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COUPLED FIXED POINT THEOREMS

IN PARTIALLY ORDERED

CONE METRIC SPACES

Hui-Sheng Ding and Lu Li

Abstract

This paper is concerned with mixed monotone mappings in partially or-
dered cone metric spaces. We establish several fixed point theorems, which
generalize and complement some known results. Especially, even in a partially
ordered metric space, our main results are generalizations of the fixed point
theorems due to Bhaskar and Lakshmikantham [T. Grana Bhaskar, V. Lak-
shmikantham, Fixed point theorems in partially ordered metric spaces and
applications, Nonlinear Anal. TMA 65 (2006) 1379–1393].

1 Introduction

The existence of fixed points in partially ordered metric spaces was initiated in
[1], where some applications to matrix equations are studied. Since then, such
problems have been of great interest for many mathematicians. Especially, Bhaskar
and Lakshmikantham [2] established a fixed point theorem for mixed monotone
mappings in partially ordered metric spaces, i.e.,

Theorem 1.1. Let F : X × X → X be a continuous mapping with the mixed
monotone property on X. Assume that there exists a k ∈ [0, 1) with

d(F (x, y), F (u, v)) ≤ k

2
[d(x, u) + d(y, v)], ∀x ≥ u, y ≤ v.
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If there exist x0, y0 ∈ X such that

x0 ≤ F (x0, y0), y0 ≥ F (y0, x0).

Then, there exist x, y ∈ X such that

x = F (x, y), y = F (y, x).

Just as noted in [2], Theorem 1.1 can be used to investigate a large class of
problems. So it is an interesting and meaningful work to study the existence of
fixed points for mixed monotone mappings in partially ordered metric spaces. For
more related works about mixed monotone mappings in partially ordered metric
spaces, we refer the reader to [3, 4] and references therein.

On the other hand, recently, fixed point theorems in cone metric spaces and
ordered cone metric spaces were investigated by many authors (see, e.g., [5–14] and
references therein). Especially, the study on the existence of fixed points in partially
ordered cone metric spaces has attracted more and more attention.

The aim of this paper is to extend Theorem 1.1 in a partially ordered cone metric
space. As one will see, even in a partially ordered metric space, our main results
are generalizations of Theorem 1.1.

Next, let us recall some basic definitions and notations about cone, cone metric,
and mixed monotone mapping. For more details, we refer the reader to [2, 14].

Let E be a real Banach space. A closed convex set P in E is called a cone if the
following conditions are satisfied:

(i) if x ∈ P , then λx ∈ P for any λ ≥ 0,

(ii) if x ∈ P and −x ∈ P , then x = 0.

A cone P induces a partial ordering ≤ in E by

x ≤ y if and only if y − x ∈ P.

In addition, x ¿ y stands for y − x ∈ P o, where P o is the interior of P . A cone P
is called normal if there exists a constant k > 0 such that

0 ≤ x ≤ y implies that ‖x‖ ≤ k‖y‖,

where ‖ · ‖ is the norm on E.

Definition 1.2 ([14]). Let X be a nonempty set and P be a cone in a Banach space
E. Suppose that a mapping d : X ×X → E satisfies:

(d1) θ ≤ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y ,where θ is
the zero element of P ;

(d2) d(x, y) = d(y, x) for all x, y ∈ X;

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.
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Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 1.3 ([14]). Let (X, d) be a cone metric space. Let {xn} be a sequence in
X and x ∈ X. If ∀c À θ, there exists N ∈ N such that for all n > N , d(xn, x) ¿ c,
then we call that {xn} converges to x, and we denote it by lim

n→∞
xn = x or xn → x,

n →∞. If ∀c À θ, there exists N ∈ N such that for all n,m > N , d(xn, xm) ¿ c,
then {xn} is called a Cauchy sequence in X. In addition, (X, d) is called complete
cone metric space if every Cauchy sequence is convergent.

Remark 1.4. It is easy to see that {xn} is a Cauchy sequence whenever {xn} is
convergent in a cone metric space X.

Definition 1.5 ([2]). Let (X,v) be a partially ordered set and F : X × X → X.
The mapping is said to has the mixed monotone property if F (x1, y1) v F (x2, y2)
for all x1, x2, y1, y2 ∈ X with x1 v x2 and y2 v y1.

2 Main results

Throughout the rest of this paper, we denote by N the set of positive integers, by E
a Banach space, by P a cone in E with P o 6= ∅, by θ the zero element of P , and by
≤ the partial order induced by P . In addition, we denote by (X,v, d) an ordered
cone metric space, i.e., v is a partial order on the set X, and d is a cone metric
on X with the underlying cone P . Moreover, we call a mapping F : X ×X → X
is continuous provided that F (xn, yn) → F (x, y) whenever xn → x and yn → y,
where x, y, xn, yn ∈ X, ∀n ∈ N.

First, we prove a lemma, which will be used in the proof of our main results.

Lemma 2.1. Let (X, d) be a cone metric space with the underlying cone P . Assume
that

xn → x0, xn → y0, n →∞.

Then x0 = y0.

Proof. Let h ∈ P o. Then h
k ∈ P o for each k ∈ N. So for each k ∈ N, there exists

Nk ∈ N such that

d(xNk
, x0) ¿ h

k
, d(xNk

, y0) ¿ h

k
.

Thus

d(x0, y0) ≤ d(xNk
, x0) + d(xNk

, y0) ≤ 2h

k
, ∀k ∈ N,

which means that 2h
k − d(x0, y0) ∈ P for each k ∈ N. Letting k → ∞, it follows

that −d(x0, y0) ∈ P , i.e., d(x0, y0) = θ. Thus, x0 = y0.
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In fact, Lemma 2.1 is a slight generalization of [14, Lemma 2], where P is a
normal cone.

Now, let us present one of our main results.

Theorem 2.2. Let (X,v, d) be a complete ordered cone metric space, and F :
X × X → X be a continuous mapping with the mixed monotone property on X.
Suppose that the following assumptions hold:

(A1) there exist α, β, γ ≥ 0 with 2α + 3β + 3γ < 2 such that

d(F (x, y), F (u, v)) ≤ α · d(x, u) + d(y, v)
2

+ β · d(x, F (x, y)) + d(u, F (u, v)) + d(y, v)
2

+γ · d(x, F (u, v)) + d(u, F (x, y)) + d(y, v)
2

for all u v x, y v v;

(A2) there exist x0, y0 ∈ X such that x0 v F (x0, y0) and F (y0, x0) v y0.

Then F has a coupled fixed point, i.e., there exist x∗, y∗ ∈ X such that F (x∗, y∗) =
x∗ and F (y∗, x∗) = y∗.

Proof. Let

xn = F (xn−1, yn−1), yn = F (yn−1, xn−1), n = 1, 2, . . . .

Since F has the mixed monotone property on X, by (A2), we get

x0 v x1 v · · · v xn v xn+1 v · · ·

and
· · · v yn+1 v yn v · · · v y1 v y0.

Now, let

e =
d(x1, x0) + d(y1, y0)

2
, λ =

2(α + β + γ)
2− β − γ

.

Then, by (A1), we have

d(x2, x1) = d(F (x1, y1), F (x0, y0))

≤ α · d(x1, x0) + d(y1, y0)
2

+ β · d(x1, F (x1, y1)) + d(x0, F (x0, y0)) + d(y1, y0)
2

+γ · d(x1, F (x0, y0)) + d(x0, F (x1, y1)) + d(y1, y0)
2

= αe + β · d(x1, x2) + d(x0, x1) + d(y1, y0)
2

+ γ · d(x1, x1) + d(x0, x2) + d(y1, y0)
2

≤ αe + βe +
β

2
· d(x1, x2) + γ · d(x0, x1) + d(x1, x2) + d(y1, y0)

2

= (α + β + γ)e +
β + γ

2
d(x1, x2).
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Thus, we obtain

d(x2, x1) ≤ 2(α + β + γ)
2− β − γ

· e = λe,

where 0 ≤ λ < 1 since 2α + 3β + 3γ < 2.
Also, one can get

d(y1, y2) = d(F (y0, x0), F (y1, x1))

≤ α · d(y0, y1) + d(x0, x1)
2

+ β · d(y0, y1) + d(y1, y2) + d(x0, x1)
2

+γ · d(y0, y2) + d(y1, y1) + d(x0, x1)
2

≤ (α + β + γ)e +
β + γ

2
d(y1, y2),

which gives

d(y1, y2) ≤ 2(α + β + γ)
2− β − γ

· e = λe.

Similar to the above proof, one can show that

d(xn+1, xn) ≤ 2(α + β + γ)
2− β − γ

·d(xn, xn−1) + d(yn, yn−1)
2

= λ·d(xn, xn−1) + d(yn, yn−1)
2

and

d(yn, yn+1) ≤ 2(α + β + γ)
2− β − γ

·d(xn, xn−1) + d(yn, yn−1)
2

= λ·d(xn, xn−1) + d(yn, yn−1)
2

,

where n = 1, 2, . . . . Thus,

d(x3, x2) ≤ λ · d(x2, x1) + d(y2, y1)
2

≤ λ2e,

...

d(xn+1, xn) ≤ λ · d(xn, xn−1) + d(yn, yn−1)
2

≤ λne.

...

Also, by induction, we deduce that

d(yn, yn+1) ≤ λne, n = 1, 2, . . . .

Next, let us prove that {xn} and {yn} are Cauchy sequences. In fact, for m > n,
we have

d(xn, xm) ≤ d(xn, xn+1) + · · · d(xm−1, xm) ≤ (λn + · · ·λm−1)e ≤ λn

1− λ
e.
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Then, for every c À θ, there exists N ∈ N such that

d(xn, xm) ≤ λn

1− λ
e ¿ c, m > n > N.

Thus, {xn} is a Cauchy sequence. Similarly, one can also show that {yn} is a
Cauchy sequence.

Now, since the cone metric space (X,v, d) is complete, there exist x∗, y∗ ∈ X
such that

xn → x∗, yn → y∗, n →∞.

Then, by the continuity of F , the constructions of {xn}, {yn}, and Lemma 2.1, we
can conclude that F (x∗, y∗) = x∗ and F (y∗, x∗) = y∗.

In the case that F is not continuous, one can use the following theorem:

Theorem 2.3. Suppose all the assumptions of Theorem 2.2 except for the continuity
of F are satisfied. Moreover, assume that X has the following properties:

(a) if an increasing sequence {xn} converges to x in X, then xn v x for all n ∈ N;

(b) if an decreasing sequence {yn} converges to y in X, then y v yn for all n ∈ N.

Then the conclusions of Theorem 2.2 also hold.

Proof. Let {xn}, {yn}, x∗, y∗ be as in Theorem 2.2. It remains to prove that F (x∗, y∗) =
x∗ and F (y∗, x∗) = y∗.

By the assumptions (a) and (b), xn v x∗ and y∗ v yn for all n ∈ N. Then, using
(A1), we obtain

d(F (x∗, y∗), xn)
= d(F (x∗, y∗), F (xn−1, yn−1))

≤ α · d(x∗, xn−1) + d(y∗, yn−1)
2

+ β · d(x∗, F (x∗, y∗)) + d(xn−1, xn) + d(y∗, yn−1)
2

+γ · d(x∗, xn) + d(xn−1, F (x∗, y∗)) + d(y∗, yn−1)
2

≤ α · d(x∗, xn−1) + d(y∗, yn−1)
2

+ β · d(x∗, xn) + d(xn−1, xn) + d(y∗, yn−1)
2

+γ · d(x∗, xn) + d(xn−1, xn) + d(y∗, yn−1)
2

+
β + γ

2
· d(xn, F (x∗, y∗)).

Then, it follows that

2− β − γ

2
d(F (x∗, y∗), xn)

≤ α · d(x∗, xn−1) + d(y∗, yn−1)
2

+ β · d(x∗, xn) + d(xn−1, xn) + d(y∗, yn−1)
2

+γ · d(x∗, xn) + d(xn−1, xn) + d(y∗, yn−1)
2

.
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On the other hand, for every c À θ, there exists N ∈ N such that for all n > N ,
there hold

d(x∗, xn−1) ¿ c, d(x∗, xn) ¿ c, d(y∗, yn−1) ¿ c, d(xn−1, xn) ¿ c.

Then, we have

2− β − γ

2
d(F (x∗, y∗), xn) ¿ 2α + 3β + 3γ

2
· c ≤ c,

which yields that xn → F (x∗, y∗), n → ∞. Recalling that xn → x∗, n → ∞, it
follows from Lemma 2.1 that x∗ = F (x∗, y∗). By a similar argument, one can also
show that F (y∗, x∗) = y∗.

Remark 2.4. Theorem 2.2 and Theorem 2.3 are generalizations and complements
of some known results. For example, letting E = R, P = [0, +∞), and β = γ = 0,
one can get [2, Thereom 2.1] and [2, Thereom 2.2] from Theorem 2.2 and Theorem
2.3. In addition, in the case of F being independent of the second argument, one
can deduce a similar result to [12, Theroem 12].

In some cases, one can show that the coupled fixed point is the same. For
example, we have the following result:

Theorem 2.5. Suppose all the assumptions of Theorem 2.2 (or Theorem 2.3) are
satisfied. Moreover, assume that x0, y0 are comparable, and 2α + β + 3γ < 2. Then
x∗ = y∗.

Proof. Without loss of generality, one can assume that x0 v y0. Then, by the mixed
monotone property of F , xn v yn for all n ∈ N. Hence, we have

d(yn, xn) = d(F (yn−1, xn−1), F (xn−1, yn−1))

≤ α · d(xn−1, yn−1) + β · d(xn−1, xn) + d(yn−1, yn) + d(xn−1, yn−1)
2

+γ · d(xn−1, yn) + d(yn−1, xn) + d(xn−1, yn−1)
2

≤ (α +
β + γ

2
) · d(xn−1, yn−1) + β · d(xn−1, xn) + d(yn−1, yn)

2

+γ · d(xn−1, yn) + d(yn−1, xn)
2

≤ β · d(xn−1, xn) + d(yn−1, yn)
2

+ (α +
β + 3γ

2
) · d(x∗, y∗)

+(α +
β + γ

2
) · [d(xn−1, x∗) + d(y∗, yn−1)]

+γ · d(xn−1, x∗) + d(y∗, yn) + d(yn−1, y∗) + d(x∗, xn)
2

≤ β · d(xn−1, xn) + d(yn−1, yn)
2

+ (α +
β + 3γ

2
) · d(x∗, y∗)
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+(α +
β

2
+ γ) · [d(xn−1, x∗) + d(y∗, yn−1)] + γ · d(y∗, yn) + d(x∗, xn)

2
.

In view of d(x∗, y∗) ≤ d(x∗, xn) + d(xn, yn) + d(yn, y∗), one can get

d(x∗, y∗) ≤ (α +
β + 3γ

2
) · d(x∗, y∗) + β · d(xn−1, xn) + d(yn−1, yn)

2

+(α +
β

2
+ γ) · [d(xn−1, x∗) + d(y∗, yn−1)] + (1 +

γ

2
) · [d(y∗, yn) + d(x∗, xn)].

Thus,

(1− 2α + β + 3γ

2
)d(x∗, y∗)

≤ β · d(xn−1, xn) + d(yn−1, yn)
2

+ (α +
β

2
+ γ) · [d(xn−1, x∗) + d(y∗, yn−1)]

+(1 +
γ

2
) · [d(y∗, yn) + d(x∗, xn)].

On the other hand, since xn → x∗ and yn → y∗, for every c À θ, there exists N ∈ N
such that for all n > N ,

d(xn−1, xn), d(yn−1, yn), d(xn−1, x∗), d(y∗, yn−1), d(y∗, yn), d(x∗, xn) ¿ c.

Then, it follows that

(1− 2α + β + 3γ

2
)d(x∗, y∗) ≤ (2α + 2β + 3γ + 2) · c.

In view of 2α + β + 3γ < 2, we get

d(x∗, y∗) ≤ 4α + 4β + 6γ + 4
2− 2α− β − 3γ

· c, ∀c À θ,

which means that d(x∗, y∗) = θ. So x∗ = y∗.

Next, we establish a fixed point theorem for a class of quasicontraction.

Theorem 2.6. Let (X,v, d) be a complete ordered cone metric space, and F :
X ×X → X be a mapping with the mixed monotone property on X. Suppose that
the following assumptions hold:

(H1) there exists λ ∈ [0, 2
3 ) such that for each u v x, y v v, there exists z ∈

MF (x, y, u, v) satisfying

d(F (x, y), F (u, v)) ≤ λz,

where MF (x, y, u, v) is the following subset of P :
{

d(x, u) + d(y, v)
2

,
d(x, F (x, y)) + d(u, F (u, v)) + d(y, v)

2
,

d(x, F (u, v)) + d(u, F (x, y)) + d(y, v)
2

}
.
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(H2) there exist x0, y0 ∈ X such that x0 v F (x0, y0) and F (y0, x0) v y0.

(H3) F is continuous or X has the following properties:

(a) if an increasing sequence {xn} converges to x in X, then xn v x for all
n ∈ N;

(b) if an decreasing sequence {yn} converges to y in X, then y v yn for all
n ∈ N.

Then F has a coupled fixed point, i.e., there exist x∗, y∗ ∈ X such that F (x∗, y∗) =
x∗ and F (y∗, x∗) = y∗.

Proof. Let

xn = F (xn−1, yn−1), yn = F (yn−1, xn−1), n = 1, 2, . . . .

Then

x0 v x1 v · · · v xn v xn+1 v · · · , · · · v yn+1 v yn v · · · v y1 v y0.

By (H1), for each n ∈ N, there exists

zn ∈
{

d(xn, xn−1) + d(yn, yn−1)
2

,
d(xn, xn+1) + d(xn, xn−1) + d(yn, yn−1)

2
,
d(xn−1, xn+1) + d(yn, yn−1)

2

}

such that
d(xn+1, xn) = d(F (xn, yn), F (xn−1, yn−1)) ≤ λzn.

Now, we consider three cases:
1. If zn = d(xn,xn−1)+d(yn,yn−1)

2 , then

d(xn+1, xn) ≤ λ · d(xn, xn−1) + d(yn, yn−1)
2

≤ 2λ

2− λ
· d(xn, xn−1) + d(yn, yn−1)

2
;

2. If zn = d(xn,xn+1)+d(xn,xn−1)+d(yn,yn−1)
2 , then

d(xn+1, xn) ≤ λ

2
d(xn+1, xn) + λ · d(xn, xn−1) + d(yn, yn−1)

2
,

which gives that

d(xn+1, xn) ≤ 2λ

2− λ
· d(xn, xn−1) + d(yn, yn−1)

2
;

3. If zn = d(xn−1,xn+1)+d(yn,yn−1)
2 , then by case 2, we also have

d(xn+1, xn) ≤ 2λ

2− λ
· d(xn, xn−1) + d(yn, yn−1)

2
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since d(xn−1, xn+1) ≤ d(xn−1, xn) + d(xn, xn+1).
Thus, we have

d(xn+1, xn) ≤ 2λ

2− λ
· d(xn, xn−1) + d(yn, yn−1)

2
, ∀n ∈ N.

By a similar proof, one can also show that

d(yn, yn+1) ≤ 2λ

2− λ
· d(xn, xn−1) + d(yn, yn−1)

2
, ∀n ∈ N.

Then, we conclude that

d(xn+1, xn) ≤
(

2λ

2− λ

)n

· d(x1, x0) + d(y1, y0)
2

, ∀n ∈ N,

and

d(yn, yn+1) ≤
(

2λ

2− λ

)n

· d(x1, x0) + d(y1, y0)
2

, ∀n ∈ N.

It follows from λ ∈ [0, 2
3 ) that 0 ≤ 2λ

2−λ < 1. Then, analogously to the corresponding
proof of Theorem 2.2, one can show that there exist x∗, y∗ ∈ X such that

xn → x∗, yn → y∗, n →∞.

It remains to prove

F (x∗, y∗) = x∗, F (y∗, x∗) = y∗. (2.1)

If F is continuous, (2.1) obviously holds. Now, suppose that (a) and (b) of (H3)
hold. Since xn → x∗, yn → y∗, n → ∞, for every c À θ, there exists N ∈ N such
that for all n > N , there hold

d(x∗, xn−1) ¿ c, d(x∗, xn) ¿ c, d(y∗, yn−1) ¿ c, d(xn−1, xn) ¿ c.

On the other hand, noting that xn v x∗ and y∗ v yn for all n ∈ N, by (H1), we
have

d(F (x∗, y∗), xn) = d(F (x∗, y∗), F (xn−1, yn−1)) ≤ λwn,

where

wn ∈
{

d(x∗, xn−1) + d(y∗, yn−1)
2

,
d(x∗, F (x∗, y∗)) + d(xn−1, xn) + d(y∗, yn−1)

2
,

d(x∗, xn) + d(xn−1, F (x∗, y∗)) + d(y∗, yn−1)
2

}
.

For each n > N , we consider three cases:
(i) Let wn = d(x∗,xn−1)+d(y∗,yn−1)

2 . Then d(F (x∗, y∗), xn) ≤ λwn ≤ c ≤ 3
2c.

(ii) Let wn = d(x∗,F (x∗,y∗))+d(xn−1,xn)+d(y∗,yn−1)
2 . Then

d(F (x∗, y∗), xn) ≤ λwn ≤ d(x∗, F (x∗, y∗)) + d(xn−1, xn) + d(y∗, yn−1)
3
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≤ d(x∗, xn) + d(xn, F (x∗, y∗)) + d(xn−1, xn) + d(y∗, yn−1)
3

≤ 3c + d(xn, F (x∗, y∗))
3

,

which yields d(F (x∗, y∗), xn) ≤ 3
2c.

(iii) Let wn = d(x∗,xn)+d(xn−1,F (x∗,y∗))+d(y∗,yn−1)
2 . Then

d(F (x∗, y∗), xn) ≤ λwn ≤ d(x∗, xn) + d(xn−1, F (x∗, y∗)) + d(y∗, yn−1)
3

≤ 3c + d(xn, F (x∗, y∗))
3

,

which yields d(F (x∗, y∗), xn) ≤ 3
2c.

It follows from the above proof that xn → F (x∗, y∗) as n →∞. By Lemma 2.1,
x∗ = F (x∗, y∗). Analogously, one can also show that y∗ = F (y∗, x∗).

Theorem 2.7. Suppose that all the assumptions of Theorem 2.6 are satisfied, and
x0, y0 are comparable. Then x∗ = y∗.

Proof. Without loss of generality, one can assume that x0 v y0. Then, by the mixed
monotone property of F , xn v yn for all n ∈ N. Thus, we have

d(x∗, y∗) ≤ d(x∗, xn) + d(xn, yn) + d(yn, y∗)
= d(F (yn−1, xn−1), F (xn−1, yn−1)) + d(x∗, xn) + d(yn, y∗)
≤ λvn + d(x∗, xn) + d(yn, y∗),

where vn belongs to
{

d(yn−1, xn−1),
d(yn−1, yn) + d(xn−1, xn) + d(xn−1, yn−1)

2
,
d(yn−1, xn) + d(xn−1, yn) + d(xn−1, yn−1)

2

}
.

Next, we consider three cases:
(1) Let vn = d(yn−1, xn−1). Then

d(x∗, y∗) ≤ λd(yn−1, xn−1) + d(x∗, xn) + d(yn, y∗)
≤ λd(x∗, y∗) + [d(yn−1, y∗) + d(x∗, xn−1) + d(x∗, xn) + d(yn, y∗)].

(2) Let vn = d(yn−1,yn)+d(xn−1,xn)+d(xn−1,yn−1)
2 . Then

d(x∗, y∗) ≤ λ[d(yn−1, yn) + d(xn−1, xn) + d(xn−1, yn−1)] + d(x∗, xn) + d(yn, y∗)
≤ λd(x∗, y∗) + [d(yn−1, yn) + d(xn−1, xn) + d(yn−1, y∗) + d(x∗, xn−1) + d(x∗, xn) + d(yn, y∗)].

(3) Let vn = d(yn−1,xn)+d(xn−1,yn)+d(xn−1,yn−1)
2 . Then

d(x∗, y∗) ≤ λ

2
[d(yn−1, xn) + d(xn−1, yn) + d(xn−1, yn−1)] + d(x∗, xn) + d(yn, y∗)
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≤ 3λ

2
d(x∗, y∗) + 2[d(yn−1, y∗) + d(x∗, xn) + d(xn−1, x∗) + d(y∗, yn)].

Then, we conclude that for all n ∈ N,

d(x∗, y∗) ≤ 3λ

2
d(x∗, y∗)+d(yn−1, yn)+d(xn−1, xn)+2[d(yn−1, y∗)+d(x∗, xn)+d(xn−1, x∗)+d(y∗, yn)].

Noticing the fact that xn → x∗, yn → y∗ and λ ∈ [0, 2
3 ), it is not difficult to show

that ∀c À θ, d(x∗, y∗) ¿ c. This means that x∗ = y∗.
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