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ESTIMATION OF A CONDITION NUMBER
RELATED TO A%

Dijana Mosié

Abstract

In this paper we get estimation of the absolute condition number a Hilbert
space operator, which is related with the outer generalized inverse of a given
operator.

1 Introduction

In this paper X and Y denote arbitrary Hilbert spaces. We use B(X,Y) to denote
the set of all linear bounded operators from X to Y. Set B(X) = B(X, X).

Let A € B(X,Y). We use R(A) and N(A), respectively, to denote the range and
the null-space of A. If there exists some operator A’ € B(Y, X) satisfying A’AA’ =
A’, then A’ is called the outer inverse of A [1]. If T = R(A’) and S = N(A’), then

A’ is well-known as the A(Tz’ )S generalized inverse of A. It can easily be deduced that

for given subspaces T of X and S of Y, there exists the generalized inverse A% )S of
A if and only if the following is satisfied: T, S and A(T) are closed complemented
subspaces of X, Y and Y respectively, the reduction 41 = A|r : T — A(T) is

invertible and A(T)@®S =Y. In this case the generalized inverse AE,?, )S is unique and
the notation is justified. Moreover, the following holds T' = R(Ag?)s) = R(A%)SA).
Hence, we denote T7 = N(Ag)SA) C X and S; = A(T) C Y. Now we have

X=T&®T, and Y =5,6S5.

The matrix form of A is as follows:

A0 T S1
A= : — 1
0 A, T RE (1)
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where A; € B(T, S1) is invertible. Now it is easy to verify that

S I HEIE A

We use B(X,Y)r,s to denote the set of all A € B(X,Y), such that Ag)s exists.
Here we assume that T and S, respectively, are closed subsets of X and Y.

Let X and Y be equipped with the norms || - ||x and || - |ly. The P-norm for
a vector x € X, the @Q-norm for a vector y € Y and the @ P-norm for an operator
A € B(X,Y), respectively, are defined by (see [10]):

lzllp = y/lleall% + 2%
Iylle = /vl + w215,

IAller = sup [lAz[q
lellp<1

where
I:I’1+l’27 T €T7 IQGTlv

Y=Y1+Y2, y1 €51, y2 € 5.

Notice that we can also change the inner product in X in the following way:

(r,y)p = (x1,y1)x + (T2, 92) x

where
rT=x1+T2, Yy=y1 +¥y2, T1, y1 €T, x2, y2 € T1.

Now, || - ||p is induced by (-,-)p. Similarly for (-,-)g and || - ||g in Y.
Generalized inverses are frequently related with the system of equations

Az =b,

with A and b given, and x is unknown. If A is invertible, then the condition
number of A is defined as |Al|[|A7!||. If A is singular, then we can use some
generalized inverse of A instead of A~!. Thus, the generalized condition number of
A related with the generalized inverse A(T% )S (in the case when it exists), is denoted
by w(4) = |4 A

The other approach to define the condition number of a linear system Ax = b,
is connected with differentiable functions. Let A € B(X,Y)r ¢ and b € Y. Define
the mapping

F:BX,Y)rsxY —X

as follows:
F(A,b) = AL
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The mapping F' is differentiable, if the limit
F(A+¢FE —F(A
lim (A+€eE,b+ef) (A,b)

e—0 €

= F/(A7 b)‘(E,f)

exists for some perturbations £ € B(X,Y) of A and f € Y of b. We assume
that A + ¢E € B(X,Y)r s for small values of ¢ € C. If we have this kind of
differentiability, then

C(A,0) = [IF"(A,0)] (.5l

is the absolute condition number of the linear system Ax = b, related with the
generalized inverse Ag,% )s and perturbations £ of A and f of b.
We can get easy the following useful result.

Theorem 1.1. Suppose that for A € B(X,Y) and for closed subspaces T C X
and S C Y, there exists the generalized inverse Ag)s € B(Y,X). Let B= A+ E,

R(E) C A(T) and N(E) 2 Ty. If | AL sl pallEllp < 1, then BYy exists and
2 2 — 2 2 2) 1—
B = [+ A7 B ALy = AT + EAZ ™" 3)

Proof. This result is analogy with the results in [18] for complex matrices. [J

Higham [8] discussed different condition numbers of regular inverses and nons-
inglar linear systems. Concerning generalized inverses and singular linear systems
there are similar results on these problems. Papers [3, 7, 15, 16, 9, 2, 17] have some
results when the generalized inverse is a Moore-Penrose inverse, Drazin inverse and
generalized Bott-Duffin inverse, respectively. In [13], Y. Wei and H. Diao consid-
ered the condition number for the Drazin inverse and the Drazin inverse solution
of singular linear system. X. Cui and H. Diao generalized the results of [13] and
get the results of the condition number for the W-weighted Drazin inverse and the
W-weighted Drazin inverse solution of a linear system in paper [4]. In [10], we ex-
tend the result obtained in [4] to linear bounded operators between Hilbert spaces.
In [11], the authors established the condition number of the W-weighted Drazin
inverse of a rectangular matrix by the Schur decomposition and the spectral norm.
Because all generalized inverses belong to outer inverse AE_,? )S with the prescribed
range T and null space S, we are more interested in the condition numbers con-

nected with the outer inverse A(T2 )S In [5], H. Diao, M. Qin and Y. Wei investigated
the condition number of the outer inverse A(T s and the outer inverse AT s solution
of a constrained linear system which extends the results in [13, 4]. They gave the

explicit formula of the condition number for the outer inverse A(T g solution of a
constrained linear system. The results obtained in [5] are generalized in [12] using
the Schur decomposition and the spectral norm. In this paper we extend the result
obtained in [5] to linear bounded operators between Hilbert spaces.

2 Absolute condition number of a linear system

First, we prove that the mapping F' is differentiable if we assume some conditions.
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Lemma 2.1. The mapping F : B(X,Y) xY — X is a differentiable function, if
the perturbation (E, f) of (A,b) fulfils the following condition:

2 2 2
AAPE = B, EADA=E, A pol Ellr <1 "

Proof. From Theorem 1.1 follows that (A + eE)gw2 )S exists and

(A+eB)Ps = [I+ALgeE] AT
= [ - eATLE + E(ATE)? — )P AP

AP — eADEAL), + O(e)

Consider the existence of the limit

F(A+€eE,b+ef)— F(A,D)

lim

e—0 €
A eB)Ps(b+ef) — AFsb
B e—0 €

2 2 2 2

oy, (A — ATSEAT + 0(@)) (b + ef) — AP
o e—0 €
. AT f — eATSEATG(b + ef)

e—0 €

= lm (A7 S — AQKEATH — AT EAT f)
= —APEx + AR,

Hence,
F'(Ab)|(g,) = —APKEz + AP f. O

Let A€ B(X,Y), be A(T) and let us consider the equation
Az = b, rxel. (5)

If A e B(X,Y)rs, then the equation (5) have a unique solution if and only if
b e A(T) and T N N(A) = {0}. Then the unique solution of the equation (5) is

given by
z = ALsh. (6)
a—alpha The norm on the data is the norm in B(X,Y) x Y defined as

B-beta
(4,0) = [[[ad, Bo]| = /a2 [ Al + B2[b]%.
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Now, we prove the estimation of the absolute condition number of a linear system
related to the generalized inverse Ag? )S The following result is a generalization of

results from [5] and [10].
Theorem 2.1. If the perturbation E in A fulfills the condition (4), then the absolute

condition number C(A,b) of the generalized inverse Ag?)s solution of the constrained
linear system, with the norm

IfevA, B0]|| = \/O‘QHAHZQP + B2[IBII%,

on the data (A,b), and the norm ||z||p on the solution, satisfies

C(A,b) < || A ||x||2
(A,0) < | TSHQ [32+ ~

Let (Ey)n be a sequence of perturbations of A fulfilling the condition (4), and let
(fn)n be a sequence of perturbations of b. If C(E,, fn) is the corresponding absolute

condition number and HA SHPQ < a, then

2 L Jl=l3
C(Envfn) - ||AEI“,)S||PQ 62 + a2P’

Hence, HATSH o/ 52 + IIpr is a sharp bound.

Proof. We know that F\(A,b) = A;gsb Under the condition (4), F' is a differen-
tiable function and F’ is defined as follows
(A+eB)Fs(b+ef) — ATgb

! I 3 3
F'(AD) e, = lim . ,

n — oo

where E is the perturbation of A and f is the perturbation of b.
Since F satisfies the condition (4), we have

(A+eB)ls = AP — eATs BAY s + O(),
and then we can easily get that

F/(Ab)l (5. = ~APSEALSh + AP f = A5 Bo + A f.

Then
1" (AB) sl = [ATS(Ex— f)lp
< 14A%%lIpa(IElgplzlle + |1 flQ)-

The norm of a linear map (E, f) — F'(A,b)|(g, ) is the supermum of | F'(A, )|k, 1)l p
on the unit ball of B(X,Y") x Y. Since

ek, BAIII* = *| Ellgp + 8211 £13
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we get

17 (A, b))

< sup 1A Sl po (| Ellgrllzlle + 11 £llq)
Q2| E(gp+621f15<1
2 ||| p 1
= s A2y Q(anEnQp +0llo%
Q2| B3 p+621f15<1
2 [
= A%% I ro sup <a||E||QP,ﬂ|f||Q>o( 3
a?|| E||% p+62( 113 <1 a

where (a| Ellqp, 8] fllq) and (%7 %) can be consider as vectors in R?, and the

previous line contains the inner product in R2.
Therefore, from the Cauchy—Schwarz inequality, we get:

> ||CUH 1
IF/ (A D)l < 1475 pay | 5" + 5+
Next, we show the other part of the theorem. Recall the matrix forms (1) and
(2). There exists a sequence (uy), in Sy satisfying |lu,| = 1 and lim ||A] u,| =
AT So, there  exists a  sequence  (v,), in T,
(vn ufx i ) such that [[v,]| <1, lim |jv.] = 1 and, for all n € N,

A un = ||Ay 1””71 = ||A S”PQUn
The last equality follows from

2
1A sllpq = sup [|ATsxp
|zl <1

= sup

o ln ]
N L L e

Al_l.CCl
0
= sup [|A7" @

llz1]]<1

= |47

P

= sup
llz1]I<1

P

Taking, for all n € N,

wel5]e[4]) w=[31<[2]
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we obtain
@ ~ ATt 0 u, | [ A7 un
Arstn = [ 0o ol o [T o

147 o | _ gy [ o
A | = |

2 N
=A%) pqin.

It is easy to check that ||t,|lo =1 and ||0,||p <1, for all n € N.
Let we Sy and v eT. Define S,, € B(T,S5:) as follows: if x € T,

then
def

Suv(x) = (z,0)u.
For all T € B(S1,T) we have
TSyw(x) =T(u)(z,v).

Now we choose, forn =1,2,3,...,

EPE 1
n= o2 Jrﬁv fn:%Unv
1 Sup,z 0
En = ay { 0 0 } '

Then, for a fixed n, we can verify that FE,, fulfills the first equation of the condition

(4):

@p _ _ L [A 0 )[AT 0] Su,e O
Adgsbn = aZnp | 0 Ay } { 0 0 0 0
_ 1 1 0 Sunz 0
- aznp | 0 0 0 0
_ L [ Sue O
- T 00
- B,
In the same way, we have
(2) 1 [ Sue O]J[AN O A0
EnAT’SA o a?n i 0 0 | |: 0 0 0 A,
R [ Sy, O][I O
N a’n| O 0110 0
_ _L [ Surux 0 |
a0 0
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and

2
1AZ Sl ol Enllgr

AT 0
0 O
1
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L | Sue O
a?n 0 0

PQ H QP

aTnHA;lH [1Su el

1
——|AT|| sup ||Su, 22
azn Il Ar | ||z||§1H unsw 2l

1

a2

Ui

IATH sup [lun(z, )|
=<1

1
%IlAl e[l

IE2

Iy .-
oz, 147

AT

(67

2
1Al pq

1.

«

Thus E, fulfills the condition (4), for all n € N. Now we want to verify that
the perturbation (E,, fn) satisfies o?(|E,[|[3p + 5[ fullg < 1.

&?||Enllgp + 8211 £allg

2

1 Su x 0:| 1 ~ 2
=l e
a2n? { 0 0 op 3212 e

1 1
9 o Su x 2
Sl + o

1 1
m||“n||2\\$||§3+ﬁ27ng

=l 1

*m)

1
7’

1.

a2

The inner product (-,-)p in T is the same as the inner product (-, -). Thus, we have,
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for x = Ag)sb,

F'(AD) ik, £y = —Ag?SE x+A an
1
= =% o[ o e
s ] [s]
= [ TG |t
L[ ] L,

1 ATt Up, 1 2) .
= el | 0 | A,

0 B%n

1 _ ) 1 2 .
= o llBlAT [ n ] +BTHA<T,>S||PQ%

_ ||AT,S||PQ ||$HP+L B
U a2 pr)"

2 ~
= [ AL% | ponon.

So
II%‘H2 1
1F'(A,0)| (5,1 P = 14T ] Pe L+ 7
Knowing a2||En||éP + ﬂ2||fn|\2Q <1, we get
=3, 1
1F (A B 5| = 14Dy + 55,

and we complete the proof. [J

3 Concluding remarks

= 7H 1B 1AL PQin + = IATs | pQin
6

(n — 00).

(n — o)

s in
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In this paper, we consider the absolute condition number of a operator between
Hilbert spaces, which is related with the outer generalized inverse of a given oper-
ator. In [5, 12] our Theorem 2.1 is proved for complex matrices. In [10] the author
proved Theorem 2.1 considering the weighted Drazin inverse in Hilbert spaces. It is
of interest to extend our results to the outer inverse of a operator between Banach

spaces.

Acknowledgement. I am grateful to Professor Dragan Djordjevi¢ for helpful

comments and suggestions concerning the paper.



134

Dijana Mosié

References

[1]

2]

A. Ben-Israel and T. N. E. Greville, Generalized inverses: theory and appli-
cations, Second Ed., Springer (2003).

G. Chen, G. Liu and Y. Xue, Perturbation theory for the generalized Bott-
Duffin inverse and its applications, Appl. Math. Comput., 129 (2002), 145—
155.

F. Cucker, H. Diao and Y. Wei, On mixed and componentwise condition
numbers for Moore-Penrose inverse and linear least squares problems, Math.
Comp., T6(258) (2007), 947-963.

X. Cui and H. Diao, Condition number for the W—weighted Drazin inverse and
its applications in the solution of rectangular linear system, J. Appl. Math.
Comput., 20 (2006), 35-59.

H. Diao, M. Qin and Y. Wei, Condition numbers for the outer inverse and
constrained singular linear system, Appl. Math. Comput., 174 (2006), 588—-612.

D. S. Djordjevi¢ and Y. Wei, Operators with equal projections related to their
generalized inverses, Appl. Math. Comput., 155 (2004), 655-664.

S. Gratton, On the condition number of linear least squares problems in a
weighted Frobenius norm, BIT, 36(3) (1996), 523-530.

D. J. Higham, Condition numbers and their condition numbers, Linear Alge-
bra Appl., 214 (1995), 193-213.

T. Lei, Y. Wei and C. W. Woo, Condition numbers and strucured perturbation
of the W—weighted Drazin inverse, J. Appl. Math. Comput., 165 (2005), 185—
194.

D. Mosié¢, Estimation of a condition number related to the weighted Drazin
inverse, Novi Sad J. Math., 39(1)(2009),1-9.

D. Mosi¢ and D. S. Djordjevi¢, Condition number of the W—weighted Drazin
inverse, Appl. Math. Comput., 203 (2008), 308-318.

D. Mosi¢ and D. S. Djordjevi¢, Condition number related to the outer inverse
of a complex matrix, Appl. Math. Comput., 215 (8) (2009), 2826-2834.

Y. Wei and H. Diao, Condition number for the Drazin inverse and the Drazin
inverse solution of singular linear systems with their condition numbers, J.
Comput. Appl. Math., 182 (2005), 270-289.

Y. Wei and H. Wu, On the perturbation and subproper splittings for the

generalized inverse Ag? )S of rectangular matix A, J. Comput. Appl. Math.,

137 (2001), 317-329.



Estimation of a condition number related to Ag? )S 135

[15] Y. Wei and D. Wang, Condition numbers and perturbation of the weighted
Moore-Penrose inverse and weighted linear least squares problem, Appl. Math.
Comput., 145 (2003), 45-58.

[16] Y. Wei, G. Wang and D. Wang, Condition number of Drazin inverse and
their condition numbers of singular linear systems, Appl. Math. Comput.,
146 (2003), 455-467.

[17] Y. Wei and W. Xu, Condition number of Bott-Duffin inverse and their con-
dition numbers, Appl. Math. Comput., 142 (2003), 79-97.

[18] Y. Wei and N. Zhang, Condition number related with generalized inverse Ag?’ )S
and constrained linear system, J. Comput. Appl. Math., 157 (2003), 57-72.

Faculty of Sciences and Mathematics, University of Nis, P.O. Box 224, Visegradska
33,18000 Nis, Serbia
E-mail: sknme@ptt.rs



