Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Filomat **25:2** (2011), 187–196 DOI: 10.2298/FIL1102187A

ON $\tilde{\Psi}_{\mathcal{G}}$ -SETS IN GRILL TOPOLOGICAL SPACES

Ahmad Al-Omari and Takashi Noiri

Abstract

In this paper, we introduce and study $\tilde{\Psi}_{\mathcal{G}}$ -sets and utilize the $\Psi_{\mathcal{G}}$ -operator to define interesting generalized open sets and study their properties.

1 Introduction

The idea of grills on a topological space was first introduced by Choquet [4]. The concept of grills has shown to be a powerful supporting and useful tool like nets and filters, for getting a deeper insight into further studying some topological notions such as proximity spaces, closure spaces and the theory of compactifications and extension problems of different kinds (see [3], [2], [18] for details). In [15], Roy and Mukherjee defined and studied a typical topology associated rather naturally to the existing topology and a grill on a given topological space.

The notion of ideal topological spaces was first studied by Kuratowski [8] and Vaidyanathaswamy [19]. Compatibility of the topology τ with an ideal \mathcal{I} was first defined by Njåstad [13]. In 1990, Jankovic and Hamlett [7, 5] investigated further properties of ideal topological spaces and another operator called Ψ -operator defined as $\Psi(A) = X - (X - A)^*$. In 2007 Modak and Bandyopadhyay [11] used the Ψ -operator to define interesting generalized open sets.

²⁰¹⁰ Mathematics Subject Classifications. 54A05, 54C10

Key words and Phrases. grill, $\Psi_{\mathcal{G}}$ -operator, α -set, $\widetilde{\Psi}_{\mathcal{G}}$ -set, semi-open set

Received: December 5, 2010; Revised: February 15, 2011

Communicated by Ljubiša D.R. Kočinac

The authors wishes to thank the referees for useful comments and suggestions.

Definition 1. [17] Let (X, τ, \mathcal{G}) be a grill topological space. An operator $\Psi_{\mathcal{G}}$: $\mathcal{P}(X) \to \mathcal{P}(X)$ is defined as follows for every $A \in X$, $\Psi_{\mathcal{G}}(A) = \{x \in X : \text{there} exists a \ U \in \tau(x) \text{ such that } U - A \notin \mathcal{G}\}$ and observes that $\Psi_{\mathcal{G}}(A) = X - \Phi(X - A)$ (we used the notion $\Psi_{\mathcal{G}}$ is instead of $\Gamma_{\mathcal{G}}$ which used in [17]).

In this paper, we introduce and study $\tilde{\Psi}_{\mathcal{G}}$ -sets and utilize the $\Psi_{\mathcal{G}}$ -operator to define interesting generalized open sets and study their properties.

2 Preliminaries

Let (X, τ) be a topological space with no separation properties assumed. For a subset A of a topological space (X, τ) , Cl(A) and Int(A) denote the closure and the interior of A in (X, τ) , respectively. The power set of X will be denoted by $\mathcal{P}(X)$. A subcollection \mathcal{G} (not containing the empty set) of $\mathcal{P}(X)$ is called a grill [4] on X if \mathcal{G} satisfies the following conditions:

- 1. $A \in \mathcal{G}$ and $A \subseteq B$ implies that $B \in \mathcal{G}$,
- 2. $A, B \subseteq X$ and $A \cup B \in \mathcal{G}$ implies that $A \in \mathcal{G}$ or $B \in \mathcal{G}$.

For any point x of a topological space $(X, \tau), \tau(x)$ denotes the collection of all open neighborhoods of x.

Definition 2. [15] Let (X, τ) be a topological space and \mathcal{G} be a grill on X. A mapping $\Phi : \mathcal{P}(X) \to \mathcal{P}(X)$ is defined as follows: $\Phi(A) = \Phi_{\mathcal{G}}(A, \tau) = \{x \in X : A \cap U \in \mathcal{G} \text{ for all } U \in \tau(x)\}$ for each $A \in \mathcal{P}(X)$. The mapping Φ is called the operator associated with the grill \mathcal{G} and the topology τ .

Proposition 1. [15] Let (X, τ) be a topological space and \mathcal{G} be a grill on X. Then for all $A, B \subseteq X$:

- 1. $A \subseteq B$ implies that $\Phi(A) \subseteq \Phi(B)$,
- 2. $\Phi(A \cup B) = \Phi(A) \cup \Phi(B),$
- 3. $\Phi(\Phi(A)) \subseteq \Phi(A) = Cl(\Phi(A)) \subseteq Cl(A).$

On $\tilde{\Psi}_{\mathcal{G}}$ -sets in grill topological spaces

Let \mathcal{G} be a grill on a space X. Then a mapping $\Psi : \mathcal{P}(X) \to \mathcal{P}(X)$ is defined by $\Psi(A) = A \cup \Phi(A)$ for all $A \in \mathcal{P}(X)$ [15]. The map Ψ is a Kuratowski closure axiom. Corresponding to a grill \mathcal{G} on a topological space (X, τ) , there exists a unique topology $\tau_{\mathcal{G}}$ on X given by $\tau_{\mathcal{G}} = \{U \subseteq X : \Psi(X - U) = X - U\}$, where for any $A \subseteq X$, $\Psi(A) = A \cup \Phi(A) = \tau_{\mathcal{G}} \cdot Cl(A)$. For any grill \mathcal{G} on a topological space $(X, \tau), \tau \subseteq \tau_{\mathcal{G}}$. By $\tau_{\mathcal{G}} \cdot Int(A)$, we denote the interior of A with respect to $\tau_{\mathcal{G}}$. If (X, τ) is a topological space with a grill \mathcal{G} on X, then we call it a grill topological space and denote it by (X, τ, \mathcal{G}) .

Theorem 1. [15] Let (X, τ, \mathcal{G}) be a grill topological space. Then $\beta(\mathcal{G}, \tau) = \{V - G : V \in \tau, G \notin \mathcal{G}\}$ is an open base for $\tau_{\mathcal{G}}$.

Corollary 1. [15] Let (X, τ, \mathcal{G}) be a grill topological space and suppose $A, B \subseteq X$ with $B \notin \mathcal{G}$. Then $\Phi(A \cup B) = \Phi(A) = \Phi(A - B)$.

Several basic facts concerning the behavior of the operator $\Psi_{\mathcal{G}}$ are included in the following theorem.

Theorem 2. [17]

Let (X, τ, \mathcal{G}) be a grill topological space. Then the following properties hold:

- 1. If $A, B \in \mathcal{P}(X)$, then $\Psi_{\mathcal{G}}(A \cap B) = \Psi_{\mathcal{G}}(A) \cap \Psi_{\mathcal{G}}(B)$.
- 2. If $U \in \tau_{\mathcal{G}}$, then $U \subseteq \Psi_{\mathcal{G}}(U)$.
- 3. If $A \notin \mathcal{G}$, then $\Psi_{\mathcal{G}}(A) = X \Phi(X)$.
- 4. If $A, B \subseteq X$ and $(A B) \cup (B A) \notin \mathcal{G}$, then $\Psi_{\mathcal{G}}(A) = \Psi_{\mathcal{G}}(B)$.
- 5. If $A \subseteq X$, then $\Psi_{\mathcal{G}}(A)$ is open in (X, τ) .
- 6. If $A \subseteq B$, then $\Psi_{\mathcal{G}}(A) \subseteq \Psi_{\mathcal{G}}(B)$.
- 7. If $A \subseteq X$, then $\Psi_{\mathcal{G}}(A) \subseteq \Psi_{\mathcal{G}}(\Psi_{\mathcal{G}}(A))$.
- 8. If $A \subseteq X$, then $A \cap \Psi_{\mathcal{G}}(A) = \tau_{\mathcal{G}}$ -Int(A).
- 9. If $A \subseteq X$ and $G \notin \mathcal{G}$, then $\Psi_{\mathcal{G}}(A G) = \Psi_{\mathcal{G}}(A)$.
- 10. If $A \subseteq X$ and $G \notin \mathcal{G}$, then $\Psi_{\mathcal{G}}(A \cup G) = \Psi_{\mathcal{G}}(A)$.

3 $\widetilde{\Psi}_{\mathcal{G}}$ -Sets

Definition 3. Let (X, τ, \mathcal{G}) be a grill topological space. A subset A of X is called a $\widetilde{\Psi}_{\mathcal{G}}$ -set if $A \subseteq Cl(\Psi_{\mathcal{G}}(A))$.

The collection of all $\widetilde{\Psi}_{\mathcal{G}}$ -sets in (X, τ, \mathcal{G}) is denoted by $\widetilde{\Psi}_{\mathcal{G}}(X, \tau)$.

Proposition 2. Let $\{A_{\alpha} : \alpha \in \Delta\}$ be a collection of nonempty $\widetilde{\Psi}_{\mathcal{G}}$ -sets in a grill topological space (X, τ, \mathcal{G}) , then $\bigcup_{\alpha \in \Delta} A_{\alpha} \in \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$.

Proof. For each $\alpha \in \Delta$,

$$A_{\alpha} \subseteq Cl(\Psi_{\mathcal{G}}(A_{\alpha})) \subseteq Cl(\Psi_{\mathcal{G}}(\cup_{\alpha \in \Delta} A_{\alpha}))$$

This implies that

$$\bigcup_{\alpha \in \Delta} A_{\alpha} \subseteq Cl(\Psi_{\mathcal{G}}(\bigcup_{\alpha \in \Delta} A_{\alpha}))$$

Thus $\cup_{\alpha \in \Delta} A_{\alpha} \in \widetilde{\Psi}_{\mathcal{G}}(X, \mathcal{G}).$

The following example shows that the intersection of two $\widetilde{\Psi}_{\mathcal{G}}$ -sets in (X, τ, \mathcal{G}) may not be a $\widetilde{\Psi}_{\mathcal{G}}$ -set.

Example 1. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}\}$ and the grill $\mathcal{G} = \{\{a\}, \{b\}, \{a, c\}, \{a, b\}, \{a, d\}, \{a, b, c\}, \{c, b, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{b, c\}, \{b, c\}, \{b, c, d\}, X\}$. Then $A = \{a, d\}$ and $B = \{b, c, d\}$ are $\tilde{\Psi}_{\mathcal{G}}$ -sets but $A \cap B$ is not a $\tilde{\Psi}_{\mathcal{G}}$ -set. For $A = \{a, d\}, \Phi(X - A) = \{b, c, d\}$ and $\tilde{\Psi}_{\mathcal{G}}(A) = \{a\}$. Hence $A \subseteq Cl(\tilde{\Psi}_{\mathcal{G}}(A))$ implies that A is a $\tilde{\Psi}_{\mathcal{G}}$ -set. For $B = \{b, c, d\}, \Phi(X - B) = \{a, d\}$ and $\tilde{\Psi}_{\mathcal{G}}(B) = \{b, c\}$. Hence $B \subseteq Cl(\tilde{\Psi}_{\mathcal{G}}(B))$ implies that B is a $\tilde{\Psi}_{\mathcal{G}}$ -set. On the other hand, since $A \cap B = \{d\}, \Phi(X - (A \cap B)) = X$ and $\tilde{\Psi}_{\mathcal{G}}(B) = \phi$. Hence $A \cap B \notin Cl(\tilde{\Psi}_{\mathcal{G}}(A \cap B))$ implies that $A \cap B$ is not a $\tilde{\Psi}_{\mathcal{G}}$ -set.

Recall that a subset A of X in a topological space (X, τ) is called an α -set if $A \subseteq Int(Cl(Int(A)))$. The collection of α -sets in (X, τ) is denoted by τ^{α} . Njåstad [12] has shown that τ^{α} forms a topology. Although the intersection of two $\tilde{\Psi}_{\mathcal{G}}$ -sets need not be a $\tilde{\Psi}_{\mathcal{G}}$ -set but we shall prove that intersection of an α -set with a $\tilde{\Psi}_{\mathcal{G}}$ -set is a $\tilde{\Psi}_{\mathcal{G}}$ -set.

Corollary 2. Let (X, τ, \mathcal{G}) be a grill topological space. Then $U \subseteq \Psi_{\mathcal{G}}(U)$ for every open set $U \in \tau$.

On $\tilde{\Psi}_{\mathcal{G}}$ -sets in grill topological spaces

Proof. Since $\tau \subset \tau_{\mathcal{G}}$, the proof follows easily from Theorem 2.

Theorem 3. Let (X, τ, \mathcal{G}) be a grill topological space and $A \in \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$. If $U \in \tau^{\alpha}$, then $U \cap A \in \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$.

Proof. We note that if G is open, for any $A \subseteq X$, $G \cap Cl(A) \subseteq Cl(G \cap A)$. Let $U \in \tau^{\alpha}$ and $A \in \widetilde{\Psi}_{\mathcal{G}}(X, \mathcal{G})$. Then by Theorem 2 and Corollary 2 we have

$$U \cap A \subseteq Int(Cl(Int(U))) \cap Cl(\Psi_{\mathcal{G}}(A))$$
$$\subseteq Int(Cl(\Psi_{\mathcal{G}}(U))) \cap Cl(\Psi_{\mathcal{G}}(A))$$
$$\subseteq Cl[Int(Cl(\Psi_{\mathcal{G}}(U))) \cap \Psi_{\mathcal{G}}(A)]$$
$$= Cl[Int(Cl[\Psi_{\mathcal{G}}(U) \cap \Psi_{\mathcal{G}}(A)])]$$
$$= Cl[\Psi_{\mathcal{G}}(U) \cap \Psi_{\mathcal{G}}(A)]$$
$$= Cl[\Psi_{\mathcal{G}}(U \cap A)].$$

Hence $U \cap A \in \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$.

Corollary 3. Let (X, τ, \mathcal{G}) be a grill topological space and $A \in \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$. If $U \in \tau$, then $U \cap A \in \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$.

A set D is called a relatively \mathcal{G} -dense in a set A if for every relatively nonempty open set $U \cap A$, $U \in \tau$, it is true that $(U \cap A) \cap D \in \mathcal{G}$. We now provide a necessary and sufficient condition for $A \notin \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$.

Theorem 4. A set A dose not belong to $\widetilde{\Psi}_{\mathcal{G}}(X,\tau)$ if and only if there exists $x \in A$ such that there is a neighborhood $V_x \in \tau$ of x for which X - A is relatively \mathcal{G} -dense in V_x .

Proof. Let $A \notin \widetilde{\Psi}_{\mathcal{G}}(X,\tau)$. We are to show that there exists an element $x \in A$ and a neighborhood $V_x \in \tau(x)$ satisfying that (X - A) is relatively \mathcal{G} -dense in V_x . Since $A \not\subseteq Cl(\Psi_{\mathcal{G}}(A))$, there exists $x \in X$ such that $x \in A$ but $x \notin Cl(\Psi_{\mathcal{G}}(A))$. Hence there exists a neighborhood $V_x \in \tau(x)$ such that $V_x \cap \Psi_{\mathcal{G}}(A) = \phi$. This implies that $V_x \cap (X - \Phi(X - A)) = \phi$ and hence $V_x \subseteq \Phi(X - A)$. Let U be any nonempty open set in V_x . Since $V_x \subseteq \Phi(X - A)$, therefore $U \cap (X - A) \in \mathcal{G}$. This implies that (X - A) is relatively \mathcal{G} -dense in V_x . Converse part follows by reversing the argument.

Recall that a subset $A \subseteq X$ is said to be preopen [10] (resp. Φ -open [6]) if $A \subseteq Int(Cl(A))$ (resp. $A \subseteq Int(\Phi(A))$). The collection of all peropen (resp. Φ -open) sets in a topological space (X, τ) is denoted by $PO(X, \tau)$ (resp. $\Phi O(X, \tau)$).

Definition 4. Let (X, τ, \mathcal{G}) be a grill topological space. A grill \mathcal{G} is said to be anti-codense grill if $\tau - \{\phi\} \subseteq \mathcal{G}$.

Theorem 5. [16] Let (X, τ, \mathcal{G}) be a grill topological space, where \mathcal{G} is an anticodense grill. Then $\Phi O(X, \tau) = PO(X, \tau_{\mathcal{G}})$.

Recall that a subset A of X in a topological space (X, τ) is called a semi-open set [9] if $A \subseteq Cl(Int(A))$. The collection of semi-open sets in (X, τ) is denoted by $SO(X, \tau)$. We prove $SO(X, \tau_{\mathcal{G}}) = \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$.

Theorem 6. Let (X, τ, \mathcal{G}) be a grill topological space, where \mathcal{G} is an anti-codense grill. Then $SO(X, \tau_{\mathcal{G}}) = \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$.

Proof. Let $A \in SO(X, \tau_{\mathcal{G}})$. Therefore by Theorem 2, $A \subseteq \tau_{\mathcal{G}} - Cl(\tau_{\mathcal{G}} - Int(A)) = \tau_{\mathcal{G}} - Cl(\Psi_{\mathcal{G}}(A) \cap A) \subseteq Cl(\Psi_{\mathcal{G}}(A) \cap A) \subseteq Cl(\Psi_{\mathcal{G}}(A))$ and hence $A \in \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$. Therefore, $SO(X, \tau_{\mathcal{G}}) \subseteq \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$.

Conversely, let $A \in \widetilde{\Psi}_{\mathcal{G}}(X,\tau)$ and $x \in A$. Consider a basic neighbourhood U_1 of x in $(X,\tau_{\mathcal{G}})$. Then U_1 is of the form U-G where $U \in \tau$ and $G \notin \mathcal{G}$. This implies that $x \in U$. Since $A \subseteq Cl(\Psi_{\mathcal{G}}(A))$ and $U \in \tau(x)$, $U \cap \Psi_{\mathcal{G}}(A) \neq \phi$. Let $y \in U \cap \Psi_{\mathcal{G}}(A)$. Therefore there exists a neighbourhood W_y of y such that $W_y - A \notin \mathcal{G}$ (by definition of $\Psi_{\mathcal{G}}(A)$). Now we consider $U \cap W_y = V$, let $G_1 = V - A \notin \mathcal{G}$ (by heredity), then $V \neq \phi$, $V \in \tau$ and $V - G_1 \subseteq A$. Also $V \subseteq U$. Thus $M = V - (G_1 \cup G) \subseteq A$ (note that $M = V - (G_1 \cup G) \neq \phi$ since \mathcal{G} is an anti-codense grill) and $M \subseteq A \cap (U - G)$. Hence A contains a nonempty $\tau_{\mathcal{G}}$ -open set M contained in U - G. Since x is an arbitrary point of A, we get $A \subseteq \tau_{\mathcal{G}}-Cl(\tau_{\mathcal{G}}-Int(A))$ and hence $A \in SO(X, \tau_{\mathcal{G}})$. Therefore, $\widetilde{\Psi}_{\mathcal{G}}(X,\tau) \subseteq SO(X, \tau_{\mathcal{G}})$. Hence $SO(X, \tau_{\mathcal{G}}) = \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$.

Definition 5. Let (X, τ, \mathcal{G}) be a grill topological space and $A \subseteq X$, A is called a $\Psi_{\mathcal{A}}$ -set if $A \subseteq Int(Cl(\Psi_{\mathcal{G}}(A)))$.

The collection of all $\Psi_{\mathcal{A}}$ -sets in (X, τ, \mathcal{G}) is denoted by $\tau^{\mathcal{A}}$. From Definitions 3 and 5 it follows that $\tau^{\mathcal{A}} \subseteq \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$. We show that the collection $\tau^{\mathcal{A}}$ forms a topology.

On $\tilde{\Psi}_{\mathcal{G}}$ -sets in grill topological spaces

Theorem 7. Let (X, τ, \mathcal{G}) be a grill topological space, where \mathcal{G} is an anti-codense grill. Then the collection $\tau^{\mathcal{A}} = \{A \subseteq X : A \subseteq Int(Cl(\Psi_{\mathcal{G}}(A)))\}$ forms a topology on X.

Proof. (1) It is observed that $\phi \subseteq Int(Cl(\Psi_{\mathcal{G}}(\phi)))$ and $X \subseteq Int(Cl(\Psi_{\mathcal{G}}(X)))$, and thus ϕ and $X \in \tau^{\mathcal{A}}$.

(2) Let $\{A_{\alpha} : \alpha \in \Delta\} \subseteq \tau^{\mathcal{A}}$, then $\Psi_{\mathcal{G}}(A_{\alpha}) \subseteq \Psi_{\mathcal{G}}(\cup A_{\alpha})$ for every $\alpha \in \Delta$. Thus $A_{\alpha} \subseteq Int(Cl(\Psi_{\mathcal{G}}(A_{\alpha}))) \subseteq Int(Cl(\Psi_{\mathcal{G}}(\cup A_{\alpha})))$ for every $\alpha \in \Delta$, which implies that $\cup A_{\alpha} \subseteq Int(Cl(\Psi_{\mathcal{G}}(\cup A_{\alpha})))$. Therefore, $\cup A_{\alpha} \in \tau^{\mathcal{A}}$.

(3) Let $A, B \in \tau^{\mathcal{A}}$. Since $\Psi_{\mathcal{G}}(A)$ is open in (X, τ) , by using Theorem 2 and Lemma 3.5 in [14] we obtain $A \cap B \subseteq Int(Cl(\Psi_{\mathcal{G}}(A))) \cap Int(Cl(\Psi_{\mathcal{G}}(A))) = Int(Cl(\Psi_{\mathcal{G}}(A) \cap \Psi_{\mathcal{G}}(B))) = Int(Cl(\Psi_{\mathcal{G}}(A \cap B)))$. Therefore, $A \cap B \subseteq Int(Cl(\Psi_{\mathcal{G}}(A \cap B)))$ and $A \cap B \in \tau^{\mathcal{A}}$.

Proposition 3. [1] Let (X, τ, \mathcal{G}) be a grill topological space. Then $\Psi_{\mathcal{G}}(A) \neq \phi$ if and only if A contains a nonempty $\tau_{\mathcal{G}}$ -interior.

Corollary 4. Let (X, τ, \mathcal{G}) be a grill topological space. Then $\{x\} \in \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$ if and only $\{x\} \in \tau^{\mathcal{A}}$

Proof. Let $\{x\} \in \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$, therefore $\{x\}$ is open in $(X, \tau_{\mathcal{G}})$ by Proposition 3. Since $\{x\} \subseteq \Psi_{\mathcal{G}}(\{x\})$ and $\Psi_{\mathcal{G}}(\{x\})$ is open in (X, τ) , therefore $\{x\} \subseteq Int(Cl(\Psi_{\mathcal{G}}(\{x\}))$. Hence $\{x\} \in \tau^{\mathcal{A}}$.

Conversely suppose that $\{x\} \in \tau^{\mathcal{A}}$. Then $\{x\} \subseteq Int(Cl(\Psi_{\mathcal{G}}(\{x\})))$ and $\{x\} \subseteq Cl(\Psi_{\mathcal{G}}(\{x\}))$. Hence $\{x\} \in \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$. \Box

Theorem 8. Let (X, τ, \mathcal{G}) be a grill topological space. Then $\tau^{\mathcal{A}}$ consists of exactly those sets A for which $A \cap B \in \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$ for all $B \in \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$.

Proof. Let $A \in \tau^{\mathcal{A}}$ and $B \in \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$. Now we show that $A \cap B \in \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$. If $A \cap B = \phi$, we are done. Let $A \cap B \neq \phi$ and $x \in A \cap B$, then $x \in Int(Cl(\Psi_{\mathcal{G}}(A)))$, since $A \in \tau^{\mathcal{A}}$. Consider any neighbourhood U_x of x then $U_x \cap Int(Cl(\Psi_{\mathcal{G}}(A)))$ is a neighbourhood of x. Since $x \in B \subseteq Cl(\Psi_{\mathcal{G}}(B))$, then $U_x \cap Int(Cl(\Psi_{\mathcal{G}}(A))) \cap \Psi_{\mathcal{G}}(B) \neq \phi$. Let $V = U_x \cap Int(Cl(\Psi_{\mathcal{G}}(A))) \cap \Psi_{\mathcal{G}}(B)$, then $V \subseteq Cl(\Psi_{\mathcal{G}}(A))$. This implies that $U_x \cap \Psi_{\mathcal{G}}(A) \cap \Psi_{\mathcal{G}}(B) = V \cap \Psi_{\mathcal{G}}(A) \neq \phi$, since $\Psi_{\mathcal{G}}(B)$ is open. Therefore $x \in Cl[\Psi_{\mathcal{G}}(A) \cap \Psi_{\mathcal{G}}(B)] = Cl[\Psi_{\mathcal{G}}(A \cap B)]$. Hence $A \cap B \subseteq Cl[\Psi_{\mathcal{G}}(A \cap B)]$, therefore

 $A \cap B \in \widetilde{\Psi}_{\mathcal{G}}(X, \tau).$

Next we consider a subset A of X such that $A \cap B \in \widetilde{\Psi}_{\mathcal{G}}(X,\tau)$ for each $B \in$ $\widetilde{\Psi}_{\mathcal{G}}(X,\tau)$. We show that $A \in \tau^{\mathcal{A}}$. Suppose $A \not\subseteq Int(Cl(\Psi_{\mathcal{G}}(A)))$ then there exists $x \in A$ but $x \notin Int(Cl(\Psi_{\mathcal{G}}(A)))$. Therefore, $x \in A \cap [X - Int(Cl(\Psi_{\mathcal{G}}(A)))] =$ $A \cap Cl[X - Cl(\Psi_{\mathcal{G}}(A))] = A \cap Cl(H)$, where $H = X - Cl(\Psi_{\mathcal{G}}(A))$. It is obvious that H is a nonempty open set. Since $x \in Cl(H)$, then for all open set V_x containing $x, V_x \cap H \neq \phi$. Therefore $V_x \cap \Psi_{\mathcal{G}}(H) \neq \phi$, since $H \subseteq \Psi_{\mathcal{G}}(H)$. This implies that $x \in Cl(\Psi_{\mathcal{G}}(H)) \subseteq Cl(\Psi_{\mathcal{G}}[H \cup \{x\}])$ and $H \subseteq Cl(\Psi_{\mathcal{G}}(H)) \subseteq Cl(\Psi_{\mathcal{G}}[H \cup \{x\}])$ and hence $\{x\} \cup H \subseteq Cl(\Psi_{\mathcal{G}}[H \cup \{x\}])$. Therefore $\{x\} \cup H \in \widetilde{\Psi}_{\mathcal{G}}(X,\tau)$. Now by hypothesis $A \cap [\{x\} \cup H] \in \widetilde{\Psi}_{\mathcal{G}}(X,\tau)$, since $[\{x\} \cup H] \in \widetilde{\Psi}_{\mathcal{G}}(X,\tau)$. We show that $A \cap [\{x\} \cup H] = \{x\}$. Suppose that there exists $y \in X$ and $x \neq y$ such that $y \in A \cap [\{x\} \cup H]$, then $y \in A$ and $y \in H$. Now $A = A \cap X$ and $X \in \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$, hence by hypothesis $A \in \widetilde{\Psi}_{\mathcal{G}}(X,\tau)$. Since $y \in A \subseteq Cl(\Psi_{\mathcal{G}}(A))$, this is contrary to the fact that $y \in H = X - Cl(\Psi_{\mathcal{G}}(A))$. Thus $A \cap [\{x\} \cup H] = \{x\}$. Since $\{x\} \in \widetilde{\Psi}_{\mathcal{G}}(X, \tau)$, then $\{x\} \in \tau^{\mathcal{A}}$ (by Corollary 4). Hence, $\{x\} \subseteq Int(Cl(\Psi_{\mathcal{G}}(\{x\})) = Int(Cl(\Psi_{\mathcal{G}}(A)))$ $[\{x\} \cup H]) \subseteq Int(Cl(\Psi_{\mathcal{G}}(A)))$. But $x \in Int(Cl(\Psi_{\mathcal{G}}(A)))$ which is contrary to the fact that $x \notin Int(Cl(\Psi_{\mathcal{G}}(A)))$. Therefore we have $A \subseteq Int(Cl(\Psi_{\mathcal{G}}(A)))$ and hence $A \in \tau^{\mathcal{A}}$.

Now we refer to the following well known theorem.

Theorem 9. [12] Let (X, τ) be a topological space. Then τ^{α} consists of exactly those sets A for which $A \cap B \in SO(X, \tau)$ for all $B \in SO(X, \tau)$.

Now from Theorems 6, 8 and 9 we have the following theorem.

Theorem 10. Let (X, τ, \mathcal{G}) be a grill topological space, where \mathcal{G} is an anti-codense grill. Then $\tau^{\mathcal{A}} = (\tau_{\mathcal{G}})^{\alpha}$.

References

- [1] A. Al-Omari, T. Noiri, On $\Psi_{\mathcal{G}}$ -operator in grill topological spaces, submitted.
- [2] K.C. Chattopadhyay, W.J. Thron, *Extensions of closure spaces*, Can. J. Math. 29 (1977), 1277-1286.
- [3] K.C. Chattopadhyay, O. Njåstad, W.J. Thron, Merotopic spaces and extensions of closure spaces, Can. J. Math. 35 (1983), 613-629.

- [4] G. Choqet, Sur les notions de filter et grill, Comptes Rendus Acad. Sci. Paris 224 (1947), 171-173.
- [5] T.R. Hamlett, D. Janković, Ideals in topological spaces and the set operator Ψ, Boll. Un. Mat. Ital. 7 4-B (1990), 863-874.
- [6] E. Hatir, S. Jafari, On some new calsses of sets and a new decomposition of continuity via grills, J. Adv. Math. Studies. 3 (2010), 33-40.
- [7] D. Janković, T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990), 295-310.
- [8] K. Kuratowski, Topology I, Warszawa, 1933.
- [9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer Math. Monthly 70 (1963), 36-41.
- [10] A.S. Mashhour, M.E. Abd El-Monsef, S.N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
- [11] S. Modak, C. Bandyopadyay, A note on Ψ-operator, Bull. Malays. Math. Sci. Soc. (2) 30 (1) (2007), 43-48.
- [12] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [13] O. Njåstad, Remark on topologies defined by local properties, Avh. Norske Vid. Akad. Oslo I (N. S) 8 (1966), 1-16.
- [14] T. Noiri, On α -continuous functions, Casopis Pěat. Mat. 109 (1984), 118-126.
- [15] B. Roy, M.N. Mukherjee, On a typical topology induced by a grill, Soochow J. Math. 33 (2007), 771-786.
- [16] B. Roy, M.N. Mukherjee, S.K. Ghosh, On a subclass of preopen sets via grills, Univ. Dun Bacau Studii Si Stiintifice 18 (2008), 255-266.
- [17] B. Roy, M.N. Mukherjee, S.K. Ghosh, On a new operator based on a grill and its associated topology, Arab Jour. Math Sc. 14 (2008), 21-32.
- [18] W.J. Thron, Proximity structure and grills, Math. Ann. 206 (1973), 35-62.

[19] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, 1960.

Ahmad Al-Omari: Department of Mathematics, Faculty of Science, Mu'tah University, P.O.Box 7, Karak 61710, Jordan *E-mail*: omarimutah1@yahoo.com Takashi Noiri: 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan *E-mail*: t.noiri@nifty.com

196