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ON AN INTEGRAL-TYPE OPERATOR FROM Qk(p,q)
SPACES TO o-BLOCH SPACES

Chunping Pan

Abstract

Let g € H(D), n be a nonnegative integer and ¢ be an analytic self-map of
D. We study the boundedness and compactness of the integral operator C ,
which is defined by

€,z = / "I (o(€))g(E)de, z €D, fe HD),

from Qg (p,q) and Qk,0(p,q) spaces to a-Bloch spaces and little a-Bloch
spaces.

1 Introduction

Let D be the open unit disk in the complex plane and H (D) the class of all analytic
functions on D. Let o > 0. An f € H(D) is said to belong to the a-Bloch space,
denoted by B¢, if

£z = 1£(0)] +§1€15(1 =121 (2)] < 0. (1)

Under the above norm, B® is a Banach space. When a = 1, B! = B is the classical
Bloch space. Let Bf denote the subspace of B* consisting of those f € B* for which
(1 —12%)%|f'(2)| — 0 as |z| — 1. This space is called the little a-Bloch space.

Let g(z, a) be the Green function with logarithmic singularity at a, i.e. g(z,a) =

log =% 1(Z)‘ (¢a is a conformal automorphism defined by ¢,(z) = == for a € D).

Let p > 0, ¢ > =2, K : [0,00) — [0,00) be a nondecreasing continuous function.
An f € H(D) is said to belong to Qx(p, q) space if (see [9,29])
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where dA is the normalized Lebesgue area measure in ). For p > 1, under the
norm || fllgy (p.q) = [£(O)| + [ fIl, @k (p,q) is a Banach space. An f € H(D) is said
to belong to Qk o(p, ¢) space if

tim [ £GP (1 ) Koz, 0)dA() =0, 3)

la]—

Throughout the paper we assume that (see [29])

/1(1 —r))9K (= logr)rdr < oo, (4)
0

since otherwise Q (p, q) consists only of constant functions.

Let g € H(D) and ¢ be an analytic self-map of . The composition operator
C, is defined by Cy,(f)(2) = f(e(2)), f € H(D). In [4], Li and Stevi¢ defined the
generalized composition operator as follows

Cgf /f §)d¢, fe HD), zeD.

The generalized composition operator and its generalizations on various spaces were
investigated in [4-7,13,14, 19,21, 22, 24, 28,30-33, 35, 36]. See, e.g., [1,11] and the
references therein for the study of the composition operator.

Let g € H(D), n be a nonnegative integer and ¢ be an analytic self-map of D.
In [38], the author defined a new integral-type operator as follows:

/ F (o)) g(€)de, zeD, fe H(D).

C;yg is the generalized composition operator CZ. When n = 0, then Cf;,g is the
Volterra composition operator defined by Li in [3], extended by Stevié¢ in the n-
dimensional case in [16] and subsequently studied in [15,17,18,20,23,25-27].

Here we characterized the boundedness and compactness of the operator C7
from Qk(p,q) and Qk o(p,¢) to a-Bloch and little a-Bloch spaces.

Throughout this paper, constants are denoted by C, they are positive and may
differ from one occurrence to the other. The notation A < B means that there is a
positive constant C' such that B/C < A < CB.

2  Main results and proofs

In this section we give our main results and proofs. For this purpose, we need
some auxiliary results. The following lemma can be proved in a standard way (see,

g., [10)).

Lemma 1. Let a,p > 0, ¢ > —2 and K be a nonnegative nondecreasing function
n [0,00). Assume that ¢ is an analytic self-map of D and n is a nonnegative
integer. Then C7 ; : Qk(p,q)(or Qk o(p,q)) — B is compact if and only if C.
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Ok (p,q)(or Ok, 0(p,q)) — B* is bounded and for any bounded sequence (fi)ken in
QK (p,q)(or Ok 0(p, q)) which converges to zero uniformly on compact subsets of D,
we have [|C} , fx|

ga — 0 as k — oo.
The following lemma is essentially proved in [8], hence we omit its proof.

Lemma 2. A closed set K in Bf is compact if and only if it is bounded and satisfies

lim sup(1— [2[*)¥f'(2)] = 0.
|2|=1" fek

Lemma 3. [29] Let p > 0, ¢ > —2 and K is a nonnegative nondecreasing function
2
on [0,00). For f € Qk(p,q), we have f € B and

£ jaz2 < 1 Fllox .- ®)

Lemma 4. [12] Let f € B*,0 < o < 0o. Then

Cll fll 5= , O0<a<l;
C% 5 a>1.

Now we are in a position to state and prove the main results of this paper.

Theorem 1. Let a,p > 0, ¢ > —2 and K be a nonnegative nondecreasing function
on [0,00) such that

1
. 1 \x-1(@
/ K(—logr)(1 — r)min{=td} (log ) rdr < 00, (6)
0 1 — 7T

where xo(x) denote the characteristic function of the set O. Assume that ¢ is an
analytic self-map of D and n € N. Then the following statements are equivalent.

(i) C% 4 Qi (p,q) — B* is bounded;

(ii) Cy 4+ Qr0(p,q) — B* is bounded;

(iii)
1—12?)%g(z
b e g ARV .

€D (1 () )

Proof. (#i1) = (i). Suppose that (7) holds. First it is easy to see that
(C%4f)(0) = 0 and (C’g)gf)/(z) = ") (p(2))g(2) for every f € H(D). For any
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zeDand f € Qk(p,q), by Lemma 3 we have

(L= =P NCe () = =[N (e(2))g(2)]
(1= l21*)*]g(2)]

|
< 2%q—p ”f” at2
(1 - lp() =5 e
(1= 12)lg(2)
2+g—p ||f|| K(P,q)’ (8)
T e

where we have used the following well-known characterization for a-Bloch functions
(see, e.g., [34])

sup(1 — [2[))*|f(2)] < [F/(0)] +- - -+ [f*D(0)] +sup(1 — [2]*)" 7 f™)(2)].
z€D zeD

Taking the supremum in (8) for z € D, then employing (7) we obtain that C7,  :
Qk(p,q) — B* is bounded.

(1) = (7). It is clear.

(44) = (ii7). Suppose that C7 | : Qx o(p,q) — B* is bounded, i.e. there exists a
constant C such that ||C, ng||3a § Cllfll o (p,q) for all f € Qg o(p,q). Taking the
function f(z) = 2", which belongs to Qk o(p, q), we get

sup(1 — [2[*)*|g(2)] < oc. (9)
z€eD

2

For w € D, let f,(z) = qu Using the condition (6), we see that f,, €
(1—zw) P

Qk.0(p,q), for each w € D (see [2]), moreover there is a positive constant C' such
that sup,,ep || fwllox (pq) < C and

\f(”) lj (q + 2 )

|w]™

(L o) 57

Hence,

0o > CHCLZQ”QKO(P(I)—’B“ > [|CF g fon 8o

N a+2 (1P Ig(A)+IIQs_0(A)|” (10)
H( +3) (1= [p) 5

for each X\ € .
From (10), we have

1— 2\a 1— 2\« n

IV I (G G PIEV (2]

eI>3 (1= p(N)2) > leI> (L= lp(V)[2) > *"
ClCS glloxopa—Be < 0. (11)

A

IN
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Inequality (9) gives

1 [AP)*[g(x 47
sup PN AT s (- g < 0. (12)
leMI<t (1= ]e\)[2) " » 3 r le(V)I<3

where we used the assumption (¢ +2 — p)/p +n > 0. Therefore, (7) follows from
(11) and (12). This completes the proof of Theorem 1. O

Theorem 2. Let a,p > 0, ¢ > —2 and K be a nonnegative nondecreasing function
on [0,00) such that (6) holds. Assume that ¢ is an analytic self-map of D and
n € N. Then the following statements are equivalent.

(i) C3 4+ Qi (p,q) — B is compact;

(ii) Cy 4+ Qi 0(p,q) — B* is compact;

(iii) Cy , + Qk(p,q) — B is bounded and

1— 2\«
lim =10 Lifﬁ},Ln =0. (13)

)11 (1 [p(2)[2) =

Proof. (iii) = (i). Suppose that C3 , : Qx(p,q) — B* is bounded and (13)
holds. Let (fx)ren be a sequence in Qx (p, ¢) such that supyey || fxll o (p,q) < C and
fr converges to 0 uniformly on compact subsets of D as £ — oo. By the assumption,
for any € > 0, there exists a § € (0, 1) such that

(1 —[2[*)lg ()]
(L= lp(z)2) "5+

when ¢ < [p(z)] < 1. Since C7} ; : Qk(p,q) — B is bounded, then from the proof
of Theorem 1 we have

(14)

My = sug(l — 21)¥g(2)] < oo. (15)
zE

Let Q ={z€D: |p(z)| < d}. Then, we have
€5 fellme = sup(t = [2%)°1(C3  £1)'(2)]
< sup(1— [2)2g(2)|If (0(2))] +sup(L — |22) g ()| £ (9(2)]
Q D\Q

(17|Z|2)a|g(2)| ||f H
2+g—p+n kllQk (p,q)

sup(1 — 2[2)*|g()IIf" (o(2 o
< sl = B I@IA" e+ Comp

< My sup £ ()] + Cell full or (pa- (16)
|lw[<d

(From Cauchy’s estimate and the assumption that f, — 0 as k — oo on compact
subsets of D, we see that f,i") — 0 as k — oo on compact subsets of D. Letting
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k — oo in (16) and using the fact that € is an arbitrary positive number, we obtain
limg— oo |C5 4 fkllg= = 0. Applying Lemma 1, the result follows.

(¢) = (47). This implication is obvious.

(44) = (iii). Suppose that C7;  : Qk o(p,q) — B is compact. Then it is clear
that Cj , : Qko(p,q) — B is bounded and from Theorem 1 we see that Cj; , :
QK (p,q) — B> is bounded. Let (z;)ren be a sequence in D such that |¢o(z)] — 1
as k — oo (if such a sequence does not exist then condition (13) is vacuously
satisfied). Let fix(z) = %. Then, fr € Qk0(p;q), suPken | fellox (p.g) <

(1—p(zk)z) P
oo and fr converges to 0 uniformly on compact subsets of D as k — oo. Since

C% 4 Qko(p,q) — B is compact, by Lemma 1 we have
kh—{go ||C<Z,gfk||8<* =0. (17)

On the other hand, from (10) we have

2+q—p +n

(1= lp(zr)?) ™

n—1
” g+2 N1 —=ze]2)¥g(z)]e(ze)|™
=0

which together with (17) implies that

L =z P)lgCRlle)l™ (= [z*) g () lle(ze) |
lim 2Fq—p = lim 2+q—p

lp(zk)|—1 (1—|<P(Zk)|2) p TN k—oo (1—|90(2k)‘2) P T

=0, (18)

from which (13) easily follows. O

Theorem 3. Let a,p > 0, ¢ > —2 and K be a nonnegative nondecreasing function
on [0,00) such that (6) holds. Assume that ¢ is an analytic self-map of D andn € N.
Then Cy , : Qro(p,q) — B§ is bounded if and only if C7; ;= Qr o(p,q) — B* is
bounded and

lim (1 —[2*)%]g(2)| = 0. (19)

|z|—1

Proof. Suppose that Cy; , : Qk o(p,q) — Bg is bounded. It is obvious that
C% 4 Qro(p,q) — B is bounded. Taking the function f(z) = 2", and employing
the boundedness of C; / : Qx 0(p,q) — Bf we see that (19) holds.

Conversely, assume that C7 @ Qko(p,q) — B® is bounded and (19) holds.
Then, for each polynomial p(z), we have that

(1= [2)*(CE gp) (2)] < (1 = 2|9 ()™l oo,

from which it follows that C ;p € Bgy. Since the set of all polynomials is dense
in Ok o(p,q) (see [2]), we have that for every f € Qk o(p,q) there is a sequence of
polynomials (pi)ers such that ||/ — pll gy () — 0. a5 k — oc. Henee

1CGof = CggPrllse < CG gllow ow.a)—Bllf = Prlloxp.a — 0
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as k — oo. Since Bf is closed subset of B*, we obtain C7 (Qr,o(p,q)) C B
Therefore C7, ; : Qr 0(p,q) — Bf is bounded. [

Theorem 4. Let a,p > 0, ¢ > —2 and K be a nonnegative nondecreasing function
on [0,00) such that (6) holds. Assume that ¢ is an analytic self-map of D and
n € N. Then the following statements are equivalent.
(i) C3 4+ Qi (p,q) — B§ is compact;
(ii) C3 4« Qro(p,q) — BE is compact;
(iii)
1— 2\«
PR el 2 0 O (20)

2ta—p .,

S 1=

Proof. (iii) = (i). Assume that (20) holds. Let f € Qk(p,q). By the proof of
Theorem 1 we have

(1= ) NCE 4 f) () < C

(1—|22)g(=)]
(1— |p(z)2) 5 "t

Taking the supremum in (21) over all f € Qx (p,q) such that || f|l g, (p,q) < 1, then
letting |z| — 1, we get

im  sup (1— |2)°I(CL,f) (2)] = 0.

121=1 | fll @ g (poy <1

Hf”QK(P:‘J)' (21)

(From which by Lemma 2 we see that C7} / : Qr(p,q) — Bf is compact.

(1) = (4i). This implication is obvious.

(44) = (iii). Suppose that C7  : Qk o(p,q) — Bf is compact. Then C7  :
Qk.0(p,q) — BY is bounded and by Theorem 3 we get

Jim (11— [22)°g(2)| = 0. (22)

If ||¢]loo < 1, from (22), we obtain that

(1= [2P)*g(2)| 1 . 2
~ < - lim (1 —|z]7)%|g(2)] =0
2ta—p 2H9=P 4 L ’
=1 (L= Je(2)) " r T (L= lgl2) " T IEt

from which the result follows in this case.

Assume that ||| = 1. Let (p(2k))ren be a sequence such that limy o0 [ (21)] =
1. From the compactness of C} : Qko(p,q) — B we see that the operator
C% 4 Qko(p,q) — B is compact. ;From Theorem 2 we get

(1— |z|2)“lgg*f2\+n —0 (23)

[eGI1=1 (1= fp(2)[2)

From (23), we have that for every € > 0, there exists an r € (0, 1) such that

(1 - |Z‘2)alg—gf1|+n < e (24)

(1 —=1le(2)) >
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when r < |p(z)] < 1. From (22), there exists a o € (0,1) such that

2+q—p +n

(1= [)*g(x)] < e( =) "7 (25)
when o < |z] < 1.
Therefore, when o < |z| < 1 and r < |¢(2)| < 1, we have
1—|2|%)g(2
LD (26)
(I=le(z)[*)
On the other hand, if 0 < |z| < 1 and |p(z)| < r, we obtain
(1—21*)*]g(2)] 1 o
Troos o, < s (1 2)%e(2)] <e. (27)
(1= [P (=)

JFrom (26) and (27) we get (20), as desired. The proof is completed. [
Next, we consider the case n = 0.

Theorem 5. Let a,p > 0, ¢ > —2 such that ¢ +2 > p. Let K be a nonnegative
nondecreasing function on [0,00) such that (6) holds. Assume that ¢ is an analytic
self-map of D. Then the following statements are equivalent.

(i) CY , : Q(p,q) — B is bounded;

(i) Cg!g : Ok 0(p, q) — B is bounded;

(iii)

€

SuPzeD(1_|Z|2)a|9(2)|1nW<OO , gt 2=p;

.12\
upep QLN oo giasy
(I=lp(2)?) P

Proof. (ii) = (iii). Assume that C) , : Qg o(p,q) — B is bounded. For w € D,
let

In—== , ¢+2=p;
fuw(z) = 2

(1—zw) P
Then f,, € Qk 0(p,q) (see [2]). The other proof is similar to the proof of Theorem
1 and hence we omit it.
(7) = (41) is obvious.
(#i) = (7). Using Lemma 4, similar to the proof of Theorem 1, the implication
follows. We omit the details of the proofs.

Let (zx)ren be a sequence in D such that |¢(z;)] — 1 as k — oo. Taking the

test function

In ey SR q+2=p;

f‘P(Zk)(Z> =

L—|p(zi)l?
q+2

oz > 4+2>p,
(1-zp(zk)) P
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similar to the proof of Theorem 2, we obtain the following result.

Theorem 6. Let a,p > 0, ¢ > —2 such that ¢+ 2 > p. Let K be a nonnegative
nondecreasing function on [0,00) such that (6) holds. Assume that ¢ is an analytic
self-map of D. Then the following statements are equivalent.

(i) Cq, g Qr(p,q) — B* is compact;

(ii) C’ : Qk,0(p, q) — B is compact;

(i) Cd) Qxk(p,q) — B is bounded and

limyp(z) -1 (1= 2|9 = fmz =0 . a+2=p;

I i O T

lim 2)|—1 =
P o T

, ¢+2>0p.

Similar to the proofs of Theorems 3 and 4, we obtain Theorems 7 and 8 respec-
tively. We omit the proofs.

Theorem 7. Let a,p > 0, ¢ > —2 such that g+ 2 > p. Let K be a nonnegative
nondecreasing function on [0,00) such that (6) holds. Assume that ¢ is an analytic
self-map of D. Then C’&g : Qrolp,g) — BY is bounded if and only if Cg’g :
Qk.o(p,q) — B* is bounded and

lim (1 - [2[2)°]g(=)] = 0.

|z|—1

Theorem 8. Let a,p > 0, ¢ > —2 such that g +2 > p. Let K be a nonnegative
nondecreasing function on [0,00) such that (6) holds. Assume that ¢ is an analytic
self-map of D. Then the following statements are equivalent.

(i) CY , : Qk(p,q) — BE is compact;

(ii) C3 4+ Qr0(p,q) — BE is compact;

(iii)
limyz g (1= [2[*)%g(2)[In = f5m =0, g +2=p;

hm|z|—>1 e |‘J(z)|p =0

(I=le()I?)

, q+2>p.

The proof of the following two theorems are similar to the proofs of Theorems
12-14 of [37]. We omit the details.

Theorem 9. Let a,p > 0, ¢ > —2 such that ¢ +2 < p. Let K be a nonnegative
nondecreasing function on [0,00) such that (6) holds. Assume that ¢ is an analytic
self-map of D. Then the following statements are equivalent.

(i) C2 . : Qi (p,q) — B* is bounded;

(ii) C’ s Qro(p,q) — B is bounded;

(iii) C’ : Ok (p,q) — B® is compact;

(iv) C o9 QK,O(paq) — B® is compact;
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(v)
sup(l — |2[*)*|g(2)] < oo.
zeD

Theorem 10. Let a,p > 0, ¢ > —2 such that ¢ + 2 < p. Let K be a nonnegative
nondecreasing function on [0,00) such that (6) holds. Assume that ¢ is an analytic
self-map of D. Then the following statements are equivalent.

(Z) ngg : Ok (p,q) — BY is ?Jounded;

(ii) C3 4+ Qr.0(p,q) — BY is bounded;

(iii) Cy 4+ Qx (p,q) — Bf is compact;

?Z?}) Co .yt Qro(p,q) — Bf is compact;

v

lim (1~ |2[2)g(=)] = 0.

|z|—=1
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