University of Niš, Faculty of Sciences and Mathematics, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Filomat **25:2** (2011), 163–172 DOI: 10.2298/FIL1102163K

ON SPACES OF GROUP-VALUED FUNCTIONS

Ljubiša D.R. Kočinac

Abstract

Several results concerning closure-type properties of function spaces of continuous real-valued functions on a Tychonoff space X are extended to the spaces of group-valued functions.

1 Introduction

We use standard notation and terminology following [2] and [7]. All spaces in this article are assumed to be Tychonoff, and all topological groups are assumed to be Hausdorff. For a group G, e denotes the identity element of G, and \mathcal{N}_e denotes a local base of e in G.

Let X be a space and G a topological group. By $C_p(X,G)$ we denote the multiplicative topological group of all continuous mappings from X into G endowed with the pointwise group operation and the topology of pointwise convergence τ_p . The symbol f_e denotes the function in $C_p(X,G)$ defined by $f_e(x) = e$ for all $x \in X$. When G is the additive group \mathbb{R} of real numbers (with the usual metric topology) we write $C_p(X)$ instead of $C_p(X,\mathbb{R})$. Since $C_p(X,G)$ is a topological group, hence a homogeneous space, we can consider $f_e \in C_p(X,G)$ when study local properties of $C_p(X,G)$. We study duality between spaces X and $C_p(X,G)$ for a given group G. In the particular case $G = \mathbb{R}$ we get results known in the C_p -theory (as well as in C_k -theory [11]).

For $x \in X$ and an open set $U \subset X$, we denote by W(x, U) the set

$$W(x, U) := \{ f \in \mathsf{C}_{\mathsf{p}}(X, G) : f(x) \in U \};$$

The pointwise topology on $C_p(X,G)$ has a subbase consisting of the sets

 $W(x, U), x \in X, U$ open in G.

Let X be a space and G a topological group. According to [20] X is said to be:

²⁰¹⁰ Mathematics Subject Classifications. 54C35, 54D20, 54E15, 54H11.

Key words and Phrases. Selection principles, (strong) fan tightness, bornology, strong uniform convergence.

Received: November 2, 2010; Revised: February 25, 2011 Communicated by Vladimir Rakočević Supported by MNTR RS

- (1) *G*-regular if for each closed set $F \subset X$ and each point $x \in X \setminus F$ there are $f \in \mathsf{C}_{\mathsf{p}}(X, G)$ and $g \in G \setminus \{e\}$ such that f(x) = g and $f(F) \subseteq \{e\}$;
- (2) G^* -regular if there is $g \in G$ such that for each closed set $F \subset X$ and each point $x \in X \setminus F$ there is $f \in \mathsf{C}_{\mathsf{P}}(X, G)$ such that f(x) = g and $f(F) \subseteq \{e\}$;
- (3) G^{**} -regular if for each closed set $F \subset X$ each point $x \in X \setminus F$ and each $g \in G$ there is $f \in C_p(X, G)$ such that f(x) = g and $f(F) \subseteq \{e\}$;

1.1 Selection principles

The following two selection principles are used in this paper. Let \mathcal{A} and \mathcal{B} denote collections of subsets of a set Z. Then:

 $\mathsf{S}_{fin}(\mathcal{A},\mathcal{B})$ denotes that for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that \mathcal{V}_n is a finite subset of $\mathcal{U}_n, n \in \mathbb{N}$, and $\bigcup_{n \in \mathbb{N}} \mathcal{V}_n \in \mathcal{B}$.

 $\mathsf{S}_1(\mathcal{A},\mathcal{B})$ is defined similarly to $\mathsf{S}_{fin}(\mathcal{A},\mathcal{B})$ but all \mathcal{V}_n 's are one-element sets.

An open cover \mathcal{U} of a space X is said to be an ω -cover if $X \notin \mathcal{U}$ and each finite set $F \subset X$ is contained in a member $U \in \mathcal{U}$.

 Ω denotes the family of ω -covers of a space.

A countable ω -cover \mathcal{U} of a space X is groupable [14], [15] if there is a partition of \mathcal{U} into countably many pairwise disjoint finite subsets \mathcal{U}_n , $n \in \mathbb{N}$, such that for each finite $F \subset X$ for all but finitely many n there is an element $U \in \mathcal{U}_n$ with $F \subset U$.

 Ω^{gp} denotes the family of all groupable $\omega\text{-}\mathrm{covers}$ of a space.

A space X has the Hurewicz covering property if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ with \mathcal{V}_n is a finite subset of \mathcal{U}_n for each $n \in \mathbb{N}$, and each $x \in X$ belongs to $\cup \mathcal{V}_n$ for all but finitely many n ([9], [10], [17]).

Recall also the following:

A space X has *countable fan tightness* if for each point $x \in X$ and each sequence $(A_n : n \in \mathbb{N})$ with $x \in \bigcap_{n \in \mathbb{N}} \overline{A_n}$ there are finite $B_n \subset A_n$, $n \in \mathbb{N}$, such that $x \in \bigcup_{n \in \mathbb{N}} \overline{B_n}$ ([1]).

X has countable strong fan tightness if for each point $x \in X$ and each sequence $(A_n : n \in \mathbb{N})$ with $x \in \bigcap_{n \in \mathbb{N}} \overline{A_n}$ there are $b_n \in A_n$, $n \in \mathbb{N}$, such that $x \in \overline{\{b_n : n \in \mathbb{N}\}}$ ([19]).

A space X is selectively weakly Fréchet-Urysohn if for each $x \in X$ and each sequence $(A_n : n \in \mathbb{N})$ of subsets X with $x \in \overline{A}_n$ for each n, there are finite sets $B_n \subset A_n, n \in \mathbb{N}$, such that each neighbourhood of x meets all but finitely many B_n (compare with [14], [15]).

For more details regarding selection principles we refer the reader to the survey papers [12], [13] (see also the classical papers [9], [10], [16], [18]).

2 Results

In [20, Prop. 7.2] it was proved the following generalization of the well-known theorem of Arhangel'skii-Pytkeev [2]: if G is a metric topological group and X is a G^* -regular space, then $C_p(X, G)$ has countable tightness if and only if all finite powers of X are Lindelöf.

In this section we prove (in a similar spirit) generalizations of three well-known results in C_p -theory.

The following lemma is actually proved in the proof of Lemma 7.3 in [20].

Lemma 2.1. If G is a topological group and X is a G^* -regular space, then there is $g \in G \setminus \{e\}$ such that for each open set $U \subset X$ and each non-empty finite set $F \subset U$ there is $f_{F,U} \in \mathsf{C}_{\mathsf{p}}(X,G)$ satisfying $f_{F,U}(F) \subseteq \{e\}$ and $f_{F,U}(X \setminus U) \subseteq \{g^{-1}\}$.

Theorem 2.2. Let G be a metric group and X a G^* -regular space. If X satisfies $\mathsf{S}_{fin}(\Omega, \Omega)$, then $\mathsf{C}_{\mathsf{p}}(X, G)$ has countable fan tightness.

Proof. Let $(A_n : n \in \mathbb{N})$ be a sequence of subsets of $\mathsf{C}_{\mathsf{p}}(X, G)$ whose closures contain f_e . Fix a decreasing local base $\{O_m : m \in \mathbb{N}\}$ at e in G (because G is a metric group). For each $n, m \in \mathbb{N}$ let $\mathcal{U}_{n,m} = \{f^{\leftarrow}(O_m) : f \in A_n\}$. We prove that for each finite set $F \subset X$ and each $m, n \in \mathbb{N}$ there is a member of $\mathcal{U}_{n,m}$ containing F. Indeed, for every finite set $F \subset X$ every neighborhood $W(F; O_m)$ of f_e intersects A_n , hence there exists a function $f \in A_n$ such that $f(F) \subset O_m$. Then $F \subset f^{\leftarrow}(O_m) \in \mathcal{U}_{n,m}$. Without loss of generality one may suppose that $X \notin \mathcal{U}_{n,m}$ for each $n, m \in \mathbb{N}$, so every $\mathcal{U}_{m,n}$ is an ω -cover of X.

Apply (1) to the sequence $(\mathcal{U}_{n,n} : n \in \mathbb{N})$; there exists a sequence $(\mathcal{V}_{n,n} : n \in \mathbb{N})$ of finite subsets such that for each $n, \mathcal{V}_{n,n} \subset \mathcal{U}_{n,n}$ and $\bigcup_{n \in \mathbb{N}} \mathcal{V}_{n,n}$ is an ω -cover of X. Let $\mathcal{V}_{n,n} = \{U_{n,m_1}, \cdots, U_{n,m_n}\}, n \in \mathbb{N}$, where $U_{n,m_i} = \varphi_{n,m_i}^{\leftarrow}(O_n)$. For each nput $B_n = \{\varphi_{n,m_i} : i \leq n\}$

Let us prove $f_e \in \bigcup_{n \in \mathbb{N}} \overline{B_n}$. Let W(E; O), (*E* a finite subset of *X*, *O* a neighbourhood of $e \in G$), be a neighborhood of f_e in $C_p(X, G)$ and let *m* be a natural number such that $O_m \subset O$. Since *E* is a finite subset of *X* and *X* satisfies $S_{fin}(\Omega, \Omega)$, there are $i \in \mathbb{N}, i \geq m$, and $j \leq m_i$ such that $\varphi_{i,j}^{\leftarrow}(O_i) \supset E$. So,

$$\varphi_{i,j}(E) \subset O_i \subset O_m \subset O,$$

i.e. $\varphi_{i,j} \in W(E,O)$ which shows $f_e \in \overline{\bigcup_{n \in \mathbb{N}} B_n}$.

Theorem 2.3. Let G be a group and X a G^{*}-regular space. If $C_p(X,G)$ has countable fan tightness, then X satisfies $S_{fin}(\Omega, \Omega)$.

Proof. Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of ω -covers of X. For a fixed $n \in \mathbb{N}$ and a finite set F of X let $\mathcal{U}_{n,F} := \{U \in \mathcal{U}_n : F \subset U\}$. By Lemma 2.1 one can find $g \in G$ such that for each $U \in \mathcal{U}_{n,F}$ there exists $f_{K,U} \in \mathsf{C}_{\mathsf{p}}(X,G)$ satisfying $f_{F,U}(F) \subset \{e\}$ and $f_{F,U}(X \setminus U) \subset \{g^{-1}\}$. Let for each n,

$$A_n = \{ f_{F,U} : F \text{ finite in } X, U \in \mathcal{U}_{n,F} \}.$$

Let us prove that $f_e \in \overline{A_n}$ for each $n \in \mathbb{N}$. Indeed, fix $m \in \mathbb{N}$; let K be a non-empty finite set in X and O a neighborhood of e in G. There is $U \in \mathcal{V}_m$ with $K \subset U$. Then $f_{K,U} \in A_n \cap \bigcap_{x \in K} W(x, O)$.

Since $C_p(X, G)$ has countable fan tightness there is a sequence $(B_n : n \in \mathbb{N})$ of finite sets such that for each $n \in \mathbb{N}$, $B_n \subset A_n$ and $f_e \in \bigcup_{n \in \mathbb{N}} B_n$. Let, for a fixed $n, B_n = \{f_{F_{n,i},U_{n,i}} : i \leq k_n\}$ and $\mathcal{V}_n = \{U_{n,i} : i \leq k_n\}$. We claim that the sequence $(\mathcal{V}_n : n \in \mathbb{N})$ witnesses that X has property $S_{fin}(\Omega, \Omega)$.

Let S be a finite subset of X. From $f_e \in \overline{\bigcup_{n \in \mathbb{N}} B_n}$ it follows that there is $m \in \mathbb{N}$, $i \leq k_m$ and a function $f_{F_{m,i},U_{m,i}} \in B_m$ belonging to $\bigcap_{x \in S} W(x, G \setminus \{g^{-1}\})$. Then $S \subset U_{m,i}$. Otherwise, for some $x \in S$ one has $x \notin U_{m,i}$ so that $f_{F_{m,i},U_{m,i}}(x) = g^{-1}$, which contradicts the fact $f_{F_{m,i},U_{m,i}} \in W(x, G \setminus \{g^{-1}\})$. \Box

Corollary 2.4. Let G be a metric group and X a G^* -regular space. Then the following are equivalent:

- (1) X satisfies $S_{fin}(\Omega, \Omega)$;
- (2) $C_p(X,G)$ has countable fan tightness.

In a similar way we prove the following theorem.

Theorem 2.5. Let G be a metric group and X a G^* -regular space. Then the following are equivalent:

- (1) X satisfies $S_1(\Omega, \Omega)$;
- (2) $C_p(X,G)$ has countable strong fan tightness.

Observe that here, as in Theorem 2.2, we use the fact that G is a metric group only for the proof $(1) \Rightarrow (2)$.

A space X is said to be ω -Lindelöf if each ω -cover of X contains a countable ω -subcover. Equivalently, all finite powers of X are Lindelöf.

For the proof of the following theorem we need

Theorem 2.6. ([15]) For an ω -Lindelöf space the following assertions are equivalent:

- (1) Each finite power of X has the Hurewicz property;
- (2) X has property $S_{fin}(\Omega, \Omega^{gp})$.

Theorem 2.7. Let X be an ω -Lindelöf space and G a metric group. If X is G^* -regular, then the following are equivalent:

- (1) $C_p(X,G)$ is a selectively weakly Fréchet-Urysohn space;
- (2) Each finite power of X has the Hurewicz property.

Proof. (1) \Rightarrow (2): (Here we use only the fact that X is G^* -regular.) Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of ω -covers of X.

For each finite set $F \subset X$ pick a $U_{n,F} \in \mathcal{U}_n$ with $F \subset U_{n,F}$. By Lemma 2.1 pick $g \in G$ and $f_{F,U_{n,F}} \in \mathsf{C}_{\mathsf{p}}(X,G)$ such that $f_{F,U_{n,F}}(F) = \{e\}$, and $f_{F,U_{n,F}}(X \setminus U) \subset \{g^{-1}\}$. Put $A_n = \{f_{F,U_{n,F}} : F \subset X \text{ finite and } U \in \mathcal{U}_n\}$. Then $f_e \in \overline{A_n}$ for each $n \in \mathbb{N}$.

Using (1) find a sequence $(B_n : n \in \mathbb{N})$ such that B_n is a finite subset of A_n for each $n \in \mathbb{N}$ and each neighbourhood of f_e intersects B_n for all but finitely many n. Let $\mathcal{V}_n, n \in \mathbb{N}$, be the set of sets $U_{n,F}$ such that $f_{F,U_{n,F}} \in B_n$. Then each \mathcal{V}_n is a finite subset of \mathcal{U}_n . Let us prove that each finite subset of X is contained in an element $V \in \mathcal{V}_n$ for all but finitely many n.

Let E be a finite subset of X. Consider the neighbourhood $W(E, O_k)$ of f_e . There is $n_0 \in \mathbb{N}$ such that for each $n \geq n_0$, $W(E, O_k) \cap B_n \neq \emptyset$; let $f_{F,U_{n,F}} \in W(E, O_k)$. This means that for all $n \geq n_0$ we have: for each $x \in E$, $f_{F,U_{n,F}}(x) \in O_k$, i.e. $E \subset U_{n,F} \in \mathcal{V}_n$.

(2) \Rightarrow (1): Fix a decreasing countable local base $\{O_n : n \in \mathbb{N}\}$ at $e \in G$. Let $(A_n : n \in \mathbb{N})$ be a sequence of subsets of $C_p(X, G)$ such that $f_e \in \bigcap_{n \in \mathbb{N}} \overline{A_n}$. For each finite subset F of X the neighborhood $W(F, O_1)$ of f_e has a nonempty intersection with A_1 . Choose $f_{F,1} \in A_1$. Since $f_{F,1}$ is continuous, choose for each $x \in F$ an open set V_x such that $f_{F,1}(V_x) \subset O_1$, and set $V_{F,1} = \bigcup_{x \in F} V_x$, and $\mathcal{V}_1 = \{V_{F,1} : F \subset X \text{ finite}\}$. Then \mathcal{V}_1 is an ω -cover of X. Similarly (by using $O_n \in \mathcal{N}_e, n \geq 2$) one can construct an ω -cover \mathcal{V}_n for each $n \geq 2$. Apply (2) (and Theorem 2.6) to the sequence $(\mathcal{V}_n : n \in \mathbb{N})$ and choose finite sets $\mathcal{W}_n \subset \mathcal{V}_n$, $n \in \mathbb{N}$, so that each finite subset of X is contained in a member of \mathcal{W}_n for all but finitely many n. Note that, without loss of generality, one can assume that \mathcal{W}_n 's are pairwise disjoint, i.e. that $\mathcal{W} = \bigcup_{n \in \mathbb{N}} \mathcal{W}_n$ is a groupable ω -cover of X. Let $\mathcal{W}_n = \{V_{F_1}^{(n)}, \cdots, V_{F_{k_n}^{(n)}}\}, n \in \mathbb{N}$. For each n, let $B_n \subset A_n$ be the set of all functions in A_n such that for each $V_{F_i}^{(n)} \in \mathcal{W}_n, i \leq k_n$, it holds $f_{V_{F_i}^{(n)}}(V_{F_i^{(n)}}) \subset O_i$. Then the sequence $(B_n : n \in \mathbb{N})$ testifies that (1) is satisfied.

3 Results concerning bornologies

In this section we extend the results from the previous section and from [5] (see also [6]) to the function space $C_p(X, G)$ endowed with the topology of strong uniform convergence on bornologies. In [5], several results concerning tightness-type properties of the space $(C_p(X), \tau_{\mathfrak{B}}^s)$, X a metric space, are proved. At the end of this section we obtain another result of this kind (see Theorem 3.5) as a corollary of a more general result.

According to [8] a *bornology* on a topological space X is a family \mathfrak{B} of nonempty subsets of X which is closed under taking finite unions, hereditary and is a cover of X.

A base for \mathfrak{B} is a $\mathfrak{B}_0 \subset \mathfrak{B}$ which is cofinal in \mathfrak{B} with respect to the inclusion.

A base is called *closed* (*compact*) if all its members are closed (compact) subsets of X.

Some examples of important bornologies on a space X are:

- 1. the family \mathfrak{F} of all nonempty finite subsets of X,
- 2. the family of all nonempty subsets of X,
- 3. the family \Re of nonempty relatively compact subsets of X,
- 4. the family of all nonempty totally bounded subsets of a metric space X.

In [3], Beer and Levy defined the notion of strong uniform continuity for functions between two metric spaces, as well as the topology of strong uniform convergence on a bornology. Following their ideas we define the topology of strong uniform convergence on spaces of functions from a uniform space (X, \mathbb{D}) into a topological group G.

For a uniform space (X, \mathbb{D}) , a topological group G and a bornology \mathfrak{B} with closed base on X, $\tau_{\mathfrak{B}}^s$ is the topology of strong uniform convergence on \mathfrak{B} determined by the uniformity on G^X having as a base the sets

$$[B,O]^s := \{(f,g) : \exists D \in \mathbb{D} \text{ so that } g(x) \in f(x)O \text{ for each } x \in D[B]\},\$$

 $(B \in \mathfrak{B}, O \in \mathcal{N}_e).$

For $f \in (\mathsf{C}(X,G), \tau^s_{\mathfrak{B}})$ the standard local base of f is the collection of sets

 $[B,O]^s(f) = \{g : \exists D \in \mathbb{D} \text{ with } g(x) \in f(x)O \text{ for all } x \in D[B]\},\$

 $(B \in \mathfrak{B}, O \in \mathcal{N}_e).$

Call a space X G^* -normal if there is $g \in G$ such that for each pair (F_1, F_2) of disjoint closed subsets of X there is $f \in C_p(X, G)$ such that $f(F_1) \subseteq \{g\}$ and $f(F_2) \subseteq \{e\}$

An open cover \mathcal{U} of a uniform space (X, \mathbb{D}) with a bornology \mathfrak{B} is said to be a strong \mathfrak{B} -cover of X (or a \mathfrak{B}^s -cover of X) [4], [5], if $X \notin \mathcal{U}$ and for each $B \in \mathfrak{B}$ there exist $U \in \mathcal{U}$ and $D \in \mathbb{D}$ such that $D[B] \subset U$.

 $\mathcal{O}_{\mathfrak{B}^s}$ is the collection of \mathfrak{B}^s -covers of a space.

Theorem 3.1. Let G be a metric group, (X, \mathbb{D}) a G^* -normal uniform space and \mathfrak{B} a bornology on X with closed base. The following are equivalent:

- (1) $(\mathsf{C}(X,G),\tau^s_{\mathfrak{B}})$ has countable strong fan tightness;
- (2) X satisfies $S_1(\mathcal{O}_{\mathfrak{B}^s}, \mathcal{O}_{\mathfrak{B}^s})$.

Proof. (1) \Rightarrow (2): Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of open \mathfrak{B}^s -covers of X. Fix a countable decreasing local base $\mathcal{N}_e = \{O_1, O_2, \cdots\}$ at $e \in G$. For every $B \in \mathfrak{B}$ and every $n \in \mathbb{N}$ there exists $U_{n,B} \in \mathcal{U}_n$ such that $D^2[B] \subset U_{n,B}$.

For a fixed $n \in \mathbb{N}$ and $B \in \mathfrak{B}$ set

$$\mathcal{U}_{n,B} := \{ U \in \mathcal{U}_n : D^2[B] \subset U \}.$$

It is easy to check that $\overline{D[B]} \subset D^2[B]$. Therefore, for each $U \in \mathcal{U}_{n,B}$, there is a continuous function $f_{B,U}$ from X into G such that $f_{B,U}(D[B]) = \{e\}$ and $f_{B,U}(X \setminus U) = \{g\}$. Let for each n,

$$A_n = \{ f_{B,U} : B \in \mathfrak{B}, U \in \mathcal{U}_{n,B} \}.$$

It is easy to verify that f_e belongs to the $\tau_{\mathfrak{B}}^s$ -closure of A_n for each $n \in \mathbb{N}$. By (1) for each $n \in \mathbb{N}$ there is a function $f_{B_n,U_n} \in A_n$ so that f_e belongs to the $\tau_{\mathfrak{B}}^s$ closure of $\{f_{B_n,U_n} : n \in \mathbb{N}\}$. We claim that the sequence $(U_n : n \in \mathbb{N})$ witnesses for $(\mathcal{U}_n : n \in \mathbb{N})$ that X has property $\mathsf{S}_1(\mathcal{O}_{\mathfrak{B}^s}, \mathcal{O}_{\mathfrak{B}^s})$.

Let $B \in \mathfrak{B}$. Since $f_e \in \overline{\{f_{B_n,U_n} : n \in \mathbb{N}\}}$ it follows that $[B, O_1]^s(f_e)$ contains the function f_{B_m,U_m} for some $m \in \mathbb{N}$. Therefore, there is $D \in \mathbb{D}$ such that for each $x \in D[B]$ it holds $f_{B_m,U_m}(x) \subset O_m$, which means $D[B] \subset U_m$.

(2) \Rightarrow (1): Let $(A_n : n \in \mathbb{N})$ be a sequence of subsets of $(\mathsf{C}(X), \tau^s_{\mathfrak{B}})$ whose closures contain f_e .

For each $B \in \mathfrak{B}$ and each $O_m \in \mathcal{N}_e$ the neighborhood $[B, O_m]^s(f_e)$ of f_e meets each A_n in a function $f_{B,n,m} \in A_n$ satisfying: there is $D \in \mathbb{D}$ with $f_{B,n,m}(x) \in O_m$ for each $x \in D[B]$. For each n set

$$\mathcal{U}_{n,m} = \{ f^{\leftarrow}(O_m) : m \in \mathbb{N}, f \in A_n \}.$$

We claim that for each $n, m \in \mathbb{N}$ and each $B \in \mathfrak{B}$ there is an element in $\mathcal{U}_{n,m}$ containing B. Indeed, if $B \in \mathfrak{B}$, then there is $f_{B,n,m} \in [B, O_m]^s(f_e) \cap A_n$. Hence there is $D \in \mathbb{D}$ such that $f_{B,n,m}(x) \in O_m$ for each $x \in D[B]$. This means $D[B] \subset$ $f_{\overline{B},n,m}^{\leftarrow}(O_m) \in \mathcal{U}_{n,m}$.

Without loss of generality one may suppose that for all $m, n \in \mathbb{N}$, $X \notin \mathcal{U}_{n,m}$. (The case $\{m \in \mathbb{N} : X \in \mathcal{U}_{n,m} \text{ for some } n \in \mathbb{N}\}$ is infinite is trivial for consideration, while if the later set is finite one can suppose that it is equal to \mathbb{N} .)

Apply now (2) to the sequence $(\mathcal{U}_{n,n} : n \in \mathbb{N})$ and choose for each $n \in \mathbb{N}$ a set $U_{n,n} \in \mathcal{U}_{n,n}$ so that $\{U_{n,n} : n \in \mathbb{N}\}$ is a \mathfrak{B}^s -cover of X. Consider the corresponding functions $f_{B_n,n,n}, n \in \mathbb{N}$. We prove $f_e \in \overline{\{f_{B_n,n,n} : n \in \mathbb{N}\}}$. Let $[B, O]^s(f_e)$ be a neighbourhood of f_e . There are $i \in \mathbb{N}$ and $D \in \mathbb{D}$ such that $D[B] \subset U_{i,i}$. In fact, the set K of all such i is infinite because $\{U_{n,n} : n \in \mathbb{N}\}$ is a \mathfrak{B}^s -cover of X. Take $k \in K$ so that $O_k \subset O$. Then $D[B] \subset f_{B_k,k,k}^{\leftarrow}(O_k) \subset f_{B_k,k,k}^{\leftarrow}(O)$, i.e. $f_{B_k,k,k} \in [B, O]^s(f_e)$.

Similarly we can prove

Theorem 3.2. Let G be a metric group, (X, \mathbb{U}) a G^* -normal uniform space, and \mathfrak{B} a bornology with closed base on X. The following are equivalent:

- (1) $(\mathsf{C}(X,G),\tau^s_{\mathfrak{B}})$ has countable fan tightness;
- (2) X satisfies $S_{fin}(\mathcal{O}_{\mathfrak{B}^s}, \mathcal{O}_{\mathfrak{B}^s})$.

By combining the proofs of Theorems 2.7 and 3.1 we obtain:

Theorem 3.3. Let G be a metric group, (X, \mathbb{D}) a G^{*}-normal uniform space, and \mathfrak{B} a bornology with closed base on X. The following are equivalent:

- (1) $(\mathsf{C}(X,G),\tau^s_{\mathfrak{B}})$ is a selectively weakly Fréchet-Urysohn space;
- (2) For each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of \mathfrak{B}^s -covers of X there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each n, \mathcal{V}_n is a finite subset of \mathcal{U}_n and for each $B \in \mathfrak{B}$) there are $n_0 \in \mathbb{N}$ and a sequence $(D_n : n \ge n_0)$ of elements of \mathbb{D} such that $D_n[B] \subset V$ for some $V \in \mathcal{V}_n$ for all $n \ge n_0$.

Proof. (1) \Rightarrow (2): Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of \mathfrak{B}^s -covers of X. For every $n \in \mathbb{N}$ and every $B \in \mathfrak{B}$ there exist $U_{B,n} \in \mathcal{U}_n$ and $D \in \mathbb{D}$ with $D^2[B] \subset U_{B,n}$. Let $\mathcal{U}_{n,B} := \{U \in \mathcal{U}_n : D^2[B] \subset U\}$. There exists $g \in G$ such that for each $U \in \mathcal{U}_{n,B}$ there is a continuous function $f_{B,U} : X \to G$ satisfying $f_{B,U}(D[B]) = \{e\}$ and $f_{B,U}(X \setminus U) = \{g\}$. Let for each n, set

$$A_n = \{ f_{B,U} : B \in \mathfrak{B}, U \in \mathcal{U}_{n,B} \}.$$

It is understood that the function f_e belongs to the $\tau_{\mathfrak{B}}^s$ -closure of A_n for each $n \in \mathbb{N}$. Since $(\mathsf{C}(X,G),\tau_{\mathfrak{B}}^s)$ is selectively weakly Fréchet-Urysohn, there are finite sets $\Phi_n \subset A_n, n \in \mathbb{N}$ such that each $\tau_{\mathfrak{B}}^s$ -neighbourhood of f_e intersects all but finitely many Φ_n 's. Suppose $\Phi_n = \{f_{B_n^1,U_n^1}, \cdots, f_{B_n^{k_n},U_n^{k_n}}\}, n \in \mathbb{N}$. For each n let $\mathcal{V}_n = \{U_n^1, \cdots, U_n^{k_n}\}$ be the corresponding finite subset of \mathcal{U}_n . We prove that the sequence $(\mathcal{V}_n : n \in \mathbb{N})$ witnesses that is X satisfies (2). For the neighbourhood $[B, O_1]^s(f_e)$ of f_e there is $n_0 \in \mathbb{N}$ such that for all $n > n_0$ there is some $f_{B_n^{i(n)}, U_n^{i(n)}}, i(n) \leq k_n$, in $[B, O_1]^s(f_e)$. So, for each $n > n_0$ there is $D_n \in \mathbb{D}$ such that $D_n[B] \subset f_{B_n^{i(n)}, U_n^{i(n)}}, U_n^{i(n)}$.

(2) \Rightarrow (1): Fix a decreasing local base $\{O_n : n \in \mathbb{N}\}$ at $e \in G$.

Let $(A_n : n \in \mathbb{N})$ be a sequence of subsets of $(\mathbb{C}(X, G), \tau_{\mathfrak{B}}^s)$ such that $f_e \in \bigcap_{n \in \mathbb{N}} \overline{A_n}$. For every $B \in \mathfrak{B}$ and every $m \in \mathbb{N}$ the neighborhood $[B, O_m]^s(f_e)$ of f_e intersects each A_n , and thus for each $n \in \mathbb{N}$ there is a function $f_{B,n,m} \in A_n$ such that there is $D \in \mathbb{D}$ with $f_{B,n,m}(x) \in O_m$ for each $x \in B^{\delta}$. For each $n \in \mathbb{N}$ let

$$\mathcal{U}_{n,m} = \{ f^{\leftarrow}(O_m) : m \in \mathbb{N}, f \in A_n \}.$$

As in the proofs of the previous theorems we conclude that for each $n, m \in \mathbb{N}, \mathcal{U}_{n,m}$ is a \mathfrak{B}^s -cover of X. Apply now assumption (2) to the sequence $(\mathcal{U}_{n,n} : n \in \mathbb{N})$ and for each n choose a finite set $\mathcal{V}_n = \{U_{n,1}, \cdots, U_{n,k_n}\} \subset \mathcal{U}_{n,n}$ such that for each $B \in \mathfrak{B}$) there are $n_0 \in \mathbb{N}$ and a sequence $(D_n : n \geq n_0)$ of elements of \mathbb{D} such that $D_n[B] \subset V$ for some $V \in \mathcal{V}_n$ for all $n \geq n_0$. To each $U_{n,i} \in \mathcal{V}_n$, $i \leq k_n$, associate the corresponding function $f_{B_n,n,i} \in A_n$; let $\Phi_n = \{f_{B_n,n,i} : i \leq k_n\}$. We prove that the sequence $(\Phi_n : n \in \mathbb{N})$ witnesses that (1) is satisfied.

Let $[B, O]^s(f_e)$ be a neighbourhood of f_e . There are $m \in \mathbb{N}$ and $D_n \in \mathbb{D}$, n > m, such that $O_m \subset O$ and for each n > m, $D^2[B] \subset U_{n,j}$ for some $j \leq k_n$. Therefore, for all n > m, $f_{B_n,n,j}(D_n[B]) \subset O_n \subset O$, i.e. $f_{B_n,n,j} \in [B, O]^s(f_e)$.

Observe that Theorem 3.3 is a new result even in the special case $G = \mathbb{R}$. In particular, we have the following two results below.

Theorem 3.4. Let X be a metric space. The following are equivalent:

- (1) $(\mathsf{C}(X), \tau^s_{\mathfrak{F}})$ is a selectively weakly Fréchet-Urysohn space;
- (2) For each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of \mathfrak{F}^s -covers of X there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each n, \mathcal{V}_n is a finite subset of \mathcal{U}_n and for each finite set $F \subset X$ there are $n_0 \in \mathbb{N}$ and a sequence $(\delta_n : n \ge n_0)$ of positive real numbers such that $F^{\delta} \subset V$ for some $V \in \mathcal{V}_n$ for all $n \ge n_0$.

It is known that τ_{\Re}^{s} coincides with the compact-open topology τ_{k} on C(X) (see [3, Corollary 6.6], [4, Remark 3.4], [5]).

An open cover of a space X is a k-cover of X if each compact set $K \subset X$ is contained in a member of the cover.

Theorem 3.5. For a metric space X the following are equivalent:

- (1) $(C(X), \tau_k)$ is a selectively weakly Fréchet-Urysohn space;
- (2) For each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of k-covers of X there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each n, \mathcal{V}_n is a finite subset of \mathcal{U}_n and each compact set $K \subset X$ is contained in an element $V \in \mathcal{V}_n$ for all but finitely many n.

References

- A.V. Arhangel'skii, Hurewicz spaces, analytic sets and fan tightness of function spaces, Soviet Math. Doklady 33 (1986), 396–399.
- [2] A.V. Arhangel'skii, *Topological Function Spaces*, Kluwer Academic Publishers, 1992.
- [3] G. Beer, S. Levi, Strong uniform continuity, J. Math. Anal. Appl. 350 (2009), 568–589.
- [4] A. Caserta, G. Di Maio, L'. Holá, Arzelà's Theorem and strong uniform convergence on bornologies, J. Math. Anal. Appl. 371 (2010), 384–392.
- [5] A. Caserta, G. Di Maio, Lj.D.R. Kočinac, Bornologies, selection principles and function spaces, submitted.
- [6] G. Di Maio, Lj.D.R. Kočinac, Boundedness in topological spaces, Mat. Vesnik 60 (2008), 137–148.
- [7] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [8] S.-T. Hu, Boundedness in a topological space, Journal Math. Pures Appl. 28 (1949), 287–320.

- [9] W. Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1925), 401–421.
- [10] W. Hurewicz, Über Folgen stetiger Funktionen, Fund. Math. 9 (1927), 193–204.
- [11] Lj.D.R. Kočinac, Closure properties of function spaces, Applied General Topology 4 (2003), 255–261.
- [12] Lj.D.R. Kočinac, Selected results on selection principles, Proc. Third Seminar Geometry and Topology (July 15–17, 2004, Tabriz, Iran), 71–104.
- [13] Lj.D.R. Kočinac, Some covering properties in topological and uniform spaces, Proc. Steklov Inst. Math. 252 (2006), 122–137.
- [14] Lj. Kočinac, M. Scheepers, Function spaces and a property of Reznichenko, Topology Appl. 123 (2002), 135–143.
- [15] Lj.D.R. Kočinac, M. Scheepers, Combinatorics of open covers (VII): Groupability, Fund. Math. 179 (2003), 131–155.
- [16] K. Menger, Einige Überdeckungssätze der Punktmengenlehre Sitzungsberischte Abt. 2a, Mathematik, Astronomie, Physik, Meteorologie und Mechanik (Wiener Akademie, Wien) 133 (1924), 421–444.
- [17] A.W. Miller, D.H. Fremlin, On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17–33.
- [18] F. Rothberger, Eine Verschärfung der Eigenschaft C, Fund. Math. 30 (1938), 50–55.
- [19] M. Sakai, Property C" and function spaces, Proc. Amer. Math. Soc. 104 (1988), 917–919.
- [20] D. Shakhmatov, J. Spévák, Group-valued continuous functions with the topology of pointwise convergence, Topology Appl. 157 (2010), 1518–1540.

Ljubiša D.R. Kočinac

University of Niš, Faculty of Sciences and Mathematics, Višegradska 33, 18000 Niš, Serbia

E-mail: lkocinac@gmail.com