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MULTIVALUED GENERALIZATIONS

OF THE KANNAN FIXED POINT THEOREM

Boško Damjanović and Dragan -Dorić

Abstract

In this paper we obtain multi-valed mapping generalizations of two recent
theorems of Kikkawa and Suzuki [M. Kikkawa and T. Suzuki, Some simila-
rity between contractions and Kannan mappings, Fixed Point Theory Appl.,
(2008), Article ID 649749, 1–8] and the main theorem of Enjouji et all. [Y.
Enjouji, M. Nakanishi and T. Suzuki, A Generalization of Kannan’s Fixed
Point Theorem, Fixed Point Theory and Applications, Volume 2009, Article
ID 192872, 10 pages].

1 Introduction and preliminaries

Let (X, d) be a metric space and let T be a self-mapping on X. Then T is called a
Kannan mapping if there exists a ∈ [0, 1/2) such that

d(Tx, Ty) ≤ ad(x, Tx) + ad(y, Ty) (1)

for all x, y ∈ X. If T is a such that

d(Tx, Ty) ≤ r max {d(x, Tx), d(y, Ty)}

for some r ∈ [0, 1) and all x, y ∈ X, then T is called a generalized Kannan mapping.
If X is complete, then every (generalized) Kannan mapping have a unique fixed
point [6]. Subrahmanyam [12] proved that Kannan theorem characterizes the metric
completeness of underlying spaces. It is known that the Banach theorem [1] cannot
characterize the metric completeness [2].

In [7] authors generalized Kannan mappings.
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Theorem 1.1. (Kikkawa and Suzuki [7]) Let T be a mapping on complete metric
space (X, d) and let ϕ be a non-increasing function from [0, 1) onto (1/2, 1] defined
by

ϕ(r) =





1 if 0 ≤ r ≤ 1√
2
,

1
1 + r

if
1√
2
≤ r < 1.

Let α ∈ [0, 1/2) and put r = α/(1− α) ∈ [0, 1). Suppose that

ϕ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ αd(x, Tx) + αd(y, Ty) (2)

for all x, y ∈ X. Then T has a unique fixed point z and limn Tnx = z holds for
every x ∈ X.

Theorem 1.2. (Kikkawa and Suzuki [7]) Let T be a mapping on complete metric
space (X, d) and let θ be a non-increasing function from [0, 1) onto (1/2, 1] defined
by

θ(r) =





1 if 0 ≤ r ≤ 1
2
(
√

5− 1),

1− r

r2
if

1
2
(
√

5− 1) ≤ r ≤ 1√
2
,

1
1 + r

if
1√
2
≤ r < 1.

Suppose that there exists r ∈ [0, 1) such that

θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ r max {d(x, Tx), d(y, Ty)} (3)

for all x, y ∈ X. Then T has a unique fixed point z and limn Tnx = z holds for
every x ∈ X.

On the other side, Nadler [10] proved multi-valued extension of the Banach
contraction theorem.

Theorem 1.3. (Nadler [10]) Let (X, d) be a complete metric space and let T be a
mapping from X into CB(X). Assume that there exists r ∈ [0, 1) such that

H(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X. Then there exists z ∈ X such that z ∈ Tz.

Many fixed point theorems have been proved by various authors as generaliza-
tions of the Nadler’s theorem (see [9], [4], [11], [3]). The following recent result [8]
is a generalization of Nadler [10].

Theorem 1.4. (Kikkawa and Suzuki [8]) Let (X, d) be a complete metric space and
let T be a mapping from X into CB(X). Define a strictly decreasing function η
from [0, 1) onto (1/2, 1] by

η(r) =
1

1 + r
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and assume that there exists r ∈ [0, 1) such that

η(r)d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X. Then there exists z ∈ X such that z ∈ Tz.

In this paper we obtain multi-valued version of Theorem 1.2 and then as a
corollary we obtain multi-valued version of Theorem 1.1.

2 Main results

Let (X, d) be a metric space. We denote by CB(X) the family of all non-empty
closed bounded subsets of X. Let H(·, ·) be the Hausdorff metric, i.e.,

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)}

for A, B ∈ CB(X), where d(x,B) = inf
y∈B

d(x, y).

Now we prove our main result.

Theorem 2.1. Define a non-increasing function ϕ from [0, 1) into (0, 1] by

ϕ (r) =





1, if 0 ≤ r <

√
5− 1
2

,

1− r, if
√

5− 1
2

≤ r < 1.

Let (X, d) be a complete metric space and let T be a mapping from X into CB(X).
Assume that

ϕ(r)d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ r max {d(x, Tx), d(y, Ty)} (4)

for all x, y ∈ X. Then there exists z ∈ X such that z ∈ Tz.

Proof. Let r1 be a real number such that 0 ≤ r < r1 < 1. Let u1 ∈= X and
u2 ∈ Tu1 be arbitrary. Since u2 ∈ Tu1, then d(u2, Tu2) ≤ H(Tu1, Tu2) and
ϕ = (r)d(u1, Tu1) ≤ d(u1, Tu1) ≤ d(u1, u2). Thus from the assumption (4),

d(u2, Tu2) ≤ H(Tu1, Tu2) ≤ r max {d(u1, Tu1), d(u2, Tu2)} .

Hence, as r < 1, we have d(u2, Tu2) ≤ rd(u1, u2). So, there exists u3 ∈ Tu2 such
that d(u2, u3) ≤ r1d(u1, u2). Thus, we can construct a sequence {un} in X such
that

un+1 ∈ Tun and d(un+1, un+2) ≤ r1d(un, un+1).

Hence, by induction,
d(un, un+1) ≤ rn−1

1 d(u1, u2).



128 Boško Damjanović and Dragan -Dorić

Then by the triangle inequality, we have

∞∑
n=1

d(un, un+1) ≤
∞∑

n=1

rn−1
1 d(u1, u2) < ∞.

Hence we conclude that {un} is a Cauchy sequence. Since X is complete, there is
some point z ∈ X such that

lim
n→∞

un = z.

Now we shall show that

d(z, Tx) ≤ rd(x, Tx) for all x ∈ X\{z}. (5)

Since un → z, there exists n0 ∈ N such that d(z, un) ≤ (1/3)d(z, x) for all n ≥ n0.
Then we have

ϕ (r) d(un, Tun) ≤ d(un, Tun)
≤ d(un, un+1)
≤ d(un, z) + d(un+1, z)·
≤ 2

3
d(x, z).

Since

2
3
d(x, z) = d(x, z)− 1

3
d(x, z)

≤ d(x, z)− d(un, z)
≤ d(un, x),

we get ϕ (r) d(un, Tun) ≤ d(un, x). Then from (4),

H(Tun, Tx) ≤ r max {d(un, Tun), d(x, Tx)} .

Since un+1 ∈ Tun, then d(un+1, Tx) ≤ H(Tun, Tx). So, it follows that

d(un+1, Tx) ≤ r max{d(un, un+1), d(x, Tx)}

for all n ∈ N with n ≥ n0. Letting n tends to ∞, we obtain d(z, Tx) ≤ rd(x, Tx).
Thus we proved (5).

Now we show that z ∈ Tz. Suppose, to the contrary, that z /∈ Tz. Consider
at first the case 0 ≤ r <

√
5−1
2 . Let a ∈ Tz. Then a 6= z and so by (5), we have

d(z, Ta) ≤ rd(a, Ta). On the other hand, since

ϕ (r) d(z, Tz) = d(z, Tz) ≤ d(z, a),

from (4) we have

H(Tz, Ta) ≤ r max {d(z, Tz), d(a, Ta)} . (6)
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Hence we have d(a, Ta) ≤ H(Tz, Ta) ≤ r max {d(z, Tz), d(a, Ta)} . Hence we get
d(a, Ta) ≤ rd(z, Tz). Therefore, by (5) and (6), we obtain

d(z, Tz) ≤ d(z, Ta) + H(Ta, Tz)
≤ rd(a, Ta) + r max {d(z, Tz), d(a, Ta)}
≤ rd(a, Ta) + rd(z, Tz)
≤ r2d(z, Tz) + rd(z, Tz)
=

(
r2 + r

)
d(z, Tz).

Hence, as r <
√

5−1
2 implies r2 + r < 1, we have

d(z, Tz) < d(z, Tz),

a contradiction. So we obtain z ∈ Tz.
Consider now the case

√
5−1
2 ≤ r < 1. We first prove

H(Tx, Tz) ≤ r max {d(x, Tx), d(z, Tz)} for all x ∈ X. (7)

If x = z, then (7) obviously holds. So we assume x 6= z. Then for every n ∈ N ,
there exists yn ∈ Tx such that d(z, yn) ≤ d(z, Tx) + (1/n)d(x, z). We have

d(x, Tx) ≤ d(x, yn)
≤ d(x, z) + d(z, yn)

≤ d(x, z) + d(z, Tx) +
1
n

d(x, z)

≤ d(x, z) + rd(x, Tx) +
1
n

d(x, z)

for n ∈ N. Hence (1− r)d(x, Tx) ≤ (1+1/n)d(x, z) holds. Letting n tend to ∞, we
have (1− r)d(x, Tx) ≤ d(x, z). Thus

ϕ(r)d(x, Tx) ≤ d(x, z).

From the assumption (4), we obtain (7). Therefore, as un+1 ∈ Tun, from (7) with
x = un we have

d(z, Tz) = lim
n→∞

d(un+1, T z)

≤ lim
n→∞

H(Tun, T z)

≤ lim
n→∞

r max {d(un, Tun), d(z, Tz)}
≤ lim

n→∞
r max {d(un, un+1), d(z, Tz)}

= rd(z, Tz).

Hence(1− r)d(z, Tz) ≤ 0, which implies d(z, Tz) = 0. Since Tz is closed, we obtain
z ∈ Tz. This completes the proof.
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Theorem 2.1 is a multi-valued mapping generalization of the theorem 2.3 of
Kikkawa and Suzuki [7] and therefore the Kannan fixed point theorem [6] for gen-
eralized Kannan mappings.

Corollary 2.1. Let (X, d) be a complete metric space and let T be a mapping from
X into CB(X). Let α ∈ [0, 1/2) and put r = 2α. Suppose that

ϕ(r)d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ αd(x, Tx) + αd(y, Ty) (8)

for all x, y ∈ X, where the function ϕ is defined as in Theorem 2.1. Then there
exists z ∈ X such that z ∈ Tz.

Corollary 2.1 is a multi-valued mapping generalization of the theorem 2.2 of
Kikkawa and Suzuki [7] and therefore the well known Kannan fixed point theorem
[6].

Corollary 2.1 also is a multi-valued mapping generalization of the theorem 3.1
of Y. Enjouji et all. [5], since by symmetry the inequality (3.3) in [5] implies the
inequality (2) in Theorem 1.1.
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Boško Damjanović
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