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AN INSTABILITY THEOREM FOR A CERTAIN

FIFTH-ORDER DELAY DIFFERENTIAL EQUATION

Cemil Tunç

Abstract

Text of the abstract. The main purpose of this paper is to introduce a new
instability theorem related to a fifth order nonlinear differential equation with
a constant delay. By means of the Lyapunov-Krasovskii ([8], [13]) functional
approach, we obtain a new result on the topic.

1 Introduction

It is well known that the problems relative to qualitative behaviors of solutions of
higher order nonlinear differential equations are very important in the theory and
applications of differential equations. See, in particular, the papers of Chlouverakis
and Sprott [1], Eichhorn et al [2], Linz [12] and the references cited in these papers
for some applications.

With respect to our observations from the literature, in the last three decades,
some authors give attention to investigate the instability of solutions of fifth order
nonlinear differential equations without delay of the form:

x(5)(t) + A1x
(4)(t) + A2x

′′′(t) + A3x
′′(t) + A4x

′(t) + A5x(t) = 0

where x ∈ <, t ∈ <+, <+ = [0,∞), A1 , A2 , A3 , A4 and A5 are not necessarily
constants. For a comprehensive treatment of the subject we refer the reader to the
papers of Ezeilo [4-6], Li and Duan [10], Li and Yu [11], Sadek [14], Sun and Hou
[15], Tiryaki [16], Tunç [17-19], Tunç and Erdogan [21], Tunç and Karta [22], Tunç
and Şevli [23] and the references cited in these papers for some works performed on
the subject, which include some fifth order nonlinear differential equations without
delay.

It should be also noted that throughout all of these papers, based on Krasovskii’s
properties (seeKrasovskii [8]), the Lyapunov’s [13]second (or direct) method has
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been used as a basic tool to prove the results established therein. On the other
hand, it is crucial to obtain information on the instability of solutions of differential
equations while we have no analytical expression for solutions. For this purpose,
the theory of Lyapunov functions and functionals is a global and the most effec-
tive approach toward determining qualitative behaviors of solutions of higher order
nonlinear differential equations. This theory became an important part of both
mathematics and theoretical mechanics in twentieth century. However, construc-
tion of Lyapunov functions and functional remains as a general problem in the
literature.

Meanwhile, in 1989, Tiryaki [16] gave an instability result for the fifth order
nonlinear differential equation without delay

x(5)+a1x
(4)+k(x, x′, x′′, x′′′, x(4))x′′′+g(x′)x′′+h(x, x′, x′′, x′′, x(4))+f(x) = 0. (1)

In this paper, instead of Eq. (1), we consider nonlinear fifth order delay differ-
ential equation

x(5)+a1x
(4)+k(x, x′, x′′, x′′′, x(4))x′′′+g(x′)x′′+h(x, x′, x′′, x′′, x(4))+f(x(t−r)) = 0.

(2)
We write Eq. (2) in system form as

x′ = y
y′ = z
z′ = w
w′ = u
u′ = −a1u− k(x, y, z, w, u)w − g(y)z − h(x, y, z, w, u)− f(x)

+
t∫

t−r

f ′(x(s))y(s)ds,

(3)

where a1 and r are positive constants, r is fixed delay, the primes in Eq. (2)
denote differentiation with respect to t, t ∈ <+ = [0,∞); k, g, h and f are con-
tinuous functions in their arguments on <5, <, <5 and <, respectively, and with
h(x, 0, z, w, u) = f(0) = 0. The continuity of these functions is a sufficient condition
for the existence of the solution of Eq. (2) (see [3, pp.14]). It is also assumed
as basic that the functions k, g, h and f satisfy a Lipschitz condition in their
respective arguments. By this way, the uniqueness of solutions of Eq. (2) is guar-
anteed (see [3, pp.15]). We assume in what follows that f is also differentiable, and
x(t), y(t), z(t), w(t) and u(t) are abbreviated as x, y, z, w and u, respectively.

The motivation to write this paper comes from the foregoing papers done for
ordinary differential equations without delay. Our purpose is to achieve the result
established in[16] to nonlinear delay differential equation given in (2) for the insta-
bility of the trivial solution of this equation. Finally, to the best of our knowledge,
we did not find any instability result in the literature for fifth order delay differen-
tial equations except that of Tunç [20]. The basic reason for the lack of any paper
on this topic may be the difficulty of the construction or definition of appropriate
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Lyapunov functionals for the instability problems relative to higher order delay dif-
ferential equations. Here, by defining an appropriate Lyapunov functional we carry
out our purpose. This paper is the second attempt and work on the topic.

In the following theorems, we give basic idea of the method about the instability
of solutions of ordinary and delay differential equations. The following theorem, due
to the Russian mathematician N. G. Cetaev’s (see LaSalle and Lefschetz [9]).

Theorem A(Instability Theorem of Cetaev’s). Let Ω be a neighborhood of
the origin. Let there be given a function V (x) and region Ω1 in Ω with the following
properties:

(i) V (x) has continuous first partial derivatives in Ω1.
(ii) V (x) and V̇ (x) are positive in Ω1.
(iii) At the boundary points of Ω1 inside Ω, V (x) = 0.
(iv) The origin is a boundary point of Ω1.
Under these conditions the origin is unstable.
Let r ≥ 0 be given, and let C = C([−r, 0], <n) with

‖φ‖ = max
−r≤s≤0

|φ(s)| , φ ∈ C.

For H > 0 define CH ⊂ C by

CH = {φ ∈ C : ‖φ‖ < H}.
If x : [−r, a] → <n is continuous, 0 < A ≤ ∞, then, for each t in [0, A), xt in C

is defined by
xt(s) = x(t + s),−r ≤ s ≤ 0, t ≥ 0.

Let G be an open subset of C and consider the general autonomous delay differential
system with finite delay

ẋ = F (xt), xt = x(t + θ),−r ≤ θ ≤ 0, t ≥ 0,

where F : G → <n is a continuous and maps closed and bounded sets into bounded
sets. It follows from these conditions on F that each initial value problem

ẋ = F (xt), x0 = φ ∈ G

has a unique solution defined on some interval [0, A), 0 < A ≤ ∞. This solution will
be denoted by x(φ)(.) so that x0(φ) = φ.

Definition . The zero solution, x = 0, of ẋ = F (xt) is stable if for each ε > 0
there exists δ = δ(ε) > 0 such that ‖φ‖ < δ implies that |x(φ)(t)| < ε for all t ≥ 0.
The zero solution is said to be unstable if it is not stable.

Theorem B. Suppose there exists a Lyapunov function V : G → <+ such that
V (0) = 0 and V (x) > 0 if x 6= 0. If either

(i) V̇ (φ) > 0 for all φ in G for which
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V [φ(0)] = max
−s≤t≤0

V [φ(s)] > 0

or
(ii) V̇ (φ) > 0 for all φ in G for which

V [φ(0)] = min
−s≤t≤0

V [φ(s)] > 0,

then the solution x = 0 of ẋ = F (xt) is unstable (see Haddock and Zhao [7]).

2 Main result

Our main result is the following theorem.

Theorem 1. In addition to the basic assumptions imposed on the functions k,
g, h and f appearing in Eq. (2), we assume that there exist constants δ > 0 and
a5 ( 6= 0) such that the following conditions hold:

f(0) = 0, f(x) 6= 0 for all x 6= 0, |f ′(x)| ≤ |a5| , h(x, 0, z, w, u) = 0,

h(x, y, z, w, u)
y

− 1
4
k2(x, y, z, w, u) ≥ δ for all x , y (6= 0), z, w and u.

Then the trivial solution x = 0 of Eq. (2) is unstable provided that r < δ
|a5| .

Remark 1. In order to prove this theorem, it is sufficient to show that there
exists a continuous Lyapunov functional V (xt, yt, zt, wt, ut) which satisfies the fol-
lowing Krasovskii properties (see Krasovskii [8]):

(K1) In every neighborhood of (0, 0, 0, 0, 0), there exists a point (ξ, η, ζ, µ, ρ)
such that V (ξ, η, ζ, µ, ρ) > 0 ;

(K2) the time derivative d
dtV (xt, yt, zt, wt, ut) along solution paths of (3) is pos-

itive semi-definite;
(K3) the only solution (x, y, z, w, u) = (x(t), y(t), z(t), w(t), u(t)) of (3) which

satisfies d
dtV (xt, yt, zt, wt, ut) =0 is the trivial solution (0, 0, 0, 0, 0).

Remark 2. If we take k(x, x(t−r), ..., u, u(t−r)) and h(x, x(t−r), ..., u, u(t−r))
in Eq. (2) instead of the functions k(x, y, z, w, u) and h(x, y, z, w, u), respectively,
then the result of the above theorem remains valid.

Proof. We define a Lyapunov functional V = V (xt, yt, zt, wt, ut) as:

V =
1
2
a1z

2 + zw − yu− a1yw −
y∫

0

g(η)ηdη −
s∫

0

f(s)ds− λ

0∫

−r

t∫

t+s

y2(θ)dθds, (4)
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where s is a real variable such that the integral
0∫
−r

t∫
t+s

y2(θ)dθds is non-negative,

and λ is a positive constant which will be determined later in the proof.
It is clear that

V (0, 0, ε2, ε, 0)=
1
2
a1ε

4 + ε3 > 0

for all sufficiently small ε > 0, which verifies the property (K1) of Krasovskii [8].
Using the Lyapunov functional V and (3), the time derivative of V yields that

d
dtV (xt, yt, zt, wt, ut) = w2 + k(x, y, z, w, u)yw + h(x, y, z, w, u)y

−y
t∫

t−r

f ′(y(s)z(s)ds− λry2 + λ
t∫

t−r

y2(s)ds.
(5)

Utilizing the assumptions of the theorem and applying the relation 2 |mn| ≤
m2 + n2, one can easily get the following inequality for fourth term included in (5):

−y
t∫

t−r

f ′(x(s))y(s)ds ≥ − |y|
t∫

t−r

|f ′(x(s))| |y(s)| ds

≥ − 1
2 |a5| ry2 − 1

2 |a5|
t∫

t−r

y2(s)ds.

Then, we have

d
dtV (xt, yt, zt, wt, ut) ≥ w2 + k(x, y, z, w, u)yw + h(x, y, z, w, u)y

− 1
2 |a5| ry2 − λry2 +

(
λ− 1

2 |a5|
) t∫

t−r

y2(s)ds

= [w + 2−1yk(x, y, z, w, u)]2

+[h(x, y, z, w, u)y−1 − 4−1k2(x, y, z, w, u)]y2

− 1
2 |a5| ry2 − λry2 +

(
λ− 1

2 |a5|
) t∫

t−r

y2(s)ds.

Let λ = 1
2 |a5| . Hence

d
dtV (xt, yt, zt, wt, ut) ≥ [h(x, y, z, w, u)y−1 − 4−1k2(x, y, z, w, u)− |a5| r]y2

≥ (δ − |a5| r)y2 > 0

provided that r < δ
|a5| , which verifies the property (K2) of Krasovskii [8].

On the other hand d
dtV (xt, yt, zt, wt, ut) = 0 if and only if y = 0, which implies

that
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y = z = w = u = 0.

Moreover, by f(x) 6= 0 for all x 6= 0, it follows that the only invariant set of (3)
for which y = 0 is x = 0, which verifies the property (K3) of Krasovskii [8]. By the
foregoing discussion, we conclude that the zero solution of Eq. (2) is unstable.

The proof of Theorem 1 is now completed.
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