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STRONG CONVERGENCE THEOREMS OF
THREE-STEP ITERATIONS
FOR MULTI-VALUED MAPPINGS IN BANACH SPACES

S. Homaeipour and A. Razani

Abstract
In this paper, two classes of three-step iteration schemes for multi-valued
mappings in a uniformly convex Banach space are presented. Moreover, their
strong convergence are proved.

1 Introduction

Iterative methods for approximating fixed points of multi-valued mappings in Ba-
nach spaces have been studied by some authors [2, 3, 6, 7]. In 2009, Shahzad and
Zegeye [4] improved the results of [3, 6]. They introduced the following iteration
scheme.

Let D be a nonempty convex subset of a Banach space X, T : D — CB(D) a quasi-
nonexpansive multi-valued mapping and a,, 8, € [0, 1]. The sequence of Ishikawa
iterates is defined by z; € D,

Yn = ﬂ’nzn + (1 - ﬁn)xna n 2 17
;i (1)
Tnr1 = anzh + (1 —ap)Tn, n>1,

where z, € T(x,,) and 2}, € T (yn).

Next, they introduced the following iteration scheme.

Let D be a nonempty convex subset of a Banach space X, T : D — P(D) a multi-
valued mapping and Pr(z) = {y € T'(z); ||z — y|| = d(z, T(z))} and ay, B, € [0,1].
The sequence of Ishikawa iterates is defined by z; € D,

Tpyr = onz, + (1 —ap)r,, n>1,
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where z,, € Pr(z,) and 2/, € Pr(y,).

They proved strong convergence theorems for these iteration schemes in uniformly
convex Banach spaces. Inspired and motivated by the above facts, we introduce the
following iteration scheme.

Let D be a nonempty convex subset of a Banach space X and T': D — CB(D) a
multi-valued mapping. For a given x; € D, compute the sequences {z,}, {y,} and
{zn} by the iteration scheme

Zn = anwg) + (1= an)zn, n>1,
g = bpw? + cqwl? + (1= by — cp)an, n>1, (3)

Tp+1 = anwgi) + ﬁnwgf) + (1 — Op — /Bn)mn7 n>1,

where w(”, w(¥ € T(xn),wé2)7w7(15) € T(zn),wgl) € T(yn) and {an}, {bn}, {cn}, {an}
and {3, } are appropriate sequences in [0,1].

If a, = ¢, = B, = 0, then (3) reduces to (1). Next, we introduce the following
iteration scheme.

Let D be a nonempty convex subset of a Banach space X and T': D — P(D) a
multi-valued mapping. For a given 1 € D, compute the sequences {x, }, {yn} and
{zn} by the iteration scheme

Zn = anwg) + (1 — an)zp, n>1,
g = bpw? + cqwi® + (1= by — cp)an, n>1, (4)

Tnt1 = oznw#) + /an7(15) + (1 — Qp — ﬁn)zna n>1,

where wg),wﬁs) € PT(xn),wg), w£l5) € PT(zn),wgl) € Pr(yn) and {an}, {bn}, {cn},
{a,,} and {B,} are appropriate sequences in [0,1].

If a, = ¢, = B = 0, then (4) reduces to (2). In this paper, we prove strong
convergence theorems for these new iteration schemes.

Let D be a nonempty subset of a Banach space X. A single-valued mapping T :
D — D is called nonexpansive if |T(z) — T'(y)|| < ||z — y|| for z,y € D. Let
CB(D) denotes the family of nonempty, closed and bounded subsets of D. The set
D is called proximinal if for each x € X, there exists an element y € D such that
|z —y|| = d(x, D), let P(D) denotes nonempty, proximinal and bounded subsets of
D. The Hausdorff metric on CB(D) is defined by

H(A, As) = max{ sup d(z, As), sup d(y,Al)} ,
TE€A; yEAs

for Ay, Ay € CB(D), where d(x, A1) = inf{||z — y||;y € A1}
The multi-valued mapping T : D — CB(D) is called nonexpansive if

H(T(2), T(y) < lle — yll Va,y € D.

An element p € D is called a fixed point of T : D — D(respectively, T : D —
CB(D)) if p = T(p) (respectively, p € T(p)). The set of fixed points of T is



Strong convergence theorems of three-step iterations 175

represented by F(T'). The multi-valued mapping T : D — CB(D) is called quasi-
nonexpansive [5] if F(T) # 0 and H(T(z),T(p)) < ||z — p]|| for all z € D and all
p € F(T). It is clear that every nonexpansive multi-valued map T with F(T) # {)
is quasi-nonexpansive. But there exist quasi-nonexpansive mappings that are not
nonexpansive.

Example 1. Let D = [0, 00) with the usual metric and 7' : D — C'B(D) be defined

by
T@):{ﬂﬂ, T

-3 z-1], z>1

Then, clearly F(T) = {0} and H(T(z),T(0)) < |z — 0] for all , hence T is quasi-
nonexpansive. However, if z = 2,y = 1 we get that H(T(z),T(y)) > |z —y| = 1,
hence T' is not nonexpansive.

The mapping T : D — CB(D) with F = F(T) # ( satisfies condition (I) if
there is a nondecreasing function f : [0,00) — [0,00) with f(0) = 0, f(r) > 0 for
r € (0,00) such that

d(z,T(x)) > f(d(z, F)) forall z € D.

2 Main results

We use the following lemma to prove our main results.

Lemma 1. [I] Let X be a uniformly conver Banach space and B, = {z € X :
lz|| < r},r > 0. Then there exists a continuous, strictly increasing and convez
function g : [0,00) — [0,00),9(0) = 0 such that

laz + By +7z)1* < allz|® + BllyI* + vllz1* — aBg(llz — ),
for all z,y,z € B, and all a, B, € [0,1] with a+ B+ ~v=1.

Lemma 2. Let X be a uniformly convex Banach space and D a nonempty, closed
and convex subset of X. Suppose T : D — CB(D) is a nonexpansive multi-
valued mapping with F = F(T) # 0 and T(q) = {q} for each ¢ € F. Let
{an}, {bn}, {cn}, {an} and {B.} be real sequences in [0,1], such that b, + ¢, and
apn + B, are in [0,1] for alln > 1. For a given x1 € D, let {x,},{yn} and {z,} be
the sequences defined as in (3), then lim,_ o ||z, — q|| exists for each q € F.

Proof. Let q € F. We have

lan (w) = q) + (1 — ap) (@0 — q)|
anlws) = qll + (1 — an)l|zn — g
and(w), T(q)) + (1 — ap)|zn — 4
anH(T(2,), T(q)) + (1 — an)||z, — gl
anllzn — qll + (1= an) |z, — 4l
|z — qll,

lzn — qll

IN
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and
lyn —all = bn (U(Jn) —q)+ Cn(w(n) —q) + (1 =bp —cn)(wn — q)||
<b”wﬂm qll + enlws —gn (1= by — cn)llzm — gl
— bud(w? , T(q)) + cad(w, T(q)) + (1 = by — ) |20 — g
< bpH(T(20), T(@)) + cn H(T(22), T(q)) + (1 = by — )20 — g
<Mm—w+mm—w+u bn — ea)llzn — gl
> Hxn_qH+Cn||xn_qH+<1_bn_cn)Hxn_qH
=Ww—ﬂ|
Therefore
[Ee—— =w%m§> >+mw{ﬁwn+a—an—mx%—qm
< anl|wl — gl + Ballw) — qll + (1 — n — Ba) |z — g

= and(wy, T(q)) + Bud(w, T(q)) + (1 — an — By)|2n — 4

< anH(T(y), T(q)) + BuH(T(20), T(q)) (5)
+(1 = an — B)|@n — 4

< an”yn - QH + /Bn”Zn - QH + (1 — Qp — ﬂn)Hxn - QH

< ﬁ‘nllxn ] QH + 5n||xn —q|l + (1 — Qn — 671)”3% - QH

= || Tn — q||-

Hence {||z,, — ¢||} is a nonincreasing sequence, so lim, . ||z, — ¢|| exists for any
q € F(T). Also {z,} is bounded. O

Theorem 1. Let X be a uniformly convex Banach space and D a nonempty,
closed and convex subset of X. Suppose T : D — CB(D) is a nonexpansive
multi-valued mapping with F = F(T) # 0 and T(q) = {q} for each q € F. Let
{an}, {bn},{cn}, {an} and {B,} be real sequences in [0,1], such that b, + ¢, and
an, + B are in [0,1] for all n > 1 and lim, o ¢, = 0. For a given x; € D, let
{Zn}, {yn} and {z,} be the sequences defined as in (3). Suppose T satisfies condi-
tion (I). If 0 < liminf, . b, <limsup,,_, . (b,+c,) <1 and 0 < liminf, . o, <
limsup,,_, . (an + Bn) < 1, then {z,} converges strongly to a fizxed point of T.

Proof. Let ¢ € F(T). Then, as in the proof of Lemma 2, {z,}, {y,} and {z,} are
bounded. Therefore, there exists R > 0 such that x,, — q,yn — ¢, 2, — ¢ € Bg(0) for
all n > 1. Applying Lemma 1, there is a continuous, strictly increasing and convex
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function g : [0,00) — [0, 00), g(0) = 0, such that

2
lyn —all> = [[ba(ws? — )+ enw ”—q) + (1= by —co)(@n — g

< bl = gl + ealw® — qll” + (1 = by — ca)llzn — gl
by, <1—b —e)g(|wi? = z,|)
= b,(d (2) 2 (3) 2 2
(Awi? T(@)) + en(d(wi?, T@)) + (1 = bo = ea) 20—l
~ba(1 —bn—cn>g<|2|w£>—xn||> )
< bu(H(T (). T@))” + cul HT @) T@)
+(1_bn_gn)||93n_qn _zbn(l_bn_cn) (H’LU( —an)
< ballzn — al* + callzn — gl* + (1= by — ca) |20 — g

b (1= by — ca)g(ws — ).

(6)
Therefore
2 (4) 2
||xn+1 _QH = ”an(wn - )"‘ﬂn( Q)g(l_an_ﬂn)(xn_qm
< Oanwn - QH + ﬁn”wn - QH + (1 — Qp — ﬁn)llxn - QI|2
—an(l = o = B)g(lws? —aal)
— an(dw®, T(q)))” + P(d (wi”, T(q)))
(1= an = Ba)llzn — all® = an(l — an — Bu)g(ws? — z,]))
< an(H(T(yn), T()))* + Bu(H(T <zn> T(q)))’
+(1 = = Ba)llzn — all” = an(l — an — Ba)g(ws? — za]))
San||yn—fJH2+ﬂnHZn—Q|| +(1_0‘n_ )”mn_QHQ
—an(1 = an = Ba)g(|ws = z,)
< an(ballzn — all* + callen — gll* + (1= by — co)l|z — gl
~bn (1 — by — )9 — zall)) + Ballzn — al®
+(1 = = Ba) |2 — all® = an(1 = an — Br)g(ws? — z,]))
< O‘n(anIn - QI|2 + Cn||33n — Q||2 + (1 — b, — Cn)HIn - Q||2
~bn(1 = by — cn)g([w) = z))) + Bullwn — gl
+(1 = ap — Ba)l|zn —al®
—an (1 —an = Ba)g(w? —z,])
= ||z — qu2 — nbu(1 = b, — en)g(w) — za))
—an(1 = an = B)g(ws? —z,])
(7)
Hence
|zns1 = all* < llzn = dll? = nba(l = by — cn)g(w® — z,])). (8)

Since liminf, o ay, > 0 and 0 < liminf,,_, b, < limsup,,_, (b, + ¢,) < 1, there
exist positive integers 11,72 € (0,1) and Ny > 0 such that

0<ri <bp,0<ry<a, and b, +c, <re <1, Vn> Nj.
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By (8) we obtain

r2(1—12) 22y g(ws) = zall) < 252y, anba(l = by — co)g(ws) — )

2 2
<E ny (e = all” = llzn+r —all”)
< 00.

9)

Therefore lim,,_, g(||w$12) — zp]|) = 0 and hence

lim ||w?® — 2, = 0. (10)

n—oo

In addition, by (7) we obtain

|2nt1 —all” < [lzn — ql® — cnba(l - b 9w — )
—an (1 = an — Ba)g(ws? — 2,])) (11)

< — glf2 = an(l = an — Ba)g(ws? — z,)).

Since 0 < liminf,, o o, < limsup,, . (@, + Br) < 1, there exist positive integers
r3,74 € (0,1) and No > 0 such that

O0<r3<a, and a,+ 0, <rs <1, VYn> Ns.

By (11) we obtain

ra(1 = )R gk —2nll) < By an(l = an = B)g(luwn — )
<322 v (2 — al® = lznsr — al®) (12)
< Q.

Therefore lim,— o g(||w7(14) — z,||) = 0 and hence
lim [Jw® —z,| =0. (13)

It is a simple consequence of the definition of H (7T (x,), T (y,)) that for each positive
integer n > 1, there exists w,, € T(x,) such that

i — P < BT (), Tn) + (14

Next, consider
lwt? =zl < [lwi? — gl + [|lzn — gl
= d(w, T(q)) + ||z, — g
< H(T(20),T(q)) + & — gl (15)
< lzn — all + [lzn — 4l
= 2||z,, — ql.
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Since {||z, — ¢||} is bounded, we have {||w7(13) — Z,||} is a bounded sequence.
By (14) we obtain

o — zall <l — wiP | + lws? — 2]
< H(T(2), T(yn)) + £ + w0 — a2y
< = yall + L+ st — 2,
< anw%z) — zn|l + cn||wg3) — Znll + % + ||w$b4) — Znl-

As, n — oo in the above inequality, by (10) and (13) we obtain lim,, s ||Wn —2n| =
0. Since d(xy, T(zy)) < ||ty — x4, it follows that lim, o d(zn, T(x,)) = 0. Since
T satisfies condition (I), we have lim,,_ o d(x,, F') = 0. Thus there is a subsequence
{an,} of {x,} such that ||z, — px|| < 5 for some {px} C F and all k.

Since

1
||xnk+1 _pk” < ||xnk _pkH < ok’

we get
||pk+1 - pk” < ||pk+1 — Tngyq || + ||$nk+1 - pk”
1 1
< 2k+T =+ ok
< zEeT

Therefore {p;} is a Cauchy sequence in D and thus converges to g € D.
Since
d(pr, T(q)) < H(T(px)T(q))
< llpx —4ll,

and pr — ¢q as k — oo, we have d(¢,T(¢)) = 0 and thus ¢ € F. Since {z,,}
converges strongly to ¢ and lim,, _,, ||z, —¢|| exists, we have {x,,} converges strongly
to q. O

Theorem 2. Let X be a uniformly convex Banach space and D a nonempty, closed
and convex subset of X. Suppose T : D — P(D) is a multi-valued mapping with
F = F(T) # 0 such that Pr is nonezpansive. Let {an}, {bn},{cn}, {an} and {B,}
be real sequences in [0,1], such that b, + ¢, and o, + By are in [0,1] for alln > 1
and lim, ¢, = 0. For a gwen x1 € D, let {x,},{yn} and {z,} be the se-
quences defined as in (4). Suppose T satisfies condition (I). If 0 < liminf, . b, <
limsup,,_, o (bn +¢n) <1 and 0 < liminf, . o, <limsup,_, . (an+0n) < 1, then
{zn} converges strongly to a fixed point of T.

Proof. Let g € F. Then Pr(q) = {q}, We have

lan (w) = q) + (1 — ap) (s — q)|
anfws) — gl + (1 — an)l|zn — g
and(ws!, Pr(q)) + (1 — ay)|zn — 4l
anH(Pr(2,), Pr(q)) + (1 —an) ||z, — gl
anllzn — qll + (1 — an)|zn — gl
2 — g,

llzn — 4l

IN
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and
lyn —all = ||bn<w§> —q)+ cn<w$§’ —q) + (1= by — ) (@0 — q)|
<bullw? = gl + enllws? — gl + (1 = by — )|z — g
= b, d(w), Pr(q)) + cad(w, Pr(q)) + (1 — by — ) |[2n — 4
< b, H(Pr(zn), Pr(q)) + cn H(Pr(z,), Pr(q))
+(1 —b, — Cn)Hxn - QH

< bllzn — gl + call@n — gl + (1= by — )|z — g
< anmn - QH + Cn”xn - (I” + (1 — by — Cn)”xn - (I”
= ||z, — qll.

Therefore

|1 —all = lan(wh? = q) + Ba(ws) —q) + (1 = an — Ba)(@n — )|

< apllws? = gl + Ballw — gl + (1 = @ — Bp)|2n — 4

= and(wi, Pr(q)) + Bad(wy”, Pr(a)) + (1 = an = B) |n —
< anH(Pr(yn), Pr(q)) + BnH(Pr(zn), Pr(q))
+(1 — Qp — ﬁn)”xn - QH

< anllyn — qll + Bullzn — all + (1 — an — Bn) |20 — 4|

< apllzn — gl + Ballzn — gl + (1 — an — Bn)llzn — 4|

= [|lzn — 4.

(16)

Hence {||z,, —q||} is a nonincreasing sequence. Therefore, lim,, . ||, —¢|| exists for
each ¢ € F(T). So {z,} is bounded. Also {y,} and {z,} are bounded. Therefore,
there exists R > 0 such that =, — ¢,yn — ¢, 2, — ¢ € Bg(0) for all n > 1. By
Lemma 1, there is a continuous, strictly increasing and convex function g : [0, 00) —
[0,00),9(0) = 0, such that

lyn —all> = [ba(w? = q) + ca(wS — ) + (1 = by — co)(@n — q)

<balw® —ql* + ealw® — gl + (1 = by — )l — Il
“ba(1 = by — c)g(w) — )
_ (2) 2 (3) 2 2
= b (AW, Pr(q)) + ca(d(w®, Pr(g)) + (1= by — co)lzn — gl
—b(1 = by — ca)g(wi) — )
< b (H(Pr(z,), Pr()))* + eu(H(Pr(z,), Pr(q)))’
+(1 — by — Cn)Hxn - q”2
—bn(1 = by — ca)g([|wiD — )
< anZn - qH2 + anmn - Q||2 + (1 —b, — Cn)llxn - QHQ
“ba(1 = by — c)g(wi) — ).

2
I

(17)
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Therefore
lonss —all* = llon(@® — g) + Bu(w® — q) + (1 — an — Ba) (3n — @)I|
< anlwl® = g” + Bullw® — g’ + (1 = an — Bu)lzm — gl
—an (1 —an = Ba)g(ws —z,])
(4) 2 (5) 2
= a,(d(wy’, Pr(q))) + Ba(d(w, Pr(q)))
-‘r(l — Qp — ﬁn)llxn - QHQ
—an(1 = an = Ba)g(ws — )
< an(H(Pr(yn), Pr(a)))” + Bu(H(Pr(20), Pr(q)))’
+(1 = an = Ba)llzn — all® = an(l — an — Bu)g(ws? — za])
< anllyn —all” + Ballzn —all’ + (1 — an — Ba)l|zn — al®
—an(1 = ay — Ba)g(ws — )
< an(ballzn — all* + callen — qll* + (1= by — co)l|z — gl
~bn(1 = by = cn)g(w?) = z]))) + Bullzn — gl
(1= = Ba)|2n — all® = an(1l — an — Ba)g(ws? — z,]))
< an(anxn - Q||2 + Cn”xn — QH2 + (1 — by — Cn)Hxn - Q||2
~bn(1 = by — en)g(|w?) = z))) + Bulln — gl
(1= an = Ba)llzn — all” = an(l — an — Bu)g(ws? — za])
= [lzn — ql? = anbu(1 = by — ca)g(|lw? — z,]))
—an (1= an = Ba)g(ws — ). (
18
Hence )

2 2
lnsa = al* < llan = all* = anbu(1 = bo - en)g(lws? = z,])
—an(1 = an — Ba)g(wi?) — z,) (19)
2
< l#n = all> = anba(l = by — c)g(ws — z,])),

Since liminf,, o o, > 0 and 0 < liminf, . b, < limsup,,_, . (b, + ¢,) < 1, there
exist positive integers l1,ls € (0,1) and N7 > 0 such that

0<li<bp,0<li <a, and b, +c, <lp <1, ¥Yn > Nj.

By (19) we obtain

021 = 12)Z2 g0 = 2,])) < Z22 p anba (1 — b~ cn>g(||w53>2 — )
<22 v (lzn — all* = |zns1 — all*)
< 0.
(20)

Therefore lim,,_, g(Hwﬁ?) — z,]|) = 0 and hence

lim ||w? —z,| = 0. (21)
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In addition, by (18) we obtain

[t —al> < 20 — gl — anba(l - b en)g(lws? — )
—on (1 = an — Bo)g(ws? — 2])) (22)
< an — g2 = an(1 = an — Bu)g(|Jws? — 2,])).

If 0 < liminf, o o, < limsup,,_,(an + Bn) < 1, there exist positive integers
l3,14 € (0,1) and N3 > 0 such that

O0<lz<a, and a,+ 0, <ly <1, ¥Yn > Ns.
By (22) we obtain
3\l —t4) 2y N, 9 wn4 — Tn n=N,¥n{l — Qn = Pn)g wn4 — Tn
I3(1 = 1), g(lws?) — z,])) < 332y, an( o “2 D)
<322 n (len —all” = llzngr —all) (23)
< OQ.
Therefore lim,— o g(||w7(14) — z,||) = 0 and hence
lim [Jw® —z,| =o0. (24)

In addition ) @
[wn” —znll < lwn” —qll + lzn — 4|

= d(wY’, Pr(q)) + ||zn — g

< H(Pr(xy), Pr(q)) + |lzn — 4l (25)
<|zn —qll + |20 — 4|
= 2|z, — 4.

Since {||z, — ¢||} is bounded, we have {ng’) — 2|} is a bounded sequence.
It is a simple consequence of the definition of H(Pr(zy,), Pr(y,)) that for each
positive integer n > 1, there exists w,, € Pp(z,) such that

) 1
Hwn — w$L4)|| < H(PT(J)n), Pl (yn)) ﬁ
Next, consider

[ — zall <l — wiP |+ [lwl? — 2]
< H(Pr(z,), Pr(ya)) + £ + [ — 2|
< lzn = yall + 2 + s — ]
< bl — | + callwl? — zall + L+ i -z,

As, n — oo in the above inequality, by (21) and (24) we obtain lim,, . ||, — 2| =
0. Since W, € Pr(zy), it follows that lim, . d(z,,T(z,)) = 0. Since T satisfies
condition (I), we have lim, o d(zy, F)) = 0. Thus, there is a subsequence {z,, } of
{zn} such that ||z, — pl < 55 for some {py} C F and all k. Since

1
sy = Prll < llzn, = prll < 5



Strong convergence theorems of three-step iterations 183

we get
||pk+1 - pk” < ||p/€+1 ~ Tngga H + ||$7lk+1 - pk”
< 5o+ ok
< 5t

Therefore {py} is a Cauchy sequence in D and thus converges to g € D.

Since
d(pr,T(q)) < H(Pr(px),Pr(q))
S ||pk - q”v

and pp — ¢ as k — oo, we have d(q,T(q)) = 0, and thus ¢ € F. Since {z,,}
converges strongly to ¢ and lim,, , ||, —qg|| exists, we have {z,, } converges strongly
to gq. L]
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