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ESTIMATION OF A CONDITION NUMBER

RELATED TO A
(2)
T,S

Dijana Mosić

Abstract

In this paper we get estimation of the absolute condition number a Hilbert
space operator, which is related with the outer generalized inverse of a given
operator.

1 Introduction

In this paper X and Y denote arbitrary Hilbert spaces. We use B(X,Y ) to denote
the set of all linear bounded operators from X to Y . Set B(X) = B(X, X).

Let A ∈ B(X,Y ). We use R(A) and N(A), respectively, to denote the range and
the null-space of A. If there exists some operator A′ ∈ B(Y, X) satisfying A′AA′ =
A′, then A′ is called the outer inverse of A [1]. If T = R(A′) and S = N(A′), then
A′ is well-known as the A

(2)
T,S generalized inverse of A. It can easily be deduced that

for given subspaces T of X and S of Y , there exists the generalized inverse A
(2)
T,S of

A if and only if the following is satisfied: T , S and A(T ) are closed complemented
subspaces of X, Y and Y respectively, the reduction A1 = A|T : T → A(T ) is
invertible and A(T )⊕S = Y . In this case the generalized inverse A

(2)
T,S is unique and

the notation is justified. Moreover, the following holds T = R(A(2)
T,S) = R(A(2)

T,SA).

Hence, we denote T1 = N(A(2)
T,SA) ⊂ X and S1 = A(T ) ⊂ Y . Now we have

X = T ⊕ T1 and Y = S1 ⊕ S.

The matrix form of A is as follows:

A =
[

A1 0
0 A2

]
:
[

T
T1

]
−→

[
S1

S

]
, (1)
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where A1 ∈ B(T, S1) is invertible. Now it is easy to verify that

A
(2)
T,S =

[
A−1

1 0
0 0

]
:
[

S1

S

]
−→

[
T
T1

]
. (2)

We use B(X,Y )T,S to denote the set of all A ∈ B(X, Y ), such that A
(2)
T,S exists.

Here we assume that T and S, respectively, are closed subsets of X and Y .
Let X and Y be equipped with the norms ‖ · ‖X and ‖ · ‖Y . The P -norm for

a vector x ∈ X, the Q-norm for a vector y ∈ Y and the QP -norm for an operator
A ∈ B(X,Y ), respectively, are defined by (see [10]):

‖x‖P =
√
‖x1‖2X + ‖x2‖2X ,

‖y‖Q =
√
‖y1‖2Y + ‖y2‖2Y ,

‖A‖QP = sup
‖x‖P≤1

‖Ax‖Q

where
x = x1 + x2, x1 ∈ T, x2 ∈ T1,

y = y1 + y2, y1 ∈ S1, y2 ∈ S.

Notice that we can also change the inner product in X in the following way:

〈x, y〉P = 〈x1, y1〉X + 〈x2, y2〉X
where

x = x1 + x2, y = y1 + y2, x1, y1 ∈ T, x2, y2 ∈ T1.

Now, ‖ · ‖P is induced by 〈·, ·〉P . Similarly for 〈·, ·〉Q and ‖ · ‖Q in Y .
Generalized inverses are frequently related with the system of equations

Ax = b,

with A and b given, and x is unknown. If A is invertible, then the condition
number of A is defined as ‖A‖‖A−1‖. If A is singular, then we can use some
generalized inverse of A instead of A−1. Thus, the generalized condition number of
A related with the generalized inverse A

(2)
T,S (in the case when it exists), is denoted

by κ(A) = ‖A‖‖A(2)
T,S‖.

The other approach to define the condition number of a linear system Ax = b,
is connected with differentiable functions. Let A ∈ B(X, Y )T,S and b ∈ Y . Define
the mapping

F : B(X, Y )T,S × Y → X

as follows:
F (A, b) = A

(2)
T,Sb.
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The mapping F is differentiable, if the limit

lim
ε→0

F (A + εE, b + εf)− F (A, b)
ε

= F ′(A, b)|(E,f)

exists for some perturbations E ∈ B(X,Y ) of A and f ∈ Y of b. We assume
that A + εE ∈ B(X, Y )T,S for small values of ε ∈ C. If we have this kind of
differentiability, then

C(A, b) = ‖F ′(A, b)|(E,f)‖
is the absolute condition number of the linear system Ax = b, related with the
generalized inverse A

(2)
T,S and perturbations E of A and f of b.

We can get easy the following useful result.

Theorem 1.1. Suppose that for A ∈ B(X, Y ) and for closed subspaces T ⊂ X

and S ⊂ Y , there exists the generalized inverse A
(2)
T,S ∈ B(Y, X). Let B = A + E,

R(E) ⊆ A(T ) and N(E) ⊇ T1. If ‖A(2)
T,S‖PQ‖E‖QP < 1, then B

(2)
T,S exists and

B
(2)
T,S = [I + A

(2)
T,SE]−1A

(2)
T,S = A

(2)
T,S [I + EA

(2)
T,S ]−1. (3)

Proof. This result is analogy with the results in [18] for complex matrices. ¤
Higham [8] discussed different condition numbers of regular inverses and nons-

inglar linear systems. Concerning generalized inverses and singular linear systems
there are similar results on these problems. Papers [3, 7, 15, 16, 9, 2, 17] have some
results when the generalized inverse is a Moore-Penrose inverse, Drazin inverse and
generalized Bott-Duffin inverse, respectively. In [13], Y. Wei and H. Diao consid-
ered the condition number for the Drazin inverse and the Drazin inverse solution
of singular linear system. X. Cui and H. Diao generalized the results of [13] and
get the results of the condition number for the W -weighted Drazin inverse and the
W -weighted Drazin inverse solution of a linear system in paper [4]. In [10], we ex-
tend the result obtained in [4] to linear bounded operators between Hilbert spaces.
In [11], the authors established the condition number of the W–weighted Drazin
inverse of a rectangular matrix by the Schur decomposition and the spectral norm.
Because all generalized inverses belong to outer inverse A

(2)
T,S with the prescribed

range T and null space S, we are more interested in the condition numbers con-
nected with the outer inverse A

(2)
T,S . In [5], H. Diao, M. Qin and Y. Wei investigated

the condition number of the outer inverse A
(2)
T,S and the outer inverse A

(2)
T,S solution

of a constrained linear system which extends the results in [13, 4]. They gave the
explicit formula of the condition number for the outer inverse A

(2)
T,S solution of a

constrained linear system. The results obtained in [5] are generalized in [12] using
the Schur decomposition and the spectral norm. In this paper we extend the result
obtained in [5] to linear bounded operators between Hilbert spaces.

2 Absolute condition number of a linear system

First, we prove that the mapping F is differentiable if we assume some conditions.



128 Dijana Mosić

Lemma 2.1. The mapping F : B(X, Y ) × Y → X is a differentiable function, if
the perturbation (E, f) of (A, b) fulfils the following condition:

AA
(2)
T,SE = E, EA

(2)
T,SA = E, ‖A(2)

T,S‖PQ‖E‖QP < 1. (4)

Proof. From Theorem 1.1 follows that (A + εE)(2)T,S exists and

(A + εE)(2)T,S = [I + A
(2)
T,SεE]−1A

(2)
T,S

= [I − εA
(2)
T,SE + ε2(A(2)

T,SE)2 − ...]−1A
(2)
T,S

= A
(2)
T,S − εA

(2)
T,SEA

(2)
T,S + O(ε2)

Consider the existence of the limit

lim
ε→0

F (A + εE, b + εf)− F (A, b)
ε

= lim
ε→0

(A + εE)(2)T,S(b + εf)−A
(2)
T,Sb

ε

= lim
ε→0

(A(2)
T,S − εA

(2)
T,SEA

(2)
T,S + O(ε2))(b + εf)−A

(2)
T,Sb

ε

= lim
ε→0

εA
(2)
T,Sf − εA

(2)
T,SEA

(2)
T,S(b + εf)

ε

= lim
ε→0

(A(2)
T,Sf −A

(2)
T,SEA

(2)
T,Sb− εA

(2)
T,SEA

(2)
T,Sf)

= −A
(2)
T,SEx + A

(2)
T,Sf.

Hence,
F ′(A, b)|(E,f) = −A

(2)
T,SEx + A

(2)
T,Sf. ¤

Let A ∈ B(X, Y ), b ∈ A(T ) and let us consider the equation

Ax = b, x ∈ T. (5)

If A ∈ B(X,Y )T,S , then the equation (5) have a unique solution if and only if
b ∈ A(T ) and T ∩ N(A) = {0}. Then the unique solution of the equation (5) is
given by

x = A
(2)
T,Sb. (6)

The norm on the data is the norm in B(X,Y )× Y defined asα–alpha
β–beta

(A, b) 7−→ ‖[αA, βb]‖ =
√

α2‖A‖2QP + β2‖b‖2Q.
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Now, we prove the estimation of the absolute condition number of a linear system
related to the generalized inverse A

(2)
T,S . The following result is a generalization of

results from [5] and [10].

Theorem 2.1. If the perturbation E in A fulfills the condition (4), then the absolute
condition number C(A, b) of the generalized inverse A

(2)
T,S solution of the constrained

linear system, with the norm

‖[αA, βb]‖ =
√

α2‖A‖2QP + β2‖b‖2Q
on the data (A, b), and the norm ‖x‖P on the solution, satisfies

C(A, b) ≤ ‖A(2)
T,S‖PQ

√
1
β2

+
‖x‖2P
α2

.

Let (En)n be a sequence of perturbations of A fulfilling the condition (4), and let
(fn)n be a sequence of perturbations of b. If C(En, fn) is the corresponding absolute
condition number and ‖A(2)

T,S‖PQ < α, then

C(En, fn) → ‖A(2)
T,S‖PQ

√
1
β2

+
‖x‖2P
α2

, n →∞.

Hence, ‖A(2)
T,S‖PQ

√
1

β2 + ‖x‖2P
α2 is a sharp bound.

Proof. We know that F (A, b) = A
(2)
T,Sb. Under the condition (4), F is a differen-

tiable function and F ′ is defined as follows

F ′(A, b)|(E,f) = lim
ε→0

(A + εE)(2)T,S(b + εf)−A
(2)
T,Sb

ε
,

where E is the perturbation of A and f is the perturbation of b.
Since E satisfies the condition (4), we have

(A + εE)(2)T,S = A
(2)
T,S − εA

(2)
T,SEA

(2)
T,S + O(ε2),

and then we can easily get that

F ′(A, b)|(E,f) = −A
(2)
T,SEA

(2)
T,Sb + A

(2)
T,Sf = −A

(2)
T,SEx + A

(2)
T,Sf.

Then

‖F ′(A, b)|(E,f)‖P = ‖A(2)
T,S(Ex− f)‖P

≤ ‖A(2)
T,S‖PQ(‖E‖QP ‖x‖P + ‖f‖Q).

The norm of a linear map (E, f) 7→ F ′(A, b)|(E,f) is the supermum of ‖F ′(A, b)|(E,f)‖P

on the unit ball of B(X, Y )× Y. Since

‖[αE, βf ]‖2 = α2‖E‖2QP + β2‖f‖2Q
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we get

‖F ′(A, b)|(E,f)‖
≤ sup

α2‖E‖2QP +β2‖f‖2Q≤1

‖A(2)
T,S‖PQ(‖E‖QP ‖x‖P + ‖f‖Q)

= sup
α2‖E‖2QP +β2‖f‖2Q≤1

‖A(2)
T,S‖PQ

(
α‖E‖QP

‖x‖P

α
+ β‖f‖Q

1
β

)

= ‖A(2)
T,S‖PQ sup

α2‖E‖2QP +β2‖f‖2Q≤1

(α‖E‖QP , β‖f‖Q) ·
(‖x‖P

α
,
1
β

)

where (α‖E‖QP , β‖f‖Q) and
(
‖x‖P

α , 1
β

)
can be consider as vectors in R2, and the

previous line contains the inner product in R2.
Therefore, from the Cauchy–Schwarz inequality, we get:

‖F ′(A, b)|(E,f)‖ ≤ ‖A(2)
T,S‖PQ

√
‖x‖2P
α2

+
1
β2

.

Next, we show the other part of the theorem. Recall the matrix forms (1) and
(2). There exists a sequence (un)n in S1 satisfying ‖un‖ = 1 and lim

n→∞
‖A−1

1 un‖ =

‖A−1
1 ‖. So, there exists a sequence (vn)n in T ,(

vn = A−1
1

‖A−1
1 ‖un

)
, such that ‖vn‖ ≤ 1, lim

n→∞
‖vn‖ = 1 and, for all n ∈ N ,

A−1
1 un = ‖A−1

1 ‖vn = ‖A(2)
T,S‖PQvn.

The last equality follows from

‖A(2)
T,S‖PQ = sup

‖x‖Q≤1

‖A(2)
T,Sx‖P

= sup√
‖x1‖2+‖x2‖2≤1

∥∥∥∥
[

A−1
1 0
0 0

] [
x1

x2

]∥∥∥∥
P

= sup
‖x1‖≤1

∥∥∥∥
[

A−1
1 x1

0

]∥∥∥∥
P

= sup
‖x1‖≤1

‖A−1
1 x1‖

= ‖A−1
1 ‖

Taking, for all n ∈ N ,

ûn =
[

un

0

]
∈

[
S1

S

]
, v̂n =

[
vn

0

]
∈

[
T
T1

]
,
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we obtain

A
(2)
T,S ûn =

[
A−1

1 0
0 0

] [
un

0

]
=

[
A−1

1 un

0

]

=
[ ‖A−1

1 ‖vn

0

]
= ‖A−1

1 ‖
[

vn

0

]

= ‖A(2)
T,S‖PQv̂n.

It is easy to check that ‖ûn‖Q = 1 and ‖v̂n‖P ≤ 1, for all n ∈ N .
Let u ∈ S1 and v ∈ T . Define Su,v ∈ B(T, S1) as follows: if x ∈ T ,

then
Su,v(x) def= 〈x, v〉u.

For all T ∈ B(S1, T ) we have

TSu,v(x) = T (u)〈x, v〉.

Now we choose, for n = 1, 2, 3, . . . ,

η =

√
‖x‖2P
α2

+
1
β2

, fn =
1

β2η
ûn,

En = − 1
α2η

[
Sun,x 0

0 0

]
.

Then, for a fixed n, we can verify that En fulfills the first equation of the condition
(4):

AA
(2)
T,SEn = − 1

α2η

[
A1 0
0 A2

] [
A−1

1 0
0 0

] [
Sun,x 0

0 0

]

= − 1
α2η

[
I 0
0 0

] [
Sun,x 0

0 0

]

= − 1
α2η

[
Sun,x 0

0 0

]

= En.

In the same way, we have

EnA
(2)
T,SA = − 1

α2η

[
Sun,x 0

0 0

] [
A−1

1 0
0 0

] [
A1 0
0 A2

]

= − 1
α2η

[
Sun,x 0

0 0

] [
I 0
0 0

]

= − 1
α2η

[
Sun,x 0

0 0

]

= En
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and

‖A(2)
T,S‖PQ‖En‖QP =

∥∥∥∥
[

A−1
1 0
0 0

]∥∥∥∥
PQ

∥∥∥∥−
1

α2η

[
Sun,x 0

0 0

]∥∥∥∥
QP

=
1

α2η
‖A−1

1 ‖‖Sun,x‖

=
1

α2η
‖A−1

1 ‖ sup
‖z‖≤1

‖Sun,xz‖

=
1

α2η
‖A−1

1 ‖ sup
‖z‖≤1

‖un〈z, x〉‖

≤ 1
α2η

‖A−1
1 ‖‖un‖‖x‖

=
‖x‖
α2η

‖A−1
1 ‖

<
‖A−1

1 ‖
α

=
‖A(2)

T,S‖PQ

α
< 1.

Thus En fulfills the condition (4), for all n ∈ N . Now we want to verify that
the perturbation (En, fn) satisfies α2‖En‖2QP + β2‖fn‖2Q ≤ 1.

α2‖En‖2QP + β2‖fn‖2Q =
1

α2η2

∥∥∥∥
[

Sun,x 0
0 0

]∥∥∥∥
2

QP

+
1

β2η2
‖ûn‖2Q

=
1

α2η2
‖Sun,x‖2 +

1
β2η2

≤ 1
α2η2

‖un‖2‖x‖2P +
1

β2η2

=
1
η2

(‖x‖2P
α2

+
1
β2

)

= 1.

The inner product 〈·, ·〉P in T is the same as the inner product 〈·, ·〉. Thus, we have,
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for x = A
(2)
T,Sb,

F ′(A, b)|(En,fn) = −A
(2)
T,SEnx + A

(2)
T,Sfn

=
1

α2η

[
A−1

1 0
0 0

] [
Sun,x 0

0 0

] [
x
0

]
+

1
β2η

A
(2)
T,S ûn

=
1

α2η

[
A−1

1 Sun,x 0
0 0

] [
x
0

]
+

1
β2η

A
(2)
T,S ûn

=
1

α2η

[
A−1

1 〈x, x〉un

0

]
+

1
β2η

A
(2)
T,S ûn

=
1

α2η

[ ‖x‖2P A−1
1 un

0

]
+

1
β2η

A
(2)
T,S ûn

=
1

α2η
‖x‖2P

[ ‖A−1
1 ‖vn

0

]
+

1
β2η

A
(2)
T,S ûn

=
1

α2η
‖x‖2P ‖A−1

1 ‖
[

vn

0

]
+

1
β2η

‖A(2)
T,S‖PQv̂n

=
1

α2η
‖x‖2P ‖A(2)

T,S‖PQv̂n +
1

β2η
‖A(2)

T,S‖PQv̂n

=
‖A(2)

T,S‖PQ

η

(‖x‖2P
α2

+
1
β2

)
v̂n

= ‖A(2)
T,S‖PQηv̂n.

So

‖F ′(A, b)|(En,fn)‖P → ‖A(2)
T,S‖PQ

√
‖x‖2P
α2

+
1
β2

(n →∞).

Knowing α2‖En‖2QP + β2‖fn‖2Q ≤ 1, we get

‖F ′(A, b)|(En,fn)‖ → ‖A(2)
T,S‖PQ

√
‖x‖2P
α2

+
1
β2

, (n →∞)

and we complete the proof. ¤

3 Concluding remarks

In this paper, we consider the absolute condition number of a operator between
Hilbert spaces, which is related with the outer generalized inverse of a given oper-
ator. In [5, 12] our Theorem 2.1 is proved for complex matrices. In [10] the author
proved Theorem 2.1 considering the weighted Drazin inverse in Hilbert spaces. It is
of interest to extend our results to the outer inverse of a operator between Banach
spaces.

Acknowledgement. I am grateful to Professor Dragan Djordjević for helpful
comments and suggestions concerning the paper.
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