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Available at: http://www.pmf.ni.ac.rs/filomat

Filomat 25:3 (2011), 175–189 DOI: 10.2298/FIL1103175S

SOME SYMMETRIC SEMI-CLASSICAL

POLYNOMIAL SETS

Mabrouk Sghaier

Abstract

We show that if v is a regular semi-classical form (linear functional), then
the symmetric form u defined by the relation xσu = −λv where σu is the even
part of u, is also regular and semi-classical form for every complex λ except
for a discrete set of numbers depending on v. We give explicitly the recurrence
coefficients, integral representation and the structure relation coefficients of
the orthogonal polynomials sequence associated with u and the class of the
form u knowing that of v. We conclude with some illustrative examples.

1 Introduction

In many recent papers, different construction processes of semi-classical orthogonal
polynomials (O.P) can be done from well known ones, particularly the classical ones.
For instance, we can mention the adjunction of a finite number of Dirac’s masses
and their derivatives to semi-classical forms [2, 7-9], the product and the division
of a form by a polynomial [1, 3, 6, 10, 13, 15].
The whole idea of the following work is to build a new construction process of

semi-classical form, which has not yet been treated in the literature on semi-classical
polynomials. The problem we tackle is as follows.
We study the form u, fulfilling xσu = −λv, λ 6= 0, (u)2n+1 = 0, where σu is the
even part of u and v is a given semi-classical form.
This paper is organized in sections : The first one is focused on the preliminary

results and notations used in the sequel. We will also give the regularity condition
and the coefficients of the three-term recurrence relation satisfied by the new family
of O.P.. In the second , we compute the exact class of the semi-classical form
obtained by the above modification and the structure relation of the O.P. sequence
relatively to the form u will follow. In the final section, we apply our results to
some examples. The regular forms found in the examples are semi-classical of class
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s̃ ∈ {1, 2, 3} and we present their integral representations.

Let P be the vector space of polynomials with coefficients in C and let P ′ be
its dual. We denote by 〈v, f〉 the action of v ∈ P ′ on f ∈ P. In particular, we
denote by (v)n := 〈v, xn〉 , n ≥ 0 , the moments of v. For any form v and any
polynomial h let Dv = v′, hv, δ0, and (x−c)−1v be the forms defined by: 〈v′, f〉 :=
−〈v, f ′〉, 〈hv, f〉 := 〈v, hf〉 , 〈δc, f〉 := f(c),

and
〈
(x− c)−1v, f

〉
:= 〈v, θcf〉 where

(
θcf

)
(x) =

f(x)− f(c)
x− c

, c ∈ C , f ∈ P.

Then, it is straightforward to prove that for f ∈ P and v ∈ P ′, we have

x−1(xv) = v − (v)0δ0 , (1)

(fv)′ = f ′v + fv′ . (2)

Let us define the operator σ : P −→ P by (σf)(x) := f(x2) . Then, we define the
even part σv of v by 〈σv, f〉 := 〈v, σf〉. Therefore, we have [5, 11]

f(x)(σv) = σ(f(x2)v) , (3)

(σv)n = (v)2n , n ≥ 0 . (4)

The form v will be called regular if there exists a sequence of polynomials {Sn}n≥0(
deg(Sn) ≤ n

)
such that 〈v, SnSm〉 = rnδn,m , n, m ≥ 0 , rn 6= 0 , n ≥ 0 .

Then deg(Sn) = n , n ≥ 0, and we can always suppose each Sn is monic (i.e.
Sn(x) = xn + · · · ). The sequence {Sn}n≥0 is said to be orthogonal with respect to
v. It is a very well known fact that the sequence {Sn}n≥0 satisfies the recurrence
relation

(
see, for instance, the monograph by Chihara [5]

)

Sn+2(x) = (x− ξn+1)Sn+1(x)− ρn+1Sn(x) , n ≥ 0 ,
S1(x) = x− ξ0 , S0(x) = 1 ,

(5)

with
(
ξn, ρn+1

) ∈ C× C− {0} , n ≥ 0 , by convention we set ρ0 = (v)0 = 1.

In this case, let {S(1)
n }n≥0 be the associated sequence of first kind for the sequence

{Sn}n≥0 satisfying the three-term recurrence relation

S
(1)
n+2(x) = (x− ξn+2)S

(1)
n+1(x)− ρn+2S

(1)
n (x) , n ≥ 0,

S
(1)
1 (x) = x− ξ1, S

(1)
0 (x) = 1 ,

(
S

(1)
−1(x) = 0

)
,

(6)

Also, let {Sn(., µ)}n≥0 be the co-recursive polynomials for the sequence {Sn}n≥0

satisfying [5]
Sn(x, µ) = Sn(x)− µS

(1)
n−1(x), n ≥ 0. (7)

A form v is called symmetric if (v)2n+1 = 0, n ≥ 0 . The conditions (v)2n+1 =
0, n ≥ 0 are equivalent to the fact that the corresponding monic orthogonal poly-
nomials sequence(MOPS) {Sn}n≥0 satisfies the recurrence relation (5) with ξn =
0, n ≥ 0 [5].
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Proposition 1. [5,11] If the form v is symmetric, then v is regular if and only if
σv and xσv are both regular.

Let v be a regular, normalized form (i.e. (v)0 = 1) and {Sn}n≥0 be its correspond-
ing sequence of monic orthogonal polynomials. For a λ ∈ C − {0}, we can define
a new symmetric form u as follows

xσu = −λv (u)2n+1 = 0 , (u)0 = 1 , n ≥ 0. (8)

From (1), we have
σu = −λx−1v + δ0 . (9)

Proposition 2. The form u is regular if and only if λ 6= λn, n ≥ 0 where λn =
Sn(0)

S
(1)
n−1(0)

.

Proof. Since u is a symmetric form then, according to Proposition 1 u is regular if
and only if xσu and σu are regular. But xσu = −λv is regular. So u is regular if
and only if σu = −λx−1σv + δ0 is regular. Or,it was shown in [13] that the form
−λx−1v + δ0 is regular if and only if λ 6= 0, and Sn(0, λ) 6= 0 , n ≥ 0 . Then, we
deduce the desired result.

Remark. If w is the symmetrized form associated with the form v
(

i.e. (w)2n =
(v)n and (w)2n+1 = 0, n ≥ 0

)
, then (8) is equivalent to x2u = −λw. Notice that w

is not necessarily a regular form in the problem under study. In [1, 3], the authors
have solved it only when w is regular.

When u is regular let {Zn}n≥0 be its MOPS satisfying the recurrence relation

Zn+2(x) = xZn+1(x)− γn+1Zn(x) , n ≥ 0 ,
Z1(x) = x , Z0(x) = 1 .

(10)

Since {Zn}n≥0 is symmetric, let us consider its quadratic decomposition [11]:

Z2n(x) = Pn(x2) , Z2n+1(x) = xRn(x2) . (11)

Z
(1)
2n (x) = Rn

(
x2,−γ1

)
, Z

(1)
2n+1(x) = xP (1)

n (x2) . (12)

The sequences {Pn}n≥0 and {Rn}n≥0 are respectively orthogonal with respect to
σu and xσu.
From (8), we have

Rn(x) = Sn(x) , n ≥ 0 . (13)

Proposition 3. We may write

γ1 = −λ , γ2n+2 = an , γ2n+3 =
ρn+1

an
, n ≥ 0 (14)

where

an = −Sn+1(0, λ)
Sn(0, λ)

, n ≥ 0 . (15)
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Proof. Using (8) and the condition 〈u,Z2〉 = 0 , we obtain γ1 = −λ.
From (6) and (10) where n −→ 2n and taking (12)-(13) into account, we get

Sn+1

(
x2,−γ1

)
= xZ

(1)
2n+1(x)− γ2n+2Sn

(
x2,−γ1

)

Substituting x by 0 in the above equation, we obtain γ2n+2 = an .
From (10), we have

γ2n+2γ2n+3 =

〈
u, Z2

2n+2

〉
〈
u, Z2

2n+1

〉
〈
u, Z2

2n+3

〉
〈
u, Z2

2n+2

〉 =

〈
u, Z2

2n+3

〉
〈
u, Z2

2n+1

〉 . (16)

Using (11) , (8) and (5), equation (16) becomes

γ2n+2γ2n+3 = ρn+1, (17)

then, we deduce γ2n+3 =
ρn+1

an
.

Corollary 1. When the form v is symmetric, then u is regular for every λ 6= 0.
Moreover, 




γ1 = −γ2 = −λ

γ4n+3 = −γ4n+4 = − 1
λ

n∏

k=0

ρ2k+1

ρ2k
,

γ4n+5 = −γ4n+6 = λρ2n+2

n∏

k=0

ρ2k

ρ2k+1
, n ≥ 0 .

(18)

Proof. Taking into account (5) and (6), with ξn = 0, we get Sn+2(0) = −ρn+1Sn(0)
and S

(1)
n+2(0) = −ρn+2S

(1)
n (0). Then,

S2n+1(0) = 0 , S2n+2(0) = (−1)n+1
n∏

v=0

ρ2v+1 , n ≥ 0 , (19)

S
(1)
2n+1(0) = 0, S

(1)
2n (0) = (−1)n

n∏
v=0

ρ2v , n ≥ 0 . (20)

Therefore, S2n+1(0, λ) = −λS
(1)
2n (0) 6= 0 and S2n+2(0, λ) = S2n+2(0) 6= 0. Hence u

is regular for every λ 6= 0 according to proposition 2.
By virtue of (19)-(20), (14) becomes (18).

We suppose that the form v has the following integral representation:

〈v, f〉 =
∫ +∞

−∞
V (x)f(x)dx , f ∈ P, with (v)0 =

∫ +∞

−∞
V (x)dx = 1

where V is a locally integrable function with rapid decay and continuous at the
origin.
It is obvious that f(x) = fe(x2) + xfo(x2), f ∈ P.



Symmetric semi-classical polynomials 179

Therefore, 〈u, f〉 = 〈u, fe(x2)〉 = 〈σu, fe(x)〉 since u is symmetric.
Using (8) and taking into account that fe(0) = f(0), we obtain

〈u, f〉 = f(0)
{

1 + λP

∫ +∞

−∞

V (x)
x

dx

}
− λP

∫ +∞

−∞

V (x)
x

fe(x)dx , (21)

where

P

∫ +∞

−∞

V (x)
x

f(x)dx = lim
ε−→0

{∫ −ε

−∞

V (x)
x

f(x)dx +
∫ +∞

ε

V (x)
x

f(x)dx

}
.

It is easy to see that

P

∫ +∞

−∞

V (x)
x

f(x)dx = lim
ε−→0

{∫ +∞

ε

V (x)
x

fe(x)dx−
∫ +∞

ε

V (−x)
x

fe(−x)dx

}
.

Using the fact that fe(x) =
f(
√

x) + f(−√x)
2

and fe(−x) =
f(i
√

x) + f(−i
√

x)
2

for x ≥ 0 and making the change of variables t =
√

x, we get

P

∫ +∞

−∞

V (x)
x

f(x)dx = − lim
ε−→0

∫ +∞

√
ε

V (−t2)
t

(f(it) + f(−it))dt +

+ lim
ε−→0

∫ +∞

√
ε

V (t2)
t

(f(t) + f(−t))dt .

Inserting the last equation into (21), we get after a change variables in the obtained
equation

〈u, f〉 = f(0)
{

1 + λP

∫ +∞

−∞

V (x)
x

dx

}
+

+ λP

∫ +∞

−∞

V (−x2)
|x| f(ix)dx− λP

∫ +∞

−∞

V (x2)
|x| f(x)dx .

(22)

Remark. When v is symmetric, (22) becomes

〈u, f〉 = f(0)− λP

∫ +∞

−∞

V (x2)
|x| (f(x)− f(ix))dx . (23)

Our aim is to give examples of semi-classical forms (8) through data of semi-classical
form v.

2 The semi-classical case

Let us recall that a form v is called semi-classical when it is regular and there exist
two polynomials Φ and Ψ such that:

(Φv)′ + Ψv = 0 , deg(Ψ) ≥ 1 , Φ monic. (24)
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The class of the semi-classical form v is s = max
(
deg Ψ− 1,deg Φ− 2

)
if and only

if the following condition is satisfied
∏
c

(|Φ′(c) + Ψ(c)|+
∣∣〈u, θcΨ + θ2

cΦ
〉∣∣ )

> 0 , (25)

where c goes over the roots set of Φ [12].
The corresponding orthogonal sequence {Sn}n≥0 is also called semi-classical of class
s.
We can state characterizations of semi-classical orthogonal sequences. {Sn}n≥0 is
semi-classical of class s if and only if one of the following statements holds:
(a) The formal Stieltjes function of v, namely

S
(
v
)
(z) = −

∑

n≥0

(v)n

zn+1
(26)

satisfies a linear non-homogeneous first order differential equation [4,12]

Φ(z)S′
(
v
)
(z) = C0(z)S

(
v
)
(z) + D0(z), (27)

where
C0(x) = −Φ′(x)−Ψ(x). (28)

and
D0(z) = −(

vθ0Φ
)′(x)− (

vθ0Ψ
)
(x). (29)

with (vθ0f) (x) =
〈

v,
f(x)− f(ζ)

x− ζ

〉
, f ∈ P. Φ and Ψ are the same polynomials

as in (24).
(b) {Sn}n≥0 fulfills the following structure recurrence relation (written in a compact
form):

Φ(x)S′n+1(x) =
Cn+1(x)− C0(x)

2
Sn+1(x)− ρn+1Dn+1(x)Sn(x) , n ≥ 0 (30)

where 



Cn+1(x) = −Cn(x) + 2(x− βn)Dn(x) , n ≥ 0 ,

ρn+1Dn+1(x) = −Φ(x) + ρnD̃n−1(x)− (x− ξn)Cn(x)+
(x− ξn)2Dn(x) , n ≥ 0 ,

(31)

Φ,Ψ, C0 and D0 are the same polynomials introduced in (a); ξn, ρn are the coeffi-
cients of the three term recurrence relation (5). Notice that D−1(x) = 0,deg Cn ≤
s + 1 and deg Dn ≤ s, n ≥ 0 [12].
(c) Each polynomial of {Sn}n≥0 satisfies a second order differential equation of
Laguerre-Perron type, i.e.

ΦDn+1S
′′
n+1 + {C0Dn+1 −W (Φ, Dn+1)}S′n+1+

+

{
W

(
Cn+1 − C0

2
, Dn+1

)
−Dn+1

n∑

k=0

Dk

}
Sn+1 = 0 , n ≥ 0 ,

(32)
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where W (f, g) = fg′ − f ′g . Φ, Dn, Cn, n ≥ 0 are the same parameters introduced
in the previous characterizations [4,14].

Remark. The structure relation gives information about the multiplicity of the
zeros of orthogonal polynomials.

In the sequel the form v will be supposed semi-classical of class s satisfying (24)−
(25).
Proposition 4. If v is a semi-classical form and satisfies (24), then for every
λ ∈ C− {0} such that Sn(0, λ) 6= 0, n ≥ 0, the form u defined by (8) is regular and
semi-classical. It satisfies (

Φ̃u
)′

+ Ψ̃u = 0 (33)

with
Φ̃(x) = xΦ(x2) , Ψ̃(x) = 2x2Ψ(x2) . (34)

and u is of class s̃ with s̃ ≤ 2s + 3.
Proof. Assume that v fulfils (24). To prove that u satisfies (33)-(34), we will show
that the forms (Φ̃u)′ and −Ψ̃u coincide on the basis {xn}n≥0 of P.
Taking into account (34) and using the operator σ, we obtain

〈
(Φ̃u)′, x2n

〉
= −2n

〈
Φ(x2)u, x2n

〉
= −2n 〈Φ(x)σu, xn〉 , n ≥ 1.

By virtue of (8) and (24), we deduce
〈
(Φ̃u)′, x2n

〉
= −2λ 〈(Φ(x)v)′, xn〉 = 2λ 〈Ψ(x)v, xn〉 .

Now, using (8) again and the definition of the operator σ, we get
〈
(Φ̃u)′, x2n

〉
= −

〈
Ψ̃u, x2n

〉
.

Since u is symmetric, it is clear that
〈
(Φ̃u)′, x2n+1

〉
= −

〈
Ψ̃u, x2n+1

〉
= 0.

Thus, (33)-(34) is proved.
Finally, we have s = max

(
deg Ψ − 1,deg Φ − 2

)
, then deg(Φ̃) ≤ 2s + 5 and

deg(Ψ̃) = p̃ ≤ 2s + 4. Thus s̃ ≤ 2s + 3.
Proposition 5. The class of u depends only on the zero x = 0 .
For the proof, we use the following lemma:
Lemma 1. For c ∈ C such that c2 be a root of Φ, we have

〈
u, θcΨ̃ + θ2

c Φ̃
〉

= −2cλ
〈
v, θc2Ψ + θ2

c2Φ
〉

+ 2c
(
Φ′(c2) + Ψ(c2)

)
(35)

and
Ψ̃(c) + Φ̃′(c) = 2c2

(
Φ′(c2) + Ψ(c2)

)
. (36)
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Proof. Using the definition of the operator θc, it is easy to prove that, for two
polynomials f and g, we have

θc

(
fg

)
(x) = g(x)

(
θcf

)
(x) + f(c)(θcg

)
(x) , (37)

θc

(
f(ξ2)

)
(x) = (x + c)

(
θc2f

)
(x2) . (38)

Let c ∈ C such that c2 be a root of Φ.

Using successively (37) and (38), we obtain
(
θcΦ̃

)
(x) = x

(
θcΦ(ξ2)

)
(x) = x(x + c) (θc2Φ) (x2), since Φ(c2) = 0 . Then,

(
θ2

c Φ̃
)

(x) = x(x + c)2
(
θ2

c2Φ
)
(x2) + (x + 2c)Φ′(c2) , (39)

because θc

(
ξ(ξ + c)

)
(x) = x + 2c , θc

(
(θc2Φ)(ξ2)

)
(x) = (x + c)

(
θ2

c2Φ
)
(x2)

and
(
θc2Φ

)
(c2) = Φ′(c2).

Using the same procedure, we prove that

θcΨ̃(x) = x2(x + c)
(
θc2Ψ

)
(x2) + (x + c)Ψ(c2) . (40)

Therefore, with (39)-(40) and the fact u is symmetric, we obtain
〈
u, θcΨ̃ + θ2

c Φ̃
〉

=
〈
x2u, 2θc2Ψ + θ2

c2Φ
〉

+ 2c
(
Φ′(c2) + Ψ(c2)

)
. (41)

Now applying the operator σ for (41) and using (8), we get (35). Finally, from (34),
we easily get (36).

Proof of Proposition 5. Let c be a root of Φ̃ such that c 6= 0.
If Φ′(c2) + Ψ(c2) 6= 0 then Φ̃′(c) + Ψ̃(c) 6= 0, from (36).
If Φ′(c2) + Ψ(c2) = 0, using (35), we have

〈
u, θcΨ + θ2

cΦ
〉 6= 0, since v is semi-

classical and so satisfies (25).
In any case, we cannot simplify by x− c.

Proposition 6. Under the conditions of proposition 4, for the class of u, we have
the four different cases

1) s̃ = 2s + 3 if Φ(0) 6= 0.

2) s̃ = 2s + 2 if Φ(0) = 0 and X1 = −2λ
〈
v, θ0Ψ + θ2

0Φ
〉
+ 2

(
Φ′(0) + Ψ(0)

) 6= 0.

3) s̃ = 2s + 1 if Φ(0) = 0, X1 = 0 and X2 = 3Φ′(0) + 2Ψ(0) 6= 0.

4) s̃ = 2s if Φ(0) = 0, X1 = 0 and X2 = 0.

Proof. 1) From (34), we have Φ̃′(0) + Ψ̃(0) = Φ(0)

and
〈
u, θ0Ψ̃ + θ2

0Φ̃
〉

=
〈
u, 2xΨ(x2) + x(θ0Φ)(x2)

〉
= 0, since u is symmetric. There-

fore, if Φ(0) 6= 0 it is not possible to simplify (33)-(34), which means that the class
of u is s̃ = 2s + 3.
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2) If Φ(0) = 0, then it is possible to simplify by x. Then, u fulfils (33) with

Φ̃(x) = Φ(x2) , Ψ̃(x) = x
(
(θ0Φ)(x2) + 2Ψ(x2)

)
. (42)

Here, we have Φ̃′(0) + Ψ̃(0) = 0 and
〈
u, θ0Ψ̃ + θ2

0Φ̃
〉

=
〈
u, 2Ψ(x2) + 2(θ0Φ)(x2)

〉
.

Applying the operator σ for the second equation and using (9), we obtain〈
u, θ0Ψ̃ + θ2

0Φ̃
〉

= −2λ
〈
v, θ0Ψ + θ2

0Φ
〉

+ 2
(
Φ′(0) + Ψ(0)

)
= X1.

Therefore, if X1 6= 0 it is not possible to simplify, which means that the class of u
is s̃ = 2s + 2.
3) If Φ(0) = 0 and X1 = 0, then it is possible to simplify (33)-(34) by x2. Then, u
fulfils (33) with

Φ̃(x) = x(θ0Φ)(x2) , Ψ̃(x) = 2
(
(θ0Φ)(x2) + Ψ(x2)

)
. (43)

Here, we have Φ̃′(0) + Ψ̃(0) = 3Φ′(0) + 2Ψ(0) = X2 and〈
u, θ0Ψ̃ + θ2

0Φ̃
〉

=
〈
u, x

(
2 (θ0Ψ) (x2) +

(
θ2
0Φ

)
(x2)

)〉
= 0, since u is symmetric.

Therefore, if X2 6= 0 it is not possible to simplify, which means that the class
of u is s̃ = 2s + 1.
4) If Φ(0) = 0, X1 = 0 and X2 = 0, then it is possible to simplify (33)-(34) by x3.
Then, u fulfils (33) with

Φ̃(x) = (θ0Φ)(x2) , Ψ̃(x) = x
(
3(θ2

0Φ)(x2) + 2(θ0Ψ)(x2)
)

. (44)

Under these conditions x = 0 can’t be a root of (θ0Φ)(x2). Assuming the contrary,
that (θ0Φ)(0) = Φ′(0) = 0, then from the conditions Φ(0) = 0, X1 = 0 and X2 = 0
we obtain

〈
v, θ0Ψ + θ2

0Φ
〉

= 0 and Φ′(0) + Ψ(0) = 0 which is a contradiction with
(25). Then it is not possible to simplify, which means that the class of u is s̃ = 2s.

Proposition 7. If v is a semi-classical form and satisfies (27), then for every
λ ∈ C− {0} such that Sn(0, λ) 6= 0, n ≥ 0, the form u defined by (8) is regular and
semi-classical. It satisfies

Φ̃(z)S′
(
u
)
(z) = C̃0(z)S

(
u
)
(z) + D̃0(z), (45)

where 



Φ̃(z) = zΦ(z2),
C̃0(z) = −Φ(z2) + 2z2C0(z2),
D̃0(z) = −2zλD0(z2) + 2zC0(z2).

(46)

Proof. From (26), we have

S
(
v
)
(z2) = −

∑

n≥0

(v)n

z2n+2
.

Using (8), we get
−λS

(
v
)
(z2) = zS

(
u
)
(z) + 1, (47)
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Deriving (47), we obtain

−2zλS′
(
v
)
(z2) = zS′

(
u
)
(z) + S

(
u
)
(z). (48)

Make a change of variable z −→ z2 in (27) and multiply by −2λz, we obtain (45)-
(46) by taking into account (47)-(48).

We are going to establish the expression of structure relation coefficients C̃n and
D̃n , n ≥ 0 of {Zn}n≥0 in terms of those of the sequence {Sn}n≥0.
Proposition 8. The sequence {Zn}n≥0 fulfills

Φ̃(x)Z ′n+1(x) =
C̃n+1(x)− C̃0(x)

2
Zn+1(x)− γn+1D̃n+1(x)Zn(x) , n ≥ 0 (49)

with {
C̃2n+1(x) = 2x2Cn(x2) + Φ(x2) + 4γ2n+1x

2Dn(x2), n ≥ 0 ,

D̃2n+1(x) = 2x3Dn(x2), n ≥ 0 ,
(50)





C̃2n+2(x) = 2x2Cn+1(x2)− Φ(x2) + 4γ2n+2x
2Dn(x2), n ≥ 0 ,

D̃2n+2(x) = x
(
Cn+1(x2)− Cn(x2)

)
+ 2x

(
γ2n+3Dn+1(x2)−

−γ2n+1Dn(x2)
)

+ 2x3Dn(x2), n ≥ 0 ,

(51)

C̃0(x) and D̃0(x) are given by (46) and γn+1 by (14)-(15).

Proof. Change x −→ x2 in (29) and multiply by 2x3 we obtain by taking (11) and
(13) into account,

xΦ(x2)Z ′2n+3(x) =
(
x2

(
Cn+1(x2)− C0(x2)

)
+ Φ(x2)

)
Z2n+3(x)−
−2x2Dn+1(x2)ρn+1Z2n+1(x).

Using (16) and (10) where n −→ 2n, the last equation becomes

Φ̃(x)Z ′2n+3(x) =
(
x2

(
Cn+1(x2)− C0(x2)

)
+ Φ(x2) + 2x2γ2n+3Dn+1(x2)

)
Z2n+3(x)−

−2γ2n+3x
2Dn+1(x2)Z2n+2(x).

From (49) and the above equation, we have
{

C̃2n+3(x)− C̃0(x)
2

− (
x2

(
Cn+1(x2)− C0(x2)

)
+ Φ(x2) + 2x2γ2n+3Dn+1(x2)

)
}
×

×Z2n+3(x) = γ2n+3

{
D̃2n+3(x)− 2x2Dn+1(x2)

}
Z2n+2(x).

Z2n+3 and Z2n+2 have no common roots, then Z2n+3 divides D̃2n+3(x)−2x2Dn+1(x2),
which is a polynomial of degree at most equal to 2s + 3. Then we have necessarily

D̃2n+3(x) = 2x2Dn+1(x2) for n > s, and also
C̃2n+3(x)− C̃0(x)

2
= x2

(
Cn+1(x2)− C0(x2)

)
+

Φ(x2) + 2x2γ2n+3Dn+1(x2), n > s.
Then, by (45), we get (49) for n > s.
By virtue of the recurrence relation (30) and (46), we can easily prove by induction
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that the system (50) is valid for 0 ≤ n ≤ s. Hence (50) is valid for n ≥ 0.
After a derivation of (10) where n −→ 2n+1 multiplying by xΦ(x2) and using (49),
we obtain

x2Φ(x2)Z ′2n+2(x) =
C̃2n+3(x)− C̃0(x)

2
Z2n+3(x)−γ2n+3D̃2n+3(x)Z2n+2(x)−xΦ(x2)Z2n+2(x)+

γ2n+2

{
C̃2n+1(x)− C̃0(x)

2
Z2n+1(x)− γ2n+1D̃2n+1(x)Z2n(x)

}
.

Applying the recurrence relation (10), we get

x2Φ(x2)Z ′2n+2(x) =

{
x

C̃2n+3(x)− C̃0(x)
2

− γ2n+3D̃2n+3(x)− xΦ(x2) + γ2n+2D̃2n+1(x)

}
×

×Z2n+2(x)−γ2n+2

{
C̃2n+3(x)− C̃2n+1(x)

2
+ xD̃2n+1(x)

}
Z2n+1.

Now, using (49) and taking into account the fact that Z2n+2(x) and Z2n+1(x) are
coprime, we get from the last equation after simplification by x (51) for n > s.
Finally, by virtue of the recurrence relation (30) and (50) with n = 0, we can easily
prove by induction that the system (51) is valid for 0 ≤ n ≤ s. Hence (51) is also
proved for n ≥ 0.
Using (32), Proposition 8. and simplifying, we get the following result:
Corollary 2. Each polynomial of {Zn}n≥0 satisfies a second order differential
equation of Laguerre-type, (or holonomic second order differential equation)

J(x, n)Z ′′n+1(x) + K(x, n)Z ′n+1(x) + L(x, n)Zn+1(x) = 0, n ≥ 1,

with



J(x, 2n + 1) = Φ(x2)
{
x

(
Cn+1(x

2)− Cn(x2)
)

+ 2x
(
γ2n+3Dn+1(x

2)− γ2n+1Dn(x2)
)

+ 2x3Dn(x2)
}

K(x, 2n + 1) = 2x2
(
Φ′(x2) + C0(x

2)
) {

Cn+1(x
2)− Cn(x2) + 2

(
γ2n+3Dn+1(x

2)− γ2n+1Dn(x2)
)
+

+2x2Dn(x2)
}

+ Φ(x2)
{
Cn+1(x

2)− Cn(x2) + 2x2
(
C′n+1(x

2)− C′n(x2)
)
+

+2
(
γ2n+3Dn+1(x

2)− γ2n+1Dn(x2)
)

+ 4x22
(
γ2n+3D

′
n+1(x

2)− γ2n+1D
′
n(x2)

)
+

+6x2Dn(x2) + 4x4D′
n(x2)

}
,

L(x, 2n + 1) = x
{
Cn+1(x

2) + 2γ2n+2Dn(x2)− C0(x
2)

}{
Cn(x2)− Cn+1(x

2)− 2
(
γ2n+3Dn+1(x

2)−
−γ2n+1Dn(x2)

)
+ 2x2Dn(x2) + 2x2

(
C′n+1(x

2)− C′n(x2)
)

+ 4x2
(
γ2n+3D

′
n+1(x

2)−
−γ2n+1D

′
n(x2)

)
+ 4x4D′

n(x2)
}− x

{
Cn+1(x

2)− Cn(x2) + 2γ2n+3Dn+1(x
2)−

−2γ2n+1Dn(x2) + 2x2Dn(x2)
}{

2x2C′n+1(x
2) + 4γ2n+2x

2D′
n(x2)− 2x2C′0(x

2)+

+Cn(x2) + C0(x
2) + 2γ2n+1Dn(x2)− 2λD0(x

2) + 4x2∑n−1
k=0Dk(x2) + 2x2Dn(x2)

}
.

and



J(x, 2n) = 2x3Φ(x2)Dn(x2),
K(x, 2n) = 2x2Dn(x2)

(
2x2Φ′(x2) + 2x2C0(x

2)− 3Φ(x)
)− 4x4Φ(x2)D′

n(x2),
L(x, 2n) = 2xDn(x2)

(
3Φ(x2)− 2x2C0(x

2)− 2x4C′n(x2)− 2x2Φ′(x2) + 2x4C′0(x
2)+

+2λx2D0(x
2)− 4x4∑n−1

k=0Dk(x2)
)

+ 4x3D′
n(x2)

(
x2Cn(x2)− x2C0(x

2) + Φ(x2)
)
.

3 Illustrative examples

(1) We study the problem (8), with v = L(α) where L(α) is the Laguerre form. In
this case, the form v is not symmetric. This form is classical (semi-classical of class



186 Mabrouk Sghaier

s = 0). We have [12]

ξn = 2n + α + 1, ρn+1 = (n + 1)(n + α + 1), n ≥ 0, (52)

the regularity condition is α 6= −n, n ≥ 1

Φ(x) = x, Ψ(x) = x− α− 1, (53)

Cn(x) = −x + (2n + α), Dn(x) = −1, n ≥ 0. (54)

Using (5) and (52), we get

Sn(0) = (−1)n Γ(n + α + 1)
Γ(α + 1)

, n ≥ 0 . (55)

From (6) and (52), we obtain by induction for n ≥ 0

S(1)
n (0) =





(−1)n+1

α

(
Γ(n + 2)− Γ(n + α + 2)

Γ(α + 1)

)
, α 6= 0,

(−1)nΓ(n + 2)
n∑

k=0

1
k + 1

, α = 0 .
(56)

By virtue of (7) and (55)-(56), we deduce

Sn(0, λ) =
(−1)nΓ(n + α + 1)dα,n

αΓ(α + 1)
, n ≥ 0 (57)

where

dα,n =





(α + λ)− λΓ(α + 1)Γ(n + 1)
Γ(n + α + 1)

, α 6= 0 , n ≥ 0 ,

1 + λ

n−1∑

k=0

1
k + 1

, α = 0 , n ≥ 0 .

( −1∑
0

= 0

) (58)

Then, u is regular for every λ 6= 0 such that

λ 6=





−α +
λΓ(α + 1)Γ(n + 1)

Γ(n + α + 1)
, α 6= 0 , n ≥ 0 ,

−
(

n−1∑

k=0

1
k + 1

)−1

, α = 0 , n ≥ 1 .

(59)

(15) and (57) give

an =
(n + α + 1)dα,n+1

dα,n
, n ≥ 0 . (60)

Then, with (14), we get




γ1 = −λ,

γ2n+3 =
(n + 1)dα,n

dα,n+1
, n ≥ 0 ,

γ2n+2 =
(n + α + 1)dα,n+1

dα,n
, n ≥ 0 .

(61)
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Taking into account that the form v is semi-classical and by virtue of Proposition
4., the form u is also semi-classical. It satisfies (33) and (45)with

Φ̃(x) = x2 , Ψ̃(x) = 2x3 − (2α + 1)x,

C̃0(x) = −2x3 + (2α− 1)x , D̃0(x) = −2x2 + 2(α + λ).
(62)

From (53), we have

Φ(0) = 0, X1 = −2(α + λ) and X2 = 1− 2α (we take λ = −α in calculation of X2).
Now, it is enough to use Proposition 6. in order to obtain the following results:

? If λ 6= −α and verifies (59), then the class of u is s̃ = 2.

? If λ = −α and 2α 6= 1, then the class of u is s̃ = 1.
? If λ = −α and 2α = 1, then the class of u is s̃ = 0.

Now, we are going to give the elements of the structure relation of the sequence
{Zn}n≥0.
Using (53), (54) and Proposition 8., we obtain after simplifying by x





C̃0(x) = −2x3 + (2α− 1)x , C1(x) = −2x3 + (2α + 4λ + 1)x ,

C̃2n+2(x) = −2x3 −Xn , C̃2n+3(x) = −2x3 + Xn+1 ,

D̃0(x) = −2x2 + 2(α + λ) , D̃2n+1(x) = −2x2 ,

D̃2n+2(x) = −2x2 − 2
(
α2 + δ0,α

)
(α + λ)λΓ(α + 1)Γ(n + 1)

Γ(n + α + 2)dα,ndα,n+1
, n ≥ 0.

(63)

where Xn =
(

2α + 1 +
4λ (α + δ0,α) Γ(α + 1)Γ(n + 1)

Γ(n + α + 1)dα,n

)
x .

The form v has the following integral representation[5]

〈v, f〉 =
1

Γ(α + 1)

∫ +∞

0

xαe−xf(x)dx, <(α) > −1, f ∈ P. (64)

Then, using (22), we obtain the following integral representation of u

〈u, f〉 =
(

1 +
λ

α

)
f(0)− λ

Γ(α + 1)

∫ +∞

−∞
|x|2α−1e−x2

f(x)dx ,<(α) > 0 . (65)

(2) Let us describe the case v := H where H denotes the Hermite form . In this
case, the form v is symmetric. This form is classical (semi-classical of class s = 0 ).
Here [12]

ξn = 0, ρn+1 =
1
2
(n + 1), n ≥ 0, (66)

Φ(x) = 1, Ψ(x) = 2x, (67)

Cn(x) = −2x, Dn(x) = −2, n ≥ 0. (68)
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In accordance with Corollary 1. and (66), u is regular for every λ 6= 0 and we have





γ1 = −γ2 = λ

γ4n+3 = −γ4n+4 = − 1
λ

Γ(2n + 2)
22n+1Γ2(n + 1)

,

γ4n+5 = −γ4n+6 = λ
22n+1Γ(n + 1)Γ(n + 2)

Γ(2n + 2)
, n ≥ 0

(69)

By virtue of Proposition 6. and Proposition 7., the form u is semi-classical of
class s̃ = 3 for any λ 6= 0 and fulfils (33) and (45) with

Φ̃(x) = x, Ψ̃(x) = 4x3, C̃0(x) = −4x4 − 1, D̃0(x) = −4x3 + 4λx. (70)

According to Proposition 8., (67)and (68), we have, for n ≥ 0





C̃0(x) = −4x4 − 1 ,

C̃2n+1(x) = −4x4 − 8γ2n+1x
2 + 1 ,

C̃2n+2(x) = −4x4 − 8γ2n+2x
2 − 1 ,

D̃0(x) = −4x3 + 4λx ,

D̃2n+1(x) = −4x3 ,

D̃2n+2(x) = −4x3 + 4(γ2n+1 − γ2n+3)x .

(71)

The form v has the following integral representation[5]

〈v, f〉 =
1√
π

∫ +∞

−∞
e−x2

f(x)dx , f ∈ P . (72)

Therefore, for λ 6= 0 and f ∈ P, (23) becomes

〈u, f〉 = f(0)− λ√
π

P

∫ +∞

−∞

e−x4

|x| (f(x)− f(ix))dx . (73)
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[2] R. Álvarez-Nodarse, J. Arvesú, F. Marcellan, Modification of quasi-define linear
functionals via addition of delta and derivatives of delta Dirac functions. Indag.
Mathem., N. S. 15 (1) (2004), 1-20.

[3] D. Beghdadi, P. Maroni, On the inverse problem of the product of a form by a
polynomial. J. Comput. Appl. Math. 88 (1997), 401-417.



Symmetric semi-classical polynomials 189

[4] S. Belmehdi, On semi-classical linear functionals of class s = 1. Classification
and integral representations. Indag. Mathem., N. S., 3 (3) (1992), 253-275.

[5] T. S. Chihara, An introduction to orthogonal polynomials. Gordon and Breach,
New York. (1978).

[6] J. Dini, P. Maroni, Sur la multiplication d’une forme semi-classique par un
polynme. Publ. Sem. Math. Univ. d’Antananarivo, Vol. 3 (1989), 76-89.

[7] D. H. Kim, K. H. Kwon, S. B. Park, Delta perturbation of a moment functional.
Appl. Anal. 74 (2000), 463-477.

[8] K. H. Kwon, S. B. Park, Two point masses perturbation of quasi-define moment
functionals. Indag. Mathem., N. S., 8 (1997), 79-93.

[9] F. Marcellan, P. Maroni, Sur l’adjonction d’une masse de Dirac à une forme
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