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SOME COMMON FIXED POINT THEOREMS

IN VECTOR METRIC SPACES

Ishak Altun and Cüneyt Çevik

Abstract

In this paper we give some theorems on point of coincidence and common
fixed points for two self mappings satisfying some general contractive condi-
tions in vector metric spaces. Our results generalize some well-known recent
results.

1 Introduction

Vector metric space, which is introduced in [5] by motivated the paper [6], is gener-
alization of metric space, where the metric is Riesz space valued. Actually, in both
of them, the metric map is vector space valued. One of the differences between our
metric definition and Huang-Zhang’s metric definition is that there exists a cone
due to the natural existence of ordering on Riesz space. The other difference is that
our definition eliminates the requirement for the vector space to have a topological
structure.

A Riesz space (or a vector lattice) is an ordered vector space and a lattice. Let
E be a Riesz space with the positive cone E+ = {x ∈ E : x ≥ 0}. If (an) is a
decreasing sequence in E such that inf an = a, we write an ↓ a.

Definition 1. The Riesz space E is said to be Archimedean if 1
na ↓ 0 holds for

every a ∈ E+.

Definition 2. A sequence (bn) is said to order convergent (or o-convergent) to b
if there is a sequence (an) in E satisfying an ↓ 0 and |bn − b| ≤ an for all n, and
written bn

o→ b or o-lim bn = b, where |a| = sup {a,−a} for any a ∈ E.

Definition 3. A sequence (bn) is said to be order-Cauchy (or o-Cauchy) if there
exists a sequence (an) in E such that an ↓ 0 and |bn − bn+p| ≤ an holds for all n
and p.
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Definition 4. The Riesz space E is said to be o-Cauchy complete if every o-Cauchy
sequence is o-convergent.

For notations and other facts regarding Riesz spaces we refer to [2].

In Section 2, we recall some basic concepts of vector metric spaces, then in
Section 3, we give the main results of this work.

2 Vector Metric Spaces

We can find the following concepts and properties in [5].

Definition 5. Let X be a non-empty set and E be a Riesz space. The function
d : X × X → E is said to be a vector metric (or E-metric) if it is satisfying the
following properties:

(vm1) d(x, y) = 0 if and only if x = y,
(vm2) d(x, y) ≤ d(x, z) + d(y, z)

for all x, y, z ∈ X. Also the triple (X, d, E) (briefly X with the default parameters
omitted) is said to be vector metric space.

For arbitrary elements x, y, z, w of a vector metric space, the following state-
ments are satisfied.

(i) 0 ≤ d(x, y); (ii) d(x, y) = d(y, x); (iii) |d(x, z)− d(y, z)| ≤ d(x, y);
(iv) |d(x, z)− d(y, w)| ≤ d(x, y) + d(z, w).

Now we give some examples of vector metric spaces.

Example 1. (a) A Riesz space E is a vector metric space with d : E × E → E
defined by d(x, y) = |x− y| . This vector metric is called to be absolute valued metric
on E.

It is well known that R2 is a Riesz space with coordinatwise ordering defined by

(x1, y1) ≤ (x2, y2) ⇐⇒ x1 ≤ x2 and y1 ≤ y2

for (x1, y1), (x2, y2) ∈ R2. Again R2 is a Riesz space with lexicographical ordering
defined by

(x1, y1) ≤ (x2, y2) ⇐⇒ x1 < x2 or x1 = x2, y1 ≤ y2.

Note that R2 is Archimedean with coordinatwise ordering but not with lexicograph-
ical ordering.

Example 2. (a) Let d : R2 × R2 → R2 defined by

d((x1, y1), (x2, y2)) = (α |x1 − x2| , β |y1 − y2|)
is a vector metric, where α, β are positive real numbers.

(b) Let d : R× R→ R2 defined by

d(x, y) = (α |x− y| , β |x− y|)
is a vector metric, where α, β ≥ 0 and α + β > 0.
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Definition 6. A sequence (xn) in a vector metric space (X, d, E) vectorial converges

(or E-converges) to some x ∈ E, written xn
d,E→ x, if there is a sequence (an) in E

satisfying an ↓ 0 and d(xn, x) ≤ an for all n.

Definition 7. A sequence (xn) is called E-Cauchy sequence whenever there exists
a sequence (an) in E such that an ↓ 0 and d(xn, xn+p) ≤ an holds for all n and p.

Definition 8. A vector metric space X is called E-complete if each E-Cauchy
sequence in X E-converges to a limit in X.

Using the above definitions, we have the following properties.

If xn
d,E→ x, then (i) The limit x is unique, (ii) Every subsequence of (xn) E-

converges to x, (iii) If also yn
d,E→ y, then d(xn, yn) o→ d(x, y).

When E = R, the concepts of vectorial convergence and convergence in metric
are the same. When also X = E and d is the concepts of absolute valued vector
metric, vectorial convergence and convergence in order are the same. When E = R,
the concepts of E-Cauchy sequence and Cauchy sequence are the same.

Remark 1. If E is a Riesz space and a ≤ ka where a ∈ E+, k ∈ [0, 1), then a = 0.

Proof. The condition a ≤ ka means that −(1 − k)a = ka − a ∈ E+. Since a ∈ E+

and 1− k > 0, then also (1− k)a ∈ E+. Thus we have (1− k)a = 0 and a = 0.

3 Main Results

Recently, many authors have studied on common fixed point theorems for weakly
compatible pairs (see [1], [3], [4], [7] and [8]). Let T and S be self maps of a set X.
If y = Tx = Sx for some x ∈ X, then y is said to be a point of coincidence and x is
said to be a coincidence point of T and S. If T and S are weakly compatible, that is,
they are commuting at their coincidence point on X, then the point of coincidence
y is the unique common fixed point of these maps [1].

Theorem 1. Let X be an vector metric space with E is Archimedean. Suppose the
mappings S, T : X → X satisfies the following conditions

(i) for all x, y ∈ X,
d(Tx, Ty) ≤ ku(x, y) (1)

where k ∈ [0, 1) is a constant and

u(x, y) ∈
{

d(Sx, Sy), d(Sx, Tx), d(Sy, Ty),
1
2
[d(Sx, Ty) + d(Sy, Tx)]

}
,

(ii) T (X) ⊆ S(X),
(iii) S(X) or T (X) is E-complete subspace of X.
Then T and S have a unique point of coincidence in X. Moreover, if S and T

are weakly compatible, then they have a unique common fixed point in X.
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Proof. Let x0, x1 ∈ X. Define the sequence (xn) by Sxn+1 = Txn = yn for n ∈ N.
We first show that

d(yn, yn+1) ≤ kd(yn−1, yn), (2)

for all n. We have that

d(yn, yn+1) = d(Txn, Txn+1) ≤ ku(xn, xn+1),

for all n. Now we have to consider the following there cases:
If u(xn, xn+1) = d(yn−1, yn) then clearly (2) holds. If u(xn, xn+1) = d(yn, yn+1)

then according to Remark 1 d(yn, yn+1) = 0,and (2) is immediate. Finally, suppose
that u(xn, xn+1) = 1

2d(yn−1, yn+1). Then,

d(yn, yn+1) ≤ k

2
d(yn−1, yn+1) ≤ k

2
d(yn−1, yn) +

1
2
d(yn, yn+1)

holds, and we prove (2).
We have

d(yn, yn+1) ≤ knd(y0, y1).

Thus for all n and p,

d(yn, yn+p) ≤ d(yn, yn+1) + d(yn+1, yn+2) + · · ·+ d(yn+p−1, yn+p)
≤ (kn + kn+1 + · · ·+ kn+p−1)d(y0, y1)

≤ kn

1− k
d(y0, y1)

holds. Now, since E is Archimedean then (yn) is an E-Cauchy sequence. Since the
range of S contains the range of T and the range of at least one is E-complete,
there exists a z ∈ S(X) such that Sxn

d,E→ z. Hence there exists a sequence (an)
in E such that an ↓ 0 and d(Sxn, z) ≤ an. On the other hand, we can find w ∈ X
such that Sw = z.

Let us show that Tw = z. We have

d(Tw, z) ≤ d(Tw, Txn) + d(Txn, z) ≤ ku(xn, w) + an+1

for all n. Since

u(xn, w) ∈
{

d(Sxn, Sw), d(Sxn, Txn), d(Sw, Tw),
1
2
[d(Sxn, Tw) + d(Sw, Txn)]

}
,

at least one of the following four cases holds for all n.
Case 1:

d(Tw, z) ≤ d(Sxn, Sw) + an+1 ≤ an + an+1 ≤ 2an.

Case 2:

d(Tw, z) ≤ d(Sxn, Txn) + an+1 ≤ d(Sxn, z) + 2an+1 ≤ 3an.
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Case 3:
d(Tw, z) ≤ kd(Sw, Tw) + an+1 ≤ kd(Tw, z) + an,

that is, d(Tw, z) ≤ 1
1−kan.

Case 4:

d(Tw, z) ≤ 1
2
[d(Sxn, Tw) + d(Sw, Txn)] + an+1

≤ 1
2
d(Sxn, Tw) +

3
2
an+1

≤ 1
2
d(Sxn, z) +

1
2
d(Tw, z) +

3
2
an

≤ 1
2
d(Tw, z) + 2an,

that is, d(Tw, z) ≤ 4an.
Since the infimum of sequences on the right side of last inequality are zero, then

d(Tw, z) = 0, i.e. Tw = z. Therefore, z is a point of coincidence of T and S. If z1

is another point of coincidence then there is w1 ∈ X with z1 = Tw1 = Sw1. Now
from (1), it follows that

d(z, z1) = d(Tw, Tw1) ≤ ku(w, w1),

where

u(w, w1) ∈
{

d(Sw, Sw1), d(Sw, Tw), d(Sw1, Tw1),
1
2
[d(Sw, Tw1) + d(Sw1, Tw)]

}

= {0, d(z, z1)}.

Hence, d(z, z1) = 0,that is, z = z1.
If S and T are weakly compatible, then it is obvious that z is unique common

fixed point of T and S by [1].

Theorem 2. Let X be an vector metric space with E is Archimedean. Suppose the
mappings S, T : X → X satisfies the following conditions

(i) for all x, y ∈ X,

d(Tx, Ty) ≤ ku(x, y) (3)

where k ∈ [0, 1) is a constant and

u(x, y) ∈
{

d(Sx, Sy),
1
2
[d(Sx, Tx) + d(Sy, Ty)],

1
2
[d(Sx, Ty) + d(Sy, Tx)]

}
,

(ii) T (X) ⊆ S(X),
(iii) S(X) or T (X) is E-complete subspace of X.
Then T and S have a unique point of coincidence in X. Moreover, if S and T

are weakly compatible, then they have a unique common fixed point in X.
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Proof. Let us define the sequences (xn) and (yn) as in the proof of Theorem 1. We
first show that

d(yn, yn+1) ≤ kd(yn−1, yn), (4)

for all n. Notice that

d(yn, yn+1) = d(Txn, Txn+1) ≤ ku(xn, xn+1),

for all n.
As in Theorem 1, we have to consider three cases: u(xn, xn+1) = d(yn−1, yn),

u(xn, xn+1) = 1
2 [d(yn−1, yn)+d(yn, yn+1)] and u(xn, xn+1) = 1

2d(yn−1, yn+1). First
and third have been shown in the proof of Theorem 1. Consider only the second
case. If u(xn, xn+1) = 1

2 [d(yn−1, yn) + d(yn, yn+1)], then from (3) we have

d(yn, yn+1) ≤ 1
2
[d(yn−1, yn) + d(yn, yn+1)] ≤ k

2
d(yn−1, yn) +

1
2
d(yn, yn+1).

Hence, (4) holds.
In the proof of Theorem 1 we illustrate that (yn) is an E-Cauchy sequence. Then

there exist z ∈ S(X), w ∈ X and (an) in E such that Sw = z, d(Sxn, z) ≤ an and
an ↓ 0.

Now, we have to show that Tw = z. We have

d(Tw, z) ≤ d(Tw, Txn) + d(Txn, z) ≤ u(xn, w) + an+1

for all n. Since

u(xn, w) ∈
{

d(Sxn, Sw),
1
2
[d(Sxn, Txn) + d(Sw, Tw)],

1
2
[d(Sxn, Tw) + d(Sw, Txn)]

}
,

at least one of the three cases holds for all n. Consider only the case of u(xn, w) =
1
2 [d(Sxn, Txn)+d(Sw, Tw)] because the other two cases have shown that the proof
of Theorem 1. It is satisfied that

d(Tw, z) ≤ 1
2
[d(Sxn, Txn) + d(Sw, Tw)] + an+1

≤ 1
2
d(Sxn, z) +

1
2
d(Txn, z) +

1
2
d(Tw, z) + an+1

≤ 1
2
an +

1
2
d(Tw, z) +

3
2
an+1

≤ 1
2
d(Tw, z) + 2an,

that is, d(Tw, z) ≤ 4an. Since 4an ↓ 0, then Tw = z. Hence, z is a point of
coincidence of T and S. The uniqueness of z as in the proof of Theorem 1. Also, if
S and T are weakly compatible, then it is obvious that z is unique common fixed
point of T and S by [1].
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Theorem 3. Let X be an vector metric space with E is Archimedean. Suppose the
mappings S, T : X → X satisfies the following conditions

(i) for all x, y ∈ X,

d(Tx, Ty) ≤ bd(Sx, Tx) + cd(Sy, Ty) + ed(Sx, Ty) + fd(Sy, Tx) + gd(Sx, Sy) (5)

where a, b, c, e and f are nonnegative and b + c + e + f + g < 1,
(ii) T (X) ⊆ S(X),
(iii) S(X) or T (X) is E-complete subspace of X.
Then T and S have a unique point of coincidence in X. Moreover, if S and T

are weakly compatible, then they have a unique common fixed point in X.

Proof. Let us define the sequences (xn) and (yn) as in the proof of Theorem 1. We
have to show that

d(yn, yn+1) ≤ kd(yn−1, yn), (6)

for some k ∈ [0, 1) and all n. Consider Sxn+1 = Txn = yn for all n. Then

d(yn, yn+1) ≤ (b + g)d(yn−1, yn) + cd(yn, yn+1) + ed(yn−1, yn+1)

and
d(yn+1, yn) ≤ bd(yn, yn+1) + (c + g)d(yn−1, yn) + fd(yn−1, yn+1)

for all n. Hence,

d(yn, yn+1) ≤ b + c + e + f + 2g

2− (b + c + e + f)
d(yn−1, yn).

If we choose k = b+c+e+f+2g
2−(b+c+e+f) , then k ∈ [0, 1) and (6) is hold.

In the proof of Theorem 1 we illustrate that (yn) is an E-Cauchy sequence.Then
there exist z ∈ S(X), w ∈ X and (an) in E such that Sw = z, d(Sxn, z) ≤ an and
an ↓ 0.

Let us show that Tw = z. We have

d(Tw, z) ≤ d(Tw, Txn) + d(Txn, z)
≤ (b + f)d(Tw, z) + (c + f + g)d(Sxn, z) + (c + e + 1)d(Txn, z)
≤ (b + f)d(Tw, z) + (c + f + g)an + (c + e + 1)an+1

≤ (b + f)d(Tw, z) + (2c + e + f + g + 1)an,

that is, d(Tw, z) ≤ 2c+e+f+g+1
1−(b+f) an for all n. Then d(Tw, z) = 0, i.e. Tw = z. Hence,

z is a point of coincidence of T and S. The uniqueness of z is easily seen. Also, if
S and T are weakly compatible, then it is obvious that z is unique common fixed
point of T and S by [1].

Corollary 1. Let X be an vector metric space with E is Archimedean. Suppose the
mappings S, T : X → X satisfies the following conditions

(i) for all x, y ∈ X,
d(Tx, Ty) ≤ kd(Sx, Sy) (7)
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where k < 1,
(ii) T (X) ⊆ S(X),
(iii) S(X) or T (X) is E-complete subspace of X.
Then T and S have a unique point of coincidence in X. Moreover, if S and T

are weakly compatible, then they have a unique common fixed point in X.

Now we give an illustrative example.

Example 3. Let E = R2 with coordinatwise ordering (since R2 is not Archimedean
with lexicographical ordering, then we can not use this ordering), X = R, d(x, y) =
(|x− y| , α |x− y|), α > 0, Tx = x2 + 1 and Sx = 2x2. Then, for all x, y ∈ X we
have

d(Tx, Ty) =
1
2
d(Sx, Sy) ≤ kd(Sx, Sy)

for k ∈ [ 12 , 1),
T (X) = [1,∞) ⊆ [0,∞) = S(X)

and T (X) is E-complete subspace of X. Therefore all conditions of Corollary 1 are
satisfied. Thus T and S have a unique point of coincidence in X.

Remark 2. Note that in Example 3, z = 2 ∈ X is unique point of coincidence and
x = 1 and y = −1 are coincidence points of T and S,

2 = T (1) = S(1) = T (−1) = S(−1).

Also, note that T and S have not a common fixed point, because they are not weakly
compatible, since

TS(1) = T (2) = 5 6= 8 = S(2) = ST (1).

References

[1] M. Abbas, G. Jungck, Common fixed point results for noncommuting mappings
without continuity in cone metric spaces, J. Math. Anal. Appl., 341 (2008),
416-420.

[2] C. D. Aliprantis, K. C. Border, Infinite Dimensional Analysis, Springer-Verlag,
Berlin, 1999.

[3] I. Altun, D. Turkoglu, Some fixed point theorems for weakly compatible map-
pings satisfying an implicit relation, Taiwanese J. Math., 13 (4) (2009), 1291-
1304.

[4] I. Altun, D. Turkoglu, B.E. Rhoades, Fixed points of weakly compatible maps
satisfying a general contractive condition of integral type, Fixed Point Theory
Appl., 2007, Art. ID 17301, 9 pp.
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