2} + \beta_{n}||w_{n}^{(5)} - q||^{2} + (1 - \alpha_{n} - \beta_{n})||x_{n} - q||^{2}$$

$$-\alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||)$$

$$= \alpha_{n}(d(w_{n}^{(4)}, T(q)))^{2} + \beta_{n}(d(w_{n}^{(5)}, T(q)))^{2}$$

$$+(1 - \alpha_{n} - \beta_{n})||x_{n} - q||^{2} - \alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||)$$

$$\leq \alpha_{n}(H(T(y_{n}), T(q)))^{2} + \beta_{n}(H(T(z_{n}), T(q)))^{2}$$

$$+(1 - \alpha_{n} - \beta_{n})||x_{n} - q||^{2} - \alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||)$$

$$\leq \alpha_{n}||y_{n} - q||^{2} + \beta_{n}||z_{n} - q||^{2} + (1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||)$$

$$\leq \alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||)$$

$$\leq \alpha_{n}(b_{n}||z_{n} - q||^{2} + c_{n}||x_{n} - q||^{2} + (1 - b_{n} - c_{n})||x_{n} - q||^{2}$$

$$-b_{n}(1 - b_{n} - c_{n})g(||w_{n}^{(2)} - x_{n}||) + \beta_{n}||z_{n} - q||^{2}$$

$$+(1 - \alpha_{n} - \beta_{n})||x_{n} - q||^{2} - \alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||)$$

$$\leq \alpha_{n}(b_{n}||x_{n} - q||^{2} + c_{n}||x_{n} - q||^{2} + (1 - b_{n} - c_{n})||x_{n} - q||^{2}$$

$$-b_{n}(1 - b_{n} - c_{n})g(||w_{n}^{(2)} - x_{n}||) + \beta_{n}||x_{n} - q||^{2}$$

$$-\alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||)$$

$$= ||x_{n} - q||^{2} - \alpha_{n}b_{n}(1 - b_{n} - c_{n})g(||w_{n}^{(2)} - x_{n}||)$$

$$-\alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||).$$
(7)

Hence

$$||x_{n+1} - q||^2 \le ||x_n - q||^2 - \alpha_n b_n (1 - b_n - c_n) g(||w_n^{(2)} - x_n||).$$
(8)

Since $\liminf_{n\to\infty} \alpha_n > 0$ and $0 < \liminf_{n\to\infty} b_n \le \limsup_{n\to\infty} (b_n + c_n) < 1$, there exist positive integers $r_1, r_2 \in (0,1)$ and $N_1 > 0$ such that

$$0 < r_1 < b_n, 0 < r_1 < \alpha_n \text{ and } b_n + c_n < r_2 < 1, \forall n \ge N_1.$$

By (8) we obtain

$$r_{1}^{2}(1-r_{2})\sum_{n=N_{1}}^{\infty}g(\|w_{n}^{(2)}-x_{n}\|) < \sum_{n=N_{1}}^{\infty}\alpha_{n}b_{n}(1-b_{n}-c_{n})g(\|w_{n}^{(2)}-x_{n}\|) \leq \sum_{n=N_{1}}^{\infty}(\|x_{n}-q\|^{2}-\|x_{n+1}-q\|^{2}) < \infty.$$

$$(9)$$

Therefore $\lim_{n\to\infty} g(\|w_n^{(2)} - x_n\|) = 0$ and hence

$$\lim_{n \to \infty} \|w_n^{(2)} - x_n\| = 0. \tag{10}$$

In addition, by (7) we obtain

$$||x_{n+1} - q||^{2} \leq ||x_{n} - q||^{2} - \alpha_{n}b_{n}(1 - b_{n} - c_{n})g(||w_{n}^{(2)} - x_{n}||) -\alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||) \leq ||x_{n} - q||^{2} - \alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||).$$

$$(11)$$

Since $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n) < 1$, there exist positive integers $r_3, r_4 \in (0, 1)$ and $N_2 > 0$ such that

$$0 < r_3 < \alpha_n \text{ and } \alpha_n + \beta_n < r_4 < 1, \forall n \ge N_2.$$

By (11) we obtain

$$r_{3}(1-r_{4})\Sigma_{n=N_{2}}^{\infty}g(\|w_{n}^{(4)}-x_{n}\|) < \Sigma_{n=N_{2}}^{\infty}\alpha_{n}(1-\alpha_{n}-\beta_{n})g(\|w_{n}^{(4)}-x_{n}\|) \leq \Sigma_{n=N_{2}}^{\infty}(\|x_{n}-q\|^{2}-\|x_{n+1}-q\|^{2}) < \infty.$$
 (12)

Therefore $\lim_{n\to\infty} g(\|w_n^{(4)} - x_n\|) = 0$ and hence

$$\lim_{n \to \infty} \|w_n^{(4)} - x_n\| = 0. \tag{13}$$

It is a simple consequence of the definition of $H(T(x_n), T(y_n))$ that for each positive integer $n \ge 1$, there exists $\hat{w}_n \in T(x_n)$ such that

$$\|\hat{w}_n - w_n^{(4)}\| \le H(T(x_n), T(y_n)) + \frac{1}{n},\tag{14}$$

Next, consider

$$||w_{n}^{(3)} - x_{n}|| \leq ||w_{n}^{(3)} - q|| + ||x_{n} - q||$$

$$= d(w_{n}^{(3)}, T(q)) + ||x_{n} - q||$$

$$\leq H(T(x_{n}), T(q)) + ||x_{n} - q||$$

$$\leq ||x_{n} - q|| + ||x_{n} - q||$$

$$= 2||x_{n} - q||.$$
(15)

Since $\{||x_n - q||\}$ is bounded, we have $\{||w_n^{(3)} - x_n||\}$ is a bounded sequence. By (14) we obtain

$$\|\hat{w}_{n} - x_{n}\| \leq \|\hat{w}_{n} - w_{n}^{(4)}\| + \|w_{n}^{(4)} - x_{n}\|$$

$$\leq H(T(x_{n}), T(y_{n})) + \frac{1}{n} + \|w_{n}^{(4)} - x_{n}\|$$

$$\leq \|x_{n} - y_{n}\| + \frac{1}{n} + \|w_{n}^{(4)} - x_{n}\|$$

$$\leq b_{n} \|w_{n}^{(2)} - x_{n}\| + c_{n} \|w_{n}^{(3)} - x_{n}\| + \frac{1}{n} + \|w_{n}^{(4)} - x_{n}\|.$$

As, $n \to \infty$ in the above inequality, by (10) and (13) we obtain $\lim_{n\to\infty} \|\hat{w}_n - x_n\| = 0$. Since $d(x_n, T(x_n)) \le \|\hat{w}_n - x_n\|$, it follows that $\lim_{n\to\infty} d(x_n, T(x_n)) = 0$. Since T satisfies condition (I), we have $\lim_{n\to\infty} d(x_n, F) = 0$. Thus there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\|x_{n_k} - p_k\| < \frac{1}{2^k}$ for some $\{p_k\} \subset F$ and all k. Since

$$||x_{n_{k+1}} - p_k|| \le ||x_{n_k} - p_k|| < \frac{1}{2^k},$$

we get

$$\begin{aligned} \|p_{k+1} - p_k\| & \leq \|p_{k+1} - x_{n_{k+1}}\| + \|x_{n_{k+1}} - p_k\| \\ & < \frac{1}{2^{k+1}} + \frac{1}{2^k} \\ & < \frac{1}{2^{k-1}}. \end{aligned}$$

Therefore $\{p_k\}$ is a Cauchy sequence in D and thus converges to $q \in D$. Since

$$d(p_k, T(q)) \leq H(T(p_k), T(q))$$

$$\leq ||p_k - q||,$$

and $p_k \to q$ as $k \to \infty$, we have d(q, T(q)) = 0 and thus $q \in F$. Since $\{x_{n_k}\}$ converges strongly to q and $\lim_{n \to \infty} \|x_n - q\|$ exists, we have $\{x_n\}$ converges strongly to q.

Theorem 2. Let X be a uniformly convex Banach space and D a nonempty, closed and convex subset of X. Suppose $T:D\to P(D)$ is a multi-valued mapping with $F=F(T)\neq\emptyset$ such that P_T is nonexpansive. Let $\{a_n\},\{b_n\},\{c_n\},\{\alpha_n\}$ and $\{\beta_n\}$ be real sequences in [0,1], such that b_n+c_n and $\alpha_n+\beta_n$ are in [0,1] for all $n\geq 1$ and $\lim_{n\to\infty}c_n=0$. For a given $x_1\in D$, let $\{x_n\},\{y_n\}$ and $\{z_n\}$ be the sequences defined as in (4). Suppose T satisfies condition (I). If $0<\liminf_{n\to\infty}b_n\leq \limsup_{n\to\infty}(b_n+c_n)<1$ and $0<\liminf_{n\to\infty}\alpha_n\leq \limsup_{n\to\infty}(\alpha_n+\beta_n)<1$, then $\{x_n\}$ converges strongly to a fixed point of T.

Proof. Let $q \in F$. Then $P_T(q) = \{q\}$, We have

$$||z_n - q|| = ||a_n(w_n^{(1)} - q) + (1 - a_n)(x_n - q)||$$

$$\leq a_n ||w_n^{(1)} - q|| + (1 - a_n)||x_n - q||$$

$$= a_n d(w_n^{(1)}, P_T(q)) + (1 - a_n)||x_n - q||$$

$$\leq a_n H(P_T(x_n), P_T(q)) + (1 - a_n)||x_n - q||$$

$$\leq a_n ||x_n - q|| + (1 - a_n)||x_n - q||$$

$$= ||x_n - q||,$$

and

$$\begin{aligned} \|y_n - q\| &= \|b_n(w_n^{(2)} - q) + c_n(w_n^{(3)} - q) + (1 - b_n - c_n)(x_n - q)\| \\ &\leq b_n \|w_n^{(2)} - q\| + c_n \|w_n^{(3)} - q\| + (1 - b_n - c_n)\|x_n - q\| \\ &= b_n d(w_n^{(2)}, P_T(q)) + c_n d(w_n^{(3)}, P_T(q)) + (1 - b_n - c_n)\|x_n - q\| \\ &\leq b_n H(P_T(z_n), P_T(q)) + c_n H(P_T(x_n), P_T(q)) \\ &+ (1 - b_n - c_n)\|x_n - q\| \\ &\leq b_n \|z_n - q\| + c_n \|x_n - q\| + (1 - b_n - c_n)\|x_n - q\| \\ &\leq b_n \|x_n - q\| + c_n \|x_n - q\| + (1 - b_n - c_n)\|x_n - q\| \\ &= \|x_n - q\|. \end{aligned}$$

Therefore

$$||x_{n+1} - q|| = ||\alpha_n(w_n^{(4)} - q) + \beta_n(w_n^{(5)} - q) + (1 - \alpha_n - \beta_n)(x_n - q)||$$

$$\leq \alpha_n ||w_n^{(4)} - q|| + \beta_n ||w_n^{(5)} - q|| + (1 - \alpha_n - \beta_n)||x_n - q||$$

$$= \alpha_n d(w_n^{(4)}, P_T(q)) + \beta_n d(w_n^{(5)}, P_T(q)) + (1 - \alpha_n - \beta_n)||x_n - q||$$

$$\leq \alpha_n H(P_T(y_n), P_T(q)) + \beta_n H(P_T(z_n), P_T(q))$$

$$+ (1 - \alpha_n - \beta_n)||x_n - q||$$

$$\leq \alpha_n ||y_n - q|| + \beta_n ||z_n - q|| + (1 - \alpha_n - \beta_n)||x_n - q||$$

$$\leq \alpha_n ||x_n - q|| + \beta_n ||x_n - q|| + (1 - \alpha_n - \beta_n)||x_n - q||$$

$$= ||x_n - q||.$$
(16)

Hence $\{\|x_n-q\|\}$ is a nonincreasing sequence. Therefore, $\lim_{n\to\infty}\|x_n-q\|$ exists for each $q\in F(T)$. So $\{x_n\}$ is bounded. Also $\{y_n\}$ and $\{z_n\}$ are bounded. Therefore, there exists R>0 such that $x_n-q,y_n-q,z_n-q\in B_R(0)$ for all $n\geq 1$. By Lemma 1, there is a continuous, strictly increasing and convex function $g:[0,\infty)\to [0,\infty), g(0)=0$, such that

$$||y_{n}-q||^{2} = ||b_{n}(w_{n}^{(2)}-q)+c_{n}(w_{n}^{(3)}-q)+(1-b_{n}-c_{n})(x_{n}-q)||^{2}$$

$$\leq b_{n}||w_{n}^{(2)}-q||^{2}+c_{n}||w_{n}^{(3)}-q||^{2}+(1-b_{n}-c_{n})||x_{n}-q||^{2}$$

$$-b_{n}(1-b_{n}-c_{n})g(||w_{n}^{(2)}-x_{n}||)$$

$$= b_{n}(d(w_{n}^{(2)},P_{T}(q)))^{2}+c_{n}(d(w_{n}^{(3)},P_{T}(q)))^{2}+(1-b_{n}-c_{n})||x_{n}-q||^{2}$$

$$-b_{n}(1-b_{n}-c_{n})g(||w_{n}^{(2)}-x_{n}||)$$

$$\leq b_{n}(H(P_{T}(z_{n}),P_{T}(q)))^{2}+c_{n}(H(P_{T}(x_{n}),P_{T}(q)))^{2}$$

$$+(1-b_{n}-c_{n})||x_{n}-q||^{2}$$

$$-b_{n}(1-b_{n}-c_{n})g(||w_{n}^{(2)}-x_{n}||)$$

$$\leq b_{n}||z_{n}-q||^{2}+c_{n}||x_{n}-q||^{2}+(1-b_{n}-c_{n})||x_{n}-q||^{2}$$

$$-b_{n}(1-b_{n}-c_{n})g(||w_{n}^{(2)}-x_{n}||).$$

$$(17)$$

Therefore

$$||x_{n+1} - q||^{2} = ||\alpha_{n}(w_{n}^{(4)} - q) + \beta_{n}(w_{n}^{(5)} - q) + (1 - \alpha_{n} - \beta_{n})(x_{n} - q)||^{2}$$

$$\leq \alpha_{n}||w_{n}^{(4)} - q||^{2} + \beta_{n}||w_{n}^{(5)} - q||^{2} + (1 - \alpha_{n} - \beta_{n})||x_{n} - q||^{2}$$

$$-\alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||)$$

$$= \alpha_{n}(d(w_{n}^{(4)}, P_{T}(q)))^{2} + \beta_{n}(d(w_{n}^{(5)}, P_{T}(q)))^{2}$$

$$+(1 - \alpha_{n} - \beta_{n})||x_{n} - q||^{2}$$

$$-\alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||)$$

$$\leq \alpha_{n}(H(P_{T}(y_{n}), P_{T}(q)))^{2} + \beta_{n}(H(P_{T}(z_{n}), P_{T}(q)))^{2}$$

$$+(1 - \alpha_{n} - \beta_{n})||x_{n} - q||^{2} - \alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||)$$

$$\leq \alpha_{n}||y_{n} - q||^{2} + \beta_{n}||z_{n} - q||^{2} + (1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||)$$

$$\leq \alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||)$$

$$\leq \alpha_{n}(b_{n}||z_{n} - q||^{2} + c_{n}||x_{n} - q||^{2} + (1 - b_{n} - c_{n})||x_{n} - q||^{2}$$

$$-b_{n}(1 - b_{n} - c_{n})g(||w_{n}^{(2)} - x_{n}||)) + \beta_{n}||z_{n} - q||^{2}$$

$$+(1 - \alpha_{n} - \beta_{n})||x_{n} - q||^{2} - \alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||)$$

$$\leq \alpha_{n}(b_{n}||x_{n} - q||^{2} + c_{n}||x_{n} - q||^{2} + (1 - b_{n} - c_{n})||x_{n} - q||^{2}$$

$$-b_{n}(1 - b_{n} - c_{n})g(||w_{n}^{(2)} - x_{n}||)) + \beta_{n}||x_{n} - q||^{2}$$

$$+(1 - \alpha_{n} - \beta_{n})||x_{n} - q||^{2} - \alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||)$$

$$= ||x_{n} - q||^{2} - \alpha_{n}b_{n}(1 - b_{n} - c_{n})g(||w_{n}^{(2)} - x_{n}||)$$

$$-\alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||).$$
(18)

Hence

$$||x_{n+1} - q||^{2} \leq ||x_{n} - q||^{2} - \alpha_{n}b_{n}(1 - b_{n} - c_{n})g(||w_{n}^{(2)} - x_{n}||) -\alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||) \leq ||x_{n} - q||^{2} - \alpha_{n}b_{n}(1 - b_{n} - c_{n})g(||w_{n}^{(2)} - x_{n}||),$$

$$(19)$$

Since $\liminf_{n\to\infty} \alpha_n > 0$ and $0 < \liminf_{n\to\infty} b_n \le \limsup_{n\to\infty} (b_n + c_n) < 1$, there exist positive integers $l_1, l_2 \in (0,1)$ and $N_1 > 0$ such that

$$0 < l_1 < b_n, 0 < l_1 < \alpha_n \text{ and } b_n + c_n < l_2 < 1, \forall n \ge N_1.$$

By (19) we obtain

$$l_{1}^{2}(1-l_{2})\sum_{n=N_{1}}^{\infty}g(\|w_{n}^{(2)}-x_{n}\|) < \sum_{n=N_{1}}^{\infty}\alpha_{n}b_{n}(1-b_{n}-c_{n})g(\|w_{n}^{(2)}-x_{n}\|) \leq \sum_{n=N_{1}}^{\infty}(\|x_{n}-q\|^{2}-\|x_{n+1}-q\|^{2}) < \infty.$$
(20)

Therefore $\lim_{n\to\infty} g(\|w_n^{(2)}-x_n\|)=0$ and hence

$$\lim_{n \to \infty} \|w_n^{(2)} - x_n\| = 0. \tag{21}$$

In addition, by (18) we obtain

$$||x_{n+1} - q||^{2} \leq ||x_{n} - q||^{2} - \alpha_{n}b_{n}(1 - b_{n} - c_{n})g(||w_{n}^{(2)} - x_{n}||)$$

$$-\alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||)$$

$$\leq ||x_{n} - q||^{2} - \alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||w_{n}^{(4)} - x_{n}||).$$
(22)

If $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n) < 1$, there exist positive integers $l_3, l_4 \in (0, 1)$ and $N_2 > 0$ such that

$$0 < l_3 < \alpha_n$$
 and $\alpha_n + \beta_n < l_4 < 1$, $\forall n \ge N_2$.

By (22) we obtain

$$l_{3}(1 - l_{4}) \sum_{n=N_{2}}^{\infty} g(\|w_{n}^{(4)} - x_{n}\|) < \sum_{n=N_{2}}^{\infty} \alpha_{n} (1 - \alpha_{n} - \beta_{n}) g(\|w_{n}^{(4)} - x_{n}\|) \leq \sum_{n=N_{2}}^{\infty} (\|x_{n} - q\|^{2} - \|x_{n+1} - q\|^{2}) < \infty.$$
(23)

Therefore $\lim_{n\to\infty} g(\|w_n^{(4)} - x_n\|) = 0$ and hence

$$\lim_{n \to \infty} \|w_n^{(4)} - x_n\| = 0. \tag{24}$$

In addition

$$||w_{n}^{(3)} - x_{n}|| \leq ||w_{n}^{(3)} - q|| + ||x_{n} - q||$$

$$= d(w_{n}^{(3)}, P_{T}(q)) + ||x_{n} - q||$$

$$\leq H(P_{T}(x_{n}), P_{T}(q)) + ||x_{n} - q||$$

$$\leq ||x_{n} - q|| + ||x_{n} - q||$$

$$= 2||x_{n} - q||.$$
(25)

Since $\{\|x_n - q\|\}$ is bounded, we have $\{\|w_n^{(3)} - x_n\|\}$ is a bounded sequence. It is a simple consequence of the definition of $H(P_T(x_n), P_T(y_n))$ that for each positive integer $n \ge 1$, there exists $\hat{w}_n \in P_T(x_n)$ such that

$$\|\hat{w}_n - w_n^{(4)}\| \le H(P_T(x_n), P_T(y_n)) + \frac{1}{n}.$$

Next, consider

$$\begin{aligned} \|\hat{w}_{n} - x_{n}\| &\leq \|\hat{w}_{n} - w_{n}^{(4)}\| + \|w_{n}^{(4)} - x_{n}\| \\ &\leq H(P_{T}(x_{n}), P_{T}(y_{n})) + \frac{1}{n} + \|w_{n}^{(4)} - x_{n}\| \\ &\leq \|x_{n} - y_{n}\| + \frac{1}{n} + \|w_{n}^{(4)} - x_{n}\| \\ &\leq b_{n} \|w_{n}^{(2)} - x_{n}\| + c_{n} \|w_{n}^{(3)} - x_{n}\| + \frac{1}{n} + \|w_{n}^{(4)} - x_{n}\|. \end{aligned}$$

As, $n \to \infty$ in the above inequality, by (21) and (24) we obtain $\lim_{n \to \infty} \|\hat{w}_n - x_n\| = 0$. Since $\hat{w}_n \in P_T(x_n)$, it follows that $\lim_{n \to \infty} d(x_n, T(x_n)) = 0$. Since T satisfies condition (I), we have $\lim_{n \to \infty} d(x_n, F) = 0$. Thus, there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\|x_{n_k} - p_k\| < \frac{1}{2^k}$ for some $\{p_k\} \subset F$ and all k. Since

$$||x_{n_{k+1}} - p_k|| \le ||x_{n_k} - p_k|| < \frac{1}{2^k},$$

we get

$$\begin{aligned} \|p_{k+1} - p_k\| & \leq \|p_{k+1} - x_{n_{k+1}}\| + \|x_{n_{k+1}} - p_k\| \\ & < \frac{1}{2^{k+1}} + \frac{1}{2^k} \\ & < \frac{1}{2^{k-1}}. \end{aligned}$$

Therefore $\{p_k\}$ is a Cauchy sequence in D and thus converges to $q \in D$. Since

$$d(p_k, T(q)) \leq H(P_T(p_k), P_T(q))$$

$$\leq ||p_k - q||,$$

and $p_k \to q$ as $k \to \infty$, we have d(q, T(q)) = 0, and thus $q \in F$. Since $\{x_{n_k}\}$ converges strongly to q and $\lim_{n\to\infty} \|x_n - q\|$ exists, we have $\{x_n\}$ converges strongly to q.

References

- [1] Y.J. Cho, H. Zhou, G. Gou, Weak and strong convergence theorems for threestep iterations with errors for asymptotically nonexpansive mappings, Comput. Math. Appl. 47 (2004), 707-717.
- [2] J.S. Jung, Strong convergence theorems for multivalued nonexpansive nonself-mappings in Banach spaces, Nonlinear Anal. 66 (2007), 2345-2354.
- [3] B. Panyanak, Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces, Comput. Math. Appl. 54 (2007), 872-877.
- [4] N. Shahzad, H. Zegeye, On Mann and Ishikawa iteration schemes for multivalued maps in Banach spaces, Nonlinear Anal. 71 (2009), 838-844.
- [5] C. Shiau, K.K. Tan, C.S. Wong, Quasi-nonexpansive multi-valued maps and selections, Fund. Math. 87 (1975), 109-119.
- [6] Y. Song, H. Wang, Erratum to "Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces" [Comput. Math. Appl. 54 (2007), 872-877], Comput. Math. Appl. 55 (2008), 2999-3002.
- [7] Y. Song, H. Wang, Convergence of iterative algorithms for multivalued mappings in Banach spaces, Nonlinear Anal. 70 (2009), 1547-1556.

Author 1:

Department of Mathematics, Faculty of Science, Imam Khomeini International University, Postal code: 34149-16818, Qazvin, Iran.

E-mail: s_homaeipour@ikiu.ac.ir

Author 2

(a) Department of Mathematics, Faculty of Science, Imam Khomeini International University, Postal code: 34149-16818, Qazvin, Iran.

(b) School of Mathematics, Institute for Research in Fundamental Sciences, P. O. Box 19395-5746, Tehran, Iran.

E-mail: razani@ikiu.ac.ir