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CHARACTERIZATIONS OF THE HARMONIC HARDY

SPACE h1 ON THE REAL BALL

Miroslav Pavlović

Abstract

We prove some characterizations of the space h1 and use them to give new
proofs of a theorem of Zygmund and a theorem of Kologorov and Smirnov.

1 Introduction

Throughout the paper, we denote by B the unit ball of Rn (n ≥ 2), by dV the
normalized Lebesgue measure on B, and by dσ the normalized surface measure on
the sphere S = ∂B. Let h(B) denote the class of all real-valued functions harmonic
on B. The harmonic Hardy space h1(B) consists of those u ∈ h(B) for which

‖u‖1 := sup
0<r<1

I1(r, u) < ∞, where I1(r, u) =
∫

S

|u(ry)| dσ(y).

We will consider h1(B) as a member of the family of Hardy-Orlicz spaces. Let φ be
an Orlicz function, i.e. a non-negative convex function defined on [0,∞) such that
φ(0) = 0 and φ(t) > 0 for some t > 0. The Hardy-Orlicz space hφ(B) is defined to
be the subclass of h(B) consisting of those u for which

Iφ(u) := sup
0<r<1

Iφ(r, u) < ∞, (1)

where
Iφ(r, u) =

∫

S

φ(|u(ry)|) dσ(y). (2)

Since the function φ(|u|) is subharmonic, we have that Iφ(r, u) increases with r and
so

Iφ(u) = lim
r→1−

Iφ(r, u).
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If φ(t) = tp, p ≥ 1, then hφ(B) is denoted by hp(B) and is called the har-
monic Hardy space. We are mainly concerned with the case p = 1. Our idea is
very simple: use the obvious fact that h1 = hφ, if lim supt→∞ φ(t)/t < ∞ and
lim supt→∞ t/φ(t) < ∞, then choose a suitable φ and apply the Green formula to
the function φ ◦ |u| to get a Hardy-Stein type identity. In this way we get some
surprising (at least for the author) results, e.g., that the condition

∫

B

|∇u(x)|2
(1 + |u(x)|)α

(1− |x|) dV (x) < ∞, α > 1, (†)

is equivalent to u ∈ h1 and is therefore independent of α. We also prove that (†) is
equivalent to the apparently weaker condition

∫

|u(x)|<1

|∇u(x)|2(1− |x|) dV (x) < ∞.

These results will be deduced (Section 3) from a Hardy-Stein type characterization
of general Hardy-Orlicz spaces (Section 2). In Section 4 we give new proofs of
theorems of Zygmund and Kolmogorov-Smirnov.

2 Characterizations of Hardy-Orlicz spaces

In this note we consider the class F that consists of those Orlicz functions φ for
which the first derivative, φ′, is absolutely continuous on [0,∞) and the second
derivative, φ′′, is continuous on [0,∞) \A, where A is a finite subset of [0,∞).

Theorem 1. Let φ ∈ F , φ′(0) = 0, and u ∈ h(B). Then u belongs to hφ(B) if and
only if ∫

B

φ′′(|u(x)|) |∇u(x)|2Gn(x) dV (x) < ∞, (3)

and we have

Iφ(u) = φ(|u(0)|) +
∫

B

φ′′(|u(x)|) |∇u(x)|2Gn(x) dV (x), (4)

where

Gn(x) =





1
2

log
1
|x| , n = 2

|x|2−n − 1
n(n− 2)

, n ≥ 3.

In the case where φ(t) = tp, p > 1, this theorem was proved by P. Stein [5] (for
the case n ≥ 3 see [3]). Analogous results for analytic Hardy-Orlicz spaces were
considered by Stoll [6] (n = 1), and Ouyang and Riihentaus [2], and by Stoll [7]
(n ≥ 2). Our proof completely differs from those in these papers.

Remark 1. Although φ′′(x) does not exist for x ∈ A, the integral in (3) is defined
because the measure of the set ∪x∈A{t ∈ B : u(t) = x} is equal to zero.
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Proof. We extend φ to R by φ(−t) = φ(t). Assume first that φ is of class C2(R)
(which implies φ′(0) = 0). Then we use the Green formula

∫

S

v(ry) dσ(y)− v(0) =
∫

rB

∆v(x)Gn(x, r) dV (x), v ∈ C2(B), 0 < r < 1, (5)

where

Gn(x, r) =





1
2

log
r

|x| , n = 2

|x|2−n − r2−n

n(n− 2)
, n ≥ 3.

(6)

Taking v(x) = φ(|u(x)|) = φ(u(x)) and using the formula

∆v = φ′′(|u|)|∇u|2 (7)

we get

Iφ(r, φ)− φ(|u(0)|) =
∫

B

φ′′(|u|) |∇u|2Gn(·, r) dV, 0 < r < 1. (8)

Next we consider the case where φ ∈ F is such that φ′′ is bounded. In this case
we define the sequence φk by

φ′′n(t) = k

∫ 1/k

−1/k

ω(ks)φ′′(s + t) dt and φ′k(0) = φk(0) = 0, (9)

where ω is an even nonnegative function of class C∞(R) with supp ω ⊂ (−1, 1), and∫
R ω(t) dt = 1. It is well known and easy to see that φk ∈ C∞(R) and

lim
k→∞

φ′′k(t) = φ′′(t) if φ′′ is continuous at t.

Since φn are Orlicz functions, we can appeal to the preceding case to get

Iφk
(r, φk)− φk(|u(0)|) =

∫

rB

φ′′k(|u|) |∇u|2Gk(·, r) dV (10)

Since supR |φk| ≤ supR |φ|, by (9), and
∫

rB
Gk(x, r) dV (x) < ∞, we see that the

sequence φ′′k(|u|) |∇u|2Gk(·, r) has an integrable dominant, so we can apply the
dominated convergence theorem to (10) to get the result.

Finally assume that φ′′ is not bounded. Then we consider the functions ψk

(k ∈ N) defined by

ψ′′k (t) = gk(t) := min{k, φ′′(t)} (t > 0) and ψk(0+) = ψ′k(0) = 0.

Applying (10) to ψn we get
∫

rB

gk(|u|) |∇u|2Gk(·, r) dV =
∫

S

ψk(|u(ry)|) dσ(y)− ψk(|u(0)|).

Since 0 ≤ gk ↑ φ′′ and 0 ≤ φk ↑ φ (k →∞) we can apply the monotone convergence
theorem to obtain (8) in the general case.

Now (4) is obtained by application of the monotone convergence theorem (r →
1−) (observe that Gk(x, r) increases with r).
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We can write (8) as

Iφ(r, u)− φ(|u(0)|) =
1
n

∫ r

0

ρ1−n dρ

∫

ρB

φ′′(|u|) |∇u|2 dV, (11)

from which we get:

Theorem 2. Under the hypotheses of Theorem 1, the function r 7→ Iφ(r, u) (0 <
r < 1) is of class C1 and we have

d

dr
Iφ(r, u) =

r1−n

n

∫

rB

φ′′(|u|) |∇u|2 dV, 0 < r < 1. (12)

If φ′(0) > 0, then an application of Theorem 1 to the function φ1(t) = φ(t) −
φ′(0)t yields the following.

Theorem 3. If φ ∈ F and u ∈ h(B), then

Iφ(u)− Iφ(|u(0)|) = φ′(0)(I1(u)− |u(0)|) +
∫

B

|φ′′(|u|) |∇u|2 Gn dV,

where
I1(u) = sup

0<r<1

∫

S

|u(ry)| dσ(y).

Corollary 1. Let φ ∈ F and φ′(0) > 0. Then (4) holds if and only if u is of
constant sign on B.

Proof. By the theorem, (4) holds if and only if I1(u) = |u(0)|. If u is of constant sign,
then I1(u) = |u(0)|, by the mean value property of u. Conversely, if I1(u) = |u(0)|,
then

∫
S
|u(ry)| dσ(y) = |u(0)| for all r ∈ (0, 1), by the sub-mean-value property of

|u|, whence ∫

B

|u| dV = n

∫ 1

0

rn−1 dr

∫

S

|u(ry)| dσ(y)

= |u(0)|
=

∣∣∣
∫

B

u dV
∣∣∣.

This implies that u is of constant sign.

3 Characterizations of h1(B)

Since, by (8), ∫

(1/2)B

φ′′(|u(x)|)|∇u(x)|2Gn(x) dV (x) < ∞

for all u ∈ h(B), and Gn(x, r) ³ (1− |x|), 1/2 < |x| < 1, we have, as a consequence
of Theorem 1:
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Theorem 4. Let φ ∈ F , φ′(0) = 0, and u ∈ h(B). Then u is in hφ(B) if and only
if ∫

B

φ′′(|u(x)|)|∇u(x)|2(1− |x|) dV (x) < ∞.

Now we will apply this theorem to characterize h1.

Theorem 5. Let g : [0,∞) 7→ [0,∞) be a function continuous on [0,∞) \A, where
A is a finite subset of [0,∞) and 0 <

∫∞
0

g(t) dt < ∞. Then, a function u ∈ h(B)
is in h1(B) if and only if

∫

B

g(|u(x)|) |∇u(x)|2(1− |x|) dV (x) < ∞.

Proof. Define the function φ by φ′′ = g, and φ(0) = φ′(0) = 0. From this and
the hypotheses on g it follows that there are positive constants t0 and C such that
t/C ≤ φ(t) ≤ Ct for t > t0, which implies h1(B) = hφ(B). Now the conclusion
follows from Theorem 4.

Positive harmonic functions belong to h1(B). Hence:

Corollary 2. If g is as above and u ∈ h(B) is positive, then
∫

B

g(|u(x)|) |∇u(x)|2(1− |x|) dV (x) < ∞.

In particular this holds in the case where u is the Poisson kernel,

u(x) =
1− |x|2
|x− y|n (y ∈ S is fixed).

The last fact can certainly be verified by direct computation.

Corollary 3. Let α > 1 and u ∈ h(B). Then u is in h1(B) if and only if
∫

B

|∇u(x)|2
(1 + |u(x)|)α

(1− |x|) dV (x) < ∞. (13)

Proof. Take g(t) = (1 + t)−α and apply the theorem.

Corollary 4. A function u ∈ h(B) belongs to h1 if and only if
∫

|u(x)|<1

|∇u(x)|2(1− |x|) dV (x) < ∞.

Proof. In this case we take g(t) = 1 for 0 ≤ t ≤ 1 and g(t) = 0 for t > 1.

In view of Corollary 3, it is natural to ask whether the condition (13) corresponds
to some Hardy-Orlicz space for α = 1. The answer is affirmative:
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Corollary 5. Let φ(t) = t log(1 + t), u ∈ h(B). Then u belongs to hφ(B) if and
only if ∫

B

|∇u(x)|2
1 + |u(x)| (1− |x|) dV (x) < ∞.

Proof. We have

φ′′(t) =
1

1 + t
+

1
(1 + t)2

³ 1
1 + t

, t > 1.

The result follows.

Remark 2. We write φ1(t) ³ φ2(t), t > 1, to indicate that 1/C ≤ φ1(t)/φ2(t) ≤ C,
for t > 1, where C is a constant independent of t. It is easy to check that if φ1 ³ φ2,
then hφ1 = hφ2 .

Corollary 6. Let p > 1, u ∈ h(B). Then u ∈ hp(B) if and only if
∫

B

(1 + |u(x)|)p−2|∇u(x)|2(1− |x|) dV (x) < ∞.

Proof. It is enough to take φ(t) = (1 + t)p − 1 and observe that hp = hφ.

4 Theorems of Zygmund and Kolmogorov-Smirnov

The preceding results can be used to prove two well-known theorems. In order to
state them we denote by B = B2m the unit ball in Cm = R2m, by H(B) the class of
all functions analytic in B, and by Hp(B) (0 < p < ∞) the ordinary Hardy space,

Hp(B) = {f ∈ H(B) : sup
0<r<1

∫

B

|f(rζ)|p dσ(ζ) < ∞}.

Theorem A (Zygmund [8]) If f ∈ H(B) and Re f ∈ hφ(B), where φ(t) = t log(1+
t), then f ∈ H1(B).

Theorem B (Kolmogorov-Smirnov [1, 4]) If If f ∈ H(B) and Re f ∈ h1, then
f ∈ Hp(B) for all p < 1.

In order to prove these theorems we need the following characterization of Hardy
spaces.

Theorem 6. Let 0 < p < ∞. A function f ∈ H(B) belongs to Hp(B) if and only
if ∫

B

(1 + |f(z)|)p−2|Df(z)|2(1− |z|) dV (z) < ∞,

where

|Df(z)| =
( n∑

j=1

∣∣∣ ∂f

∂zj

∣∣∣
2
)1/2

.
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Proof. This can easily be deduced from formula (5), with n = 2m and v = (1 +
|f |2)p/2 − 1, and the formulas |∇|f |2| = 2|f | |Df |, ∆(|f |2) = 4|Df |2.
Proof of Theorem A. This theorem follows from Corollary 5 and Theorem 6 (p = 1)
together with the relations 1/(1 + |Re f |) ≥ 1/(1 + |f |) and |∇(Re f)| = |Df |.
Proof of Theorem B. In this case we use Corollary 3 (α = 2 − p, p < 1) and
Theorem 6.
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