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SOME SYMMETRIC SEMI-CLASSICAL
POLYNOMIAL SETS

Mabrouk Sghaier

Abstract

We show that if v is a regular semi-classical form (linear functional), then
the symmetric form u defined by the relation xou = —Av where ou is the even
part of u, is also regular and semi-classical form for every complex A except
for a discrete set of numbers depending on v. We give explicitly the recurrence
coefficients, integral representation and the structure relation coefficients of
the orthogonal polynomials sequence associated with u and the class of the
form u knowing that of v. We conclude with some illustrative examples.

1 Introduction

In many recent papers, different construction processes of semi-classical orthogonal
polynomials (O.P) can be done from well known ones, particularly the classical ones.
For instance, we can mention the adjunction of a finite number of Dirac’s masses
and their derivatives to semi-classical forms [2, 7-9], the product and the division
of a form by a polynomial [1, 3, 6, 10, 13, 15].

The whole idea of the following work is to build a new construction process of
semi-classical form, which has not yet been treated in the literature on semi-classical
polynomials. The problem we tackle is as follows.

We study the form u, fulfilling zou = —Xv, X #0, (4)2n+1 = 0, where ou is the
even part of v and v is a given semi-classical form.

This paper is organized in sections : The first one is focused on the preliminary
results and notations used in the sequel. We will also give the regularity condition
and the coefficients of the three-term recurrence relation satisfied by the new family
of O.P.. In the second , we compute the exact class of the semi-classical form
obtained by the above modification and the structure relation of the O.P. sequence
relatively to the form w will follow. In the final section, we apply our results to
some examples. The regular forms found in the examples are semi-classical of class
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§ € {1,2,3} and we present their integral representations.

Let P be the vector space of polynomials with coefficients in C and let P’ be
its dual. We denote by (v, f) the action of v € P’ on f € P. In particular, we
denote by (v), := (v,z2™),n > 0, the moments of v. For any form v and any
polynomial h let Dv = v, hv, 8y, and (z —c)~'v be the forms defined by: (v/, f) :=

— (v, 1), (ho, f) == (v, hf), (dc, f) = f(c),
and ((z —¢) "', f) := (v,0.f) where (0.f)(z) = w

Then, it is straightforward to prove that for f € P and v € P/, we have

,ceC, feP.

x_l(xv) =v — (v)pdo , (1)

(fo)' =fv+ fo'. (2)

Let us define the operator o : P — P by (o f)(x) := f(x?) . Then, we define the
even part ov of v by (ov, f) := (v, f). Therefore, we have [5, 11]

f@)(ov) = o(f(z*)v) 3)
(00)n = (V)2n , n>0. (4)

The form v will be called regular if there exists a sequence of polynomials {5, },,>0
(deg(S,) < n ) such that (v, S,5m) = rpénm, n,m>0, 7, #0, n>0.

Then deg(S,) = n, n > 0, and we can always suppose each S, is monic (i.e.
Sp(x) = 2™ 4 ---). The sequence {5, },>0 is said to be orthogonal with respect to
v. It is a very well known fact that the sequence {S),},>0 satisfies the recurrence
relation (see, for instance, the monograph by Chihara [5})

Snr2(x) = (& = €ng1)Sn1(2) = pnaSa(z), n >0, -
Si(x) =2 &, So(x) =1,

with (&, pnt1) € Cx C—{0}, n >0, by convention we set pg = (v)o = 1.

In this case, let {Sﬁl)}nzo be the associated sequence of first kind for the sequence
{Sn}n>0 satisfying the three-term recurrence relation

Sda(@) = (0 = n42) 8,1 (2) = pusaSi () 5 20, ©)
V@ =c-6,  S'@=1, (sS9@=0),

Also, let {Sy (., ) }n>0 be the co-recursive polynomials for the sequence {Sy}n>0
satisfying [5]
Sn(@, 1) = Sp(x) = Sy (x), n >0, (7)

A form v is called symmetric if (v)2,4+1 = 0,7 > 0 . The conditions (v)ap41 =
0,n > 0 are equivalent to the fact that the corresponding monic orthogonal poly-
nomials sequence(MOPS) {S,,},,>0 satisfies the recurrence relation (5) with &, =
0,n >0 [5].
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Proposition 1. [5,11] If the form v is symmetric, then v is reqular if and only if
ov and xov are both regular.

Let v be a regular, normalized form (i.e. (v)o = 1) and {5, },,>0 be its correspond-
ing sequence of monic orthogonal polynomials. For a A € C — {0}, we can define
a new symmetric form u as follows

zou=—-Av (U241 =0, (u)p=1, n > 0. (8)
From (1), we have
ou= -z~ v+ . (9)
Proposition 2. The form u is reqular if and only if X # A,,n > 0 where X, =
Sn(0)
Si1(0)
Proof. Since u is a symmetric form then, according to Proposition 1 w is regular if
and only if zou and ou are regular. But xou = —Mv is regular. So u is regular if
and only if ou = —Az~"lov + Jy is regular. Or,it was shown in [13] that the form
—Az~ 1o + &g is regular if and only if A # 0, and S, (0,\) # 0,n > 0. Then, we
deduce the desired result. 0

Remark. If w is the symmetrized form associated with the form v (i.e. (w)s, =
(v)n and (w)2,41 = 0,n >0 ), then (8) is equivalent to 2?u = —Aw. Notice that w
is not necessarily a regular form in the problem under study. In [1, 3], the authors
have solved it only when w is regular.

When u is regular let {Z,,},,>0 be its MOPS satisfying the recurrence relation

Znt2(t) = 2Zps1(2) — Yn41Zn(z), n>0,

Zi(x)=z, Zylx)=1. (10)

Since {Z,,},,>0 is symmetric, let us consider its quadratic decomposition [11]:
Zon(x) = Po(2?),  Zopy1(x) = xR, (2?) . (11)
Zy) (@) = R (2%, =1)  Zygla () = o B0 (0% (12)

The sequences {P,},>0 and {R, },>0 are respectively orthogonal with respect to
ou and rou.

From (8), we have
R,(z)=Sp(x), n>0. (13)

Proposition 3. We may write

Y1 =—=A, Yont2 =0n, Vont3 = pZ+1 , n>0 (14)
n

where

Ap — —

Snt+1(0,\)
P > .
S, 0N n>0 (15)
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Proof. Using (8) and the condition (u, Zo) = 0, we obtain y; = —A.
From (6) and (10) where n — 2n and taking (12)-(13) into account, we get
Snir (2%, =) = 22811 (x) = Y2ns2Sn (22, —m1)

Substituting = by 0 in the above equation, we obtain vye,4+2 = a, .
From (10), we have

Y2n4+272n+3 = <U7 ZQQTL+2> <u7 Z22n+3> = <u’ Z22n+3> . (16)
<u7 ZZ2n+1> <u7 Z22n+2> <u7 222n+1>

Using (11) , (8) and (5), equation (16) becomes

Yo2n+272n+3 = Pn+1 (17)

then, we deduce yop,+3 = Prtl . O
(¢2%)
Corollary 1. When the form v is symmetric, then u is regular for every A # 0.

Moreover,

=2 = A
n
Vamts = —Vamis = _% H Pr+1
koo P2k (18)
n
Van+5 = —Van+6 = AP2n+42 H P2k n>0.
iso P2R+1

Proof. Taking into account (5) and (6), with &, = 0, we get Sp12(0) = —pn+15,(0)
and 5{,(0) = —pn1255”(0). Then,

Sont1(0) =0,  Sapnya(0) = (=1)"* H p2o+1, n=0, (19)
v=0

S5 (0) =0, S5(0)=(~1)"[] p2o. n>0. (20)
v=0

Therefore, So,41(0,A) = —ASS?(O) # 0 and S2,42(0,\) = So,42(0) # 0. Hence u
is regular for every A # 0 according to proposition 2.

By virtue of (19)-(20), (14) becomes (18). 0
We suppose that the form v has the following integral representation:
+oo —+00
(v, f) = V(z)f(z)de, feP, with(v)y= / V(z)de =1
—00 — 00

where V' is a locally integrable function with rapid decay and continuous at the
origin.
It is obvious that f(z) = f¢(22) + xf°(z?), f € P.
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Therefore, (u, f) = (u, f¢(z?)) = (ou, f¢(x)) since u is symmetric.
Using (8) and taking into account that f¢(0) = f(0), we obtain

(w, ) = £(0) {1 +AP /:O V(=) da:} AP /:O %I)f(x)da: e

X

where

P/_;OO V) ¢0)dw = Tim {/_ V@) o+ /;Oo V;x)f(x)dx} .

€T e—0 — s T

It is easy to see that

P/%o V@) ¢2)d = lim {/jm V@) e () — /joo V(;x) fe(—as)da:} .

— 00 x e—0 x

Using the fact that f¢(z) = Iz) +2f(_\/£) and f(—x) = AGYED +2f(_l\/§)
for z > 0 and making the change of variables ¢t = \/x, we get

oo +oo )
P/ @f(x)d:r =— limo/ @(f(it)Jrf(fit))dtJr
— 00 €E— \/E
+ lim " V()
e—0 \/g t

(f(t) + f(=t))dt .

Inserting the last equation into (21), we get after a change variables in the obtained
equation

(u, f) = £(0) {1 +>\P/+Oo V(””)da:}Jr

T

+00 (L) +00 17( 42 (22)
+ AP[ V(|x| )f(zx)da: - AP[ V|(x| )f(a:)dx
Remark. When v is symmetric, (22) becomes
+oo 72
() = 50 =P [T (10 flia)da (23)

Our aim is to give examples of semi-classical forms (8) through data of semi-classical
form v.
2 The semi-classical case

Let us recall that a form v is called semi-classical when it is regular and there exist
two polynomials ® and ¥ such that:

(®v) +Tv =0, deg(¥)>1, ® monic. (24)
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The class of the semi-classical form v is s = max(deg U —1,deg® — 2) if and only
if the following condition is satisfied

[T (2" () + T(e)] + [(u, 0.9 +620)] ) >0, (25)
B
where ¢ goes over the roots set of @ [12].

The corresponding orthogonal sequence {Sy, }n>0 is also called semi-classical of class
s.

We can state characterizations of semi-classical orthogonal sequences. {S,}n>0 is
semi-classical of class s if and only if one of the following statements holds:

(a) The formal Stieltjes function of v, namely

SO =- X (26)

n>0

satisfies a linear non-homogeneous first order differential equation [4,12]

®(2)5" (v)(2) = Co(2)S(v)(2) + Do(2), (27)
where
Co(z) = —@'(z) — ¥(z). (28)
and
Do(z) = —(v8p®) ' (z) — (V0o W) (). (29)
with  (vof) (z) = <v7 f(x:Z:g(C)> ,f € P. ® and V¥ are the same polynomials

as in (24).
(b) {Sn}n>o fulfills the following structure recurrence relation (written in a compact

form):

P(2)S)41(2) = Cn+1(x)2— Col) Sp+1(2) = pn1Dns1(z)Sp(x) , n >0 (30)

where
Cpi1(x) = =Cp(x) + 2(x — Br)Dp(x), n>0,

prnt1Dny1(z) = —@(x) + annfl(x) — (2 = &,)Cn(z)+ (31)
(x —&,)?Dy(z) , n >0,

&, U, Cy and Dy are the same polynomials introduced in (a); &, p,, are the coeffi-
cients of the three term recurrence relation (5). Notice that D_;(z) = 0,deg C,, <
s+ 1 and deg D,, < s,n >0 [12].

(c) Each polynomial of {S,},>0 satisfies a second order differential equation of
Laguerre-Perron type, i.e.

CI)Dn+1S;L/+1 + {OODn-i-l - W(‘I), Dn+1)}S':L+1+

Cpir — C - 32
+{W<*;(’,Dml)—DnHZDk}SW:o, n>0, (82)
k=0
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where W(f,9) = fg'— f'g. ®, D,, Cp,, n > 0 are the same parameters introduced
in the previous characterizations [4,14].

Remark. The structure relation gives information about the multiplicity of the
zeros of orthogonal polynomials.

In the sequel the form v will be supposed semi-classical of class s satisfying (24) —
(25).
Proposition 4. If v is a semi-classical form and satisfies (24), then for every
A € C— {0} such that S, (0,\) # 0,n > 0, the form u defined by (8) is reqular and
semi-classical. It satisfies

(i)u)' +Fu=0 (33)
with ) )
O(x) = 2®(x?), U(r) =222V (2?). (34)

and u is of class § with § < 2s + 3.

Proof. Assume that v fulfils (24). To prove that u satisfies (33)-(34), we will show
that the forms (®u)" and —%u coincide on the basis {2"},,>0 of P.
Taking into account (34) and using the operator o, we obtain

<(i>u)’,x2”> = —2n(®(z*)u,2*") = —2n(®(z)ou,z™),n > 1.
By virtue of (8) and (24), we deduce
<(<i>u)’,x2”> = o\ (®(2)v), ") = 2\ (U (z)v, 2" .
Now, using (8) again and the definition of the operator o, we get
<(<i>u)’, x2"> =- <¢/u,x2"> :

Since u is symmetric, it is clear that <(<i>u)’,:r2"+1> = — <\ilu, m2”+1> =0.

Thus, (33)-(34) is proved.

Finally, we have s = max(deg¥ — 1,deg® — 2), then deg(®) < 25+ 5 and
deg(¥) =p <2s+4. Thus § < 25+ 3. 0
Proposition 5. The class of u depends only on the zero x =0 .

For the proof, we use the following lemma:

Lemma 1. For ¢ € C such that ¢ be a root of ®, we have

<u, 0.0 + 9§<i>> = 20\ (1,020 + 0%B) + 2¢(D'(c2) + T(c?)) (35)

and
@l(c) +®'(c) = 202 (<I>/(62) + \I/(cz)). (36)
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Proof. Using the definition of the operator 6., it is easy to prove that, for two
polynomials f and g, we have

0c(f9)(x) = g(x)(0cf) () + f(c)(0eg) (@) , (37)

0.(f(€%))(x) = (z +¢) (B f) (=) . (38)
Let ¢ € C such that ¢ be a root of ®.

Using successively (37) and (38), we obtain
(9;%) (z) =z (0.2(¢%)) (x) = z(z + ¢) (02®) (z%), since ®(c?) =0. Then,

(028) () = w(w + 0)? (62@) (%) + (& + 20)®'(c?) , (39)

because 90(5(5 + c))(x) =x+2c,0, ((Oczq))(f?)) () = (z+¢) (022@’) (22)
and (6.2®)(c?) = @'(c?).
Using the same procedure, we prove that
0.9 (x) = 22 (z + ¢) (029)(2?) + (z + ) ¥(c?) . (40)

Therefore, with (39)-(40) and the fact w is symmetric, we obtain

<u, 0.0 + 92<i>> = (220, 20,20 + 058 + 2¢(D'(c2) + T(c?)) . (41)
Now applying the operator o for (41) and using (8), we get (35). Finally, from (34),
we easily get (36). 0

Proof of Proposition 5. Let ¢ be a root of ® such that ¢ #0.

If @ (c2) + ¥(c?) # 0 then &' (c) + ¥(c) # 0, from (36).

If ®'(c?) 4+ ¥(c*) = 0, using (35), we have (u,0,¥ + 62®) # 0, since v is semi-
classical and so satisfies (25).

In any case, we cannot simplify by z — c. 0O

Proposition 6. Under the conditions of proposition 4, for the class of u, we have
the four different cases

1)§=2s+3 if ®(0)#0.

2)§=2s+2 if ®(0)=0and X3 =—2A(v,00¥ + 63P)+2(P'(0)+ ¥(0)) #0.
3)§=2s+1 if ®(0)=0,X; =0and X, =39'(0)+2¥(0) #0.

4)5=2s if ®0)=0,X;=0andX,=0.

Proof. 1) From (34), we have ®'(0) + ¥(0) = ®(0)

and <u, 00 + 9§i>> = (u, 229 (2?) 4+ z(6p®)(x?)) = 0, since u is symmetric. There-

fore, if ®(0) # 0 it is not possible to simplify (33)-(34), which means that the class
of uis § =2s+3.
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2) If ®(0) = 0, then it is possible to simplify by x. Then, v fulfils (33) with
d(z) = ®(z?), W(z)= z((60®)(2?) + 2 (2?)) . (42)

Here, we have &(0) + ¥(0) = 0 and <u,90\il + ogci)> = (u, 20(22) + 2(0p®)(22)).
Applying the operator o for the second equation and using (9), we obtain

(10,000 + 630 ) = ~2X (v, 600 + 03@) + 2(®'(0) + W(0)) = X1.

Therefore, if X7 # 0 it is not possible to simplify, which means that the class of u
is §=2s+2.

3) If ®(0) = 0 and X; = 0, then it is possible to simplify (33)-(34) by z2. Then, u
tulfils (33) with

@(x) = 2(0y®)(2?) , \i/(x) = 2((00@)@2) + \I/(a:Q)) . (43)
Here, we have ®'(0) + ¥(0) = 39/(0) + 2¥(0) = X and

<u,00\il—|—9%i>> = (u,z (2(6o¥) (2%) + (03®) (2?))) = 0, since u is symmetric.
Therefore, if Xo # 0 it is not possible to simplify, which means that the class
of uis §=2s+ 1.

4) If ®(0) = 0, X; = 0 and X = 0, then it is possible to simplify (33)-(34) by z3.
Then, v fulfils (33) with

®(z) = (Go®)(@?) , W(z) = 2(3(05®) () +2(00W)(a?)) . (44)

Under these conditions = 0 can’t be a root of (fy®)(z?). Assuming the contrary,
that (6p®)(0) = ®'(0) = 0, then from the conditions ®(0) =0, X; =0 and X3 =0
we obtain (v,0p¥ + #3®) = 0 and ¢’(0) + ¥(0) = 0 which is a contradiction with
(25). Then it is not possible to simplify, which means that the class of u is § = 2s.

O

Proposition 7. If v is a semi-classical form and satisfies (27), then for every
A € C — {0} such that S,(0,\) # 0,n > 0, the form u defined by (8) is regular and
semi-classical. It satisfies

®(2)5" (u)(2) = Co(2)S(u)(2) + Do(2), (45)
where -
B(2) = 20(),
Co(2) = —®(22) + 222Cy(2?), (46)

Do(z) = —22ADg(2%) + 220 (22).
Proof. From (26), we have

Using (8), we get
=AS(v)(2*) = 28 (u)(2) + 1, (47)
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Deriving (47), we obtain

=225 (v) (2%) = 25" (u) (2) + S (u) (2). (48)

Make a change of variable z — 22 in (27) and multiply by —2\z, we obtain (45)-
(46) by taking into account (47)-(48). O

‘We are going to establish the expression of structure relation coefficients C,, and
D,, ,n>0of {Z,}n>0 in terms of those of the sequence {5, },>0-
Proposition 8. The sequence {Z,},>0 fulfills

Cry1(x) — Co(x)

O(2) 2}, (x) = Zni1(2) = Y41 Dng1(2) Zp(z) , >0 (49)

with
Cons1(z) = 2020, (22) + ®(22) + 4yop 122Dy (22), n >0,
Dopy1(z) = 223D, (22), n >0,

C:'2n+2(9€) = 222Chy1(2?) — ®(2?) + dy2n422° Dy (2), n >0,
Dapyo(x) = x (Cryr(2?) — Cp(a?)) + 293(72n+3Dn+1( )- (51)
_’YQTH-ID ( )) 2 (.13 )7 n 2 0 )
Co(z) and Dy (z) are given by (46) and v, by (14)-(15).

Proof. Change * — 2?2 in (29) and multiply by 22® we obtain by taking (11) and
(13) into account,

2® (%) Zyy45(x) = (22 (Cpya (2°) = Co(a?)) + @(2?)) Zonys(x) —
=222 Dy, y1(2%) pry1 Zon 41 ().
Using (16) and (10) where n — 2n, the last equation becomes
O(2) 2y, 45(x) = (22 (Cosr(2?) — Co(@?)) + (2?) + 20*y2n43Dpt1 (%)) Zongs(x)—
—2995,4322 Dy 1 (2%) Zog 42 ().

From (49) and the above equation, we have

{ 02n+3(33) - C~'0(9’3)

2
X Zon+3(2) = Yan+s {D2n+3($) - 2$2Dn+1($2)} Zant2(T).
Zon+3 and Za, 2 have no common roots, then Zs,, ;3 divides l~)2n+3 (v)—222 D, 11 (2?),
which is a polynomial of degree at most equal to 2s 4+ 3. Then we have necessarily

C2n+3(x)2_ CO(SU) = 51'2 (Cn—i-l(‘rz) - 00(33'2))+

— (2% (Cns1(2®) — Co(2?)) + @(2®) + 2.%'2’72n+3Dn+1((E2))} X

Dany3(z) = 222D,y 1 (22) for n > s, and also

®(2?) + 2227251 3Dpy1(22),n > s.
Then, by (45), we get (49) for n > s.
By virtue of the recurrence relation (30) and (46), we can easily prove by induction
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that the system (50) is valid for 0 < n < s. Hence (50) is valid for n > 0.
After a derivation of (10) where n — 2n+ 1 multiplying by 2®(z?) and using (49),

we obtain ~
Con Co(z
PO(a2) 24, () = st = ColD)

72n+2{02n+1( 7) = Cola )ZQn+1( ) — 72n+1D2n+1(x)Z2n(x)}.

Zon+3(2)=Yant3Dont3(2) Zon 2 () —2®(2%) Zon o () +

2
Applying the recurrence relation (10), we get

Conalz) - Cole : ~
P20(02) Zyafa) = 2 O @) — 2®(5?) 3 D ()

{ Congs(x) — Cons1(2)

X Zon+2(%)—Yan+2

5 + $b2n+1($)} Zon+1-

Now, using (49) and taking into account the fact that Zs,2(z) and Zap,41(z) are
coprime, we get from the last equation after simplification by x (51) for n > s.

Finally, by virtue of the recurrence relation (30) and (50) with n = 0, we can easily
prove by induction that the system (51) is valid for 0 < n < s. Hence (51) is also
proved for n > 0. 0

Using (32), Proposition 8. and simplifying, we get the following result:
Corollary 2. Each polynomial of {Z,},>0 satisfies a second order differential
equation of Laguerre-type, (or holonomic second order differential equation)

J(x,n)Zy 1 () + K(2,n) 2}, 41 (2) + L(2,1) Zpga (x) =0, n>1,
with
J(z,2n+1) {x( 1 ( — Ch(zx )) +2$(72n+3Dn+1(I2) — Yon+1Dn(x )) + 223D, (w2)}
K(1?72n+1)_296 (' (= )+Co ){Cn+1 )—C (z )+2(W2n+3Dn+1( %) = yant1Dn(2?))+
+2m2D }+<I> {Cn+1 )*C (z )+2m ( 1 (@ )*Cw/z(372))+
+2(m+3pn+1( %) = Yznt1Dn(a?)) + 42°2(v2n43 D7 41 (2%) — Yont1 D (22)) +

+6x2D (x )—|—4x4D’ (x )},
L(z,2n+1) = 2{Cr1(z ) + 292n42Dn ( a?) H{Cn(2?) — Crpa(@ %)~ 2(V2n+3Dn+1($2)
—Yant1Dn (%)) + 22° Dy (z —I—Qm ( Chy(z?) - o (z?)) + 4a? (72n+3Dn+1( -
—Yan+1D7( ) + 4z Dy, (2 - — 2{Cny1(2?) — Cn(2®) + 2’72n+3Dn+1( )—
—2v2n41Dn, ( %) 4+ 222D, m2 }{29620;“(:10 ) + dyont22? Dl (2%) — 222CH(22)+

+Cn(a?) + Co(x )+2m+1Dn( )—2wo<x2)+4x22;;3Dk(x2) + 222Dy (2?)} .

2

\/\./v\—/
"~

and
J(z,2n) = 223®(2?) Dy, (2?),
K(z,2n) = 22° Dy (2%) (22°®' (2°) + 22°Co(2*) — 30 (= )) — 42*®(2?) D}, (2?),
L(z,2n) = 22Dy (2°) (3®(2?) — 22°Co () — 22 C), (%) — 22°®' (2°) + 2x4CO( 4
+2X\z? Do (x?) — 4]242:;3Dk(£132)) + 42° Dy, (2%) (2 Cr(2?) — 2°Co(2°) + ®(2?)).

3 Illustrative examples

(1) We study the problem (8), with v = £(«) where £(«) is the Laguerre form. In
this case, the form v is not symmetric. This form is classical (semi-classical of class
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s =0). We have [12]
En=2n+a+1l, ppi=m+1l)n+a+l), n>0,
the regularity condition is a # —n, n>1
Sx)y=z, Y(z)=z—a-1,
Cp(x)=—2z+ (2n+a), Dy(z)=-1, n>0.
Using (5) and (52), we get

'n+a+1)
Tla+1) nz0

From (6) and (52), we obtain by induction for n > 0

(_ZTLH(F(%L%—W) , a#0,

Sn(0) = (=1)"

50(0) = " IMNa+1)
(—)"T(n+2)> —— a=0
E+17
k=0
By virtue of (7) and (55)-(56), we deduce
(-D)"T(n+a+1)dan
= 2 >
Sn(0,N) aT(at 1) , n>0
where
T nyr 1
(ot y - Mler Dl D) Ly s,

'n+a+1)
da,n =

Then, u is regular for every A\ # 0 such that
M(a+1)I(n+1)
F'n+a+1)

—1

— Zi , a=0, n>1.
k:0k+1

~ (n+a+1)dansr

, a#0, n>0,

A #

(15) and (57) give

n — 9 n 2 0
doe,n
Then, with (14), we get
Y1 = _)‘a
n+1)dan
Yon+3 = (di) ) n>0,
a,n+1

n+a-+1)d
Yon+2 = ( d ) 2t ) n>0.
a,n

n—1 —1
HAkaJlrl’ a=0, n>0. (Z:o)
=0

(57)

(59)

(60)



Symmetric semi-classical polynomials 187

Taking into account that the form v is semi-classical and by virtue of Proposition
4., the form w is also semi-classical. It satisfies (33) and (45)with

d(z) =22, U(z)=22— (2a+ 1)z,

Co(x) = =22 + 20— 1)z, Do(x) = =222 + 2(a + \). (62)

From (53), we have

®(0)=0,X; = —2(a+ A) and X3 = 1 — 2« (we take A = —a in calculation of X5).
Now, it is enough to use Proposition 6. in order to obtain the following results:

* If A # —« and verifies (59), then the class of u is § = 2.

* If A = —a and 2a # 1, then the class of w is § = 1.

* If A= —a and 2« = 1, then the class of v is s = 0.

Now, we are going to give the elements of the structure relation of the sequence

{Zn}n20~
Using (53), (54) and Proposition 8., we obtain after simplifying by z

Co(z) =203+ (2a -1z, Ci(x)=—22+ 2a+4\+1)z,
027L+2($) =—22% — X, 627L+3(m) = —22° + Xng1,
Do) =—202+2(+)), Domir(x) = —222, (63)
N 2 (@2 + o) (@ + MAT(a+ D)I(n + 1)
D = —22% — ’ > 0.
2n+2(‘r) x F(n Fa+ 2)da7nda,n+1 , =2 0
4 r nr 1
where X,, = [ 2a+ 1+ Ala+0,0) e+ DI(n + 1)
I'n+a+1)dan
The form v has the following integral representation|[5]
1 too
= — “e ® de, R -1 . 64
)= FaET [ @ Ry > -1 feP. (69

Then, using (22), we obtain the following integral representation of u

+oo 5
afy = (14 2) 10 = s [ el e R > 0. (9)

(2) Let us describe the case v := H where H denotes the Hermite form . In this
case, the form v is symmetric. This form is classical (semi-classical of class s =0 ).
Here [12]

&n =0, pny1= %(n +1), n>0, (66)
O(x)=1, Y(x)=2z, (67)
Cn(z) = -2z, Dp(z)=-2, n>0. (68)
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In accordance with Corollary 1. and (66), u is regular for every A # 0 and we have

N=—r2=A
1 T(2n+2)

Yants = TVantd = TN 9T T2 (p 1 1) (69)
22010 (n + 1)[(n + 2)

VYant5 = —Van+6 = T(2n+2) ;n 20

By virtue of Proposition 6. and Proposition 7., the form wu is semi-classical of
class § = 3 for any A # 0 and fulfils (33) and (45) with

d(x)=x, U(zr)=42° Colx)=—4a*—1, Do(zx)=—4a®+4\z.  (70)
According to Proposition 8., (67)and (68), we have, for n > 0
Co(x) = —4a* -1,
Conti(z) = —4a* — 8y2ni12” + 1,
Conta(x) = —4a* — 8ypn402” — 1,
Do(z) = —42% + 4z,

D2n+1(£17) = 741‘3 3

(71)

Dani2(x) = —42° + 4(y2n41 — V2n43)T -

The form v has the following integral representation[5]

L[t
- e . 2
)= 5= [ e s, fep (72)
Therefore, for A # 0 and f € P, (23) becomes

A +oo o—at .
(1) = F(0) = S=P / )~ fim)ds (73)

]
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