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ON THE SUM-CONNECTIVITY INDEX

Shilin Wang, Bo Zhou∗ and Nenad Trinajstić

Abstract

The sum-connectivity index of a simple graph G is defined in mathematical
chemistry as

R+(G) =
∑

uv∈E(G)

(du + dv)−1/2,

where E(G) is the edge set of G and du is the degree of vertex u in G. We
give a best possible lower bound for the sum-connectivity index of a graph (a
triangle-free graph, respectively) with n vertices and minimum degree at least
two and characterize the extremal graphs, where n ≥ 11.

1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G) [1]. For u ∈ V (G),
du(G) or du denotes the degree of u in G. Let N(u) be the set of neighbors of vertex
u in G. Then du = |N(u)|.

The Randić connectivity index of a graph G, proposed by Randić in 1975, is
defined as [2]

R(G) =
∑

uv∈E(G)

(dudv)−1/2.

It is one of the most successful molecular descriptors in structure-property and
structure-activity relationships studies [3–8]. Its mathematical properties [9, 10]
and generalizations/variants [11–13] have also been studied extensively. We also
call it the product-connectivity index.
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Motivated by Randić’s definition of the product-connectivity index, the sum-
connectivity index of a graph G was proposed in [14], which is defined as

R+(G) =
∑

uv∈E(G)

(du + dv)−1/2.

The applications of the sum-connectivity index have been investigated in [15, 16].
Some basic mathematical properties of the sum-connectivity index have been es-
tablished in [14, 17–19].

Bollobás and Erdös [20] showed that for a graph G with n vertices and without
isolated vertices, R(G) ≥ √

n− 1 with equality if and only if G is the star. Then
Delorme et al. [21] gave a best possible lower bound for the product-connectivity
index of a graph with n ≥ 6 vertices and minimum degree at least two. Later Liu
et al. [22] found a best possible lower bound for the product-connectivity index of
a triangle-free graph with n ≥ 6 vertices and minimum degree at least two.

In [14], it was shown that for a graph G with n ≥ 5 vertices and without
isolated vertices, R+(G) ≥ n−1√

n
with equality if and only if G is the star. For

n = 4, this is not true since for the union of two copies of path on two vertices,
its sum-connectivity index is

√
2, less than 3

2 . In this paper, we establish a best
possible lower bound for the sum-connectivity index of a graph (triangle-free graph,
respectively) with n ≥ 11 vertices and minimum degree at least two and characterize
the extremal graphs.

2 Preliminaries

For a graph G with u ∈ V (G) (e ∈ E(G), respectively), G − u (G − e, respec-
tively) means the graph obtained feom G by deleting u and its incident edges (e,
respectively).

For an edge e = uv of a graph G, its weight is defined to be (du + dv)−1/2. The
sum-connectivity index of G is the sum of weights over all its edges.

Lemma 2.1. If e is an edge of maximal weight in G, then R+(G− e) < R+(G).

Proof. Let e = uv. Since uv is an edge of maximal weight in G, we have dw ≥ dv

for w ∈ N(u) and dw ≥ du for w ∈ N(v). Obviously, for positive a, 1√
x+a

− 1√
x+a−1

and x−1√
x

are both increasing for x ≥ 1. Then

R+(G)−R+(G− e)

=
1√

du + dv

+
∑

w∈N(u)\{v}

(
1√

du + dw

− 1√
du + dw − 1

)

+
∑

w∈N(v)\{u}

(
1√

dv + dw

− 1√
dv + dw − 1

)

≥ 1√
du + dv

+ (du − 1)
(

1√
du + dv

− 1√
du + dv − 1

)
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+(dv − 1)
(

1√
dv + du

− 1√
dv + du − 1

)

=
du + dv − 1√

du + dv

− du + dv − 2√
du + dv − 1

> 0.

The result follows.

For x ≥ 3, let r(x) = 2
√

x + 1 + 1√
2x−2

− 6√
x+1

.

Lemma 2.2. For n ≥ 11, 2
√

n− 4√
n
− r(n) > 0.

Proof. For 11 ≤ n ≤ 15, the result can be checked by direct calculation. Suppose
that n ≥ 16. For a, b > 0, it is easily seen that 1

a + 1
b ≥ 4

a+b with equality if and
only if a = b. This implies that

− 2√
n +

√
n + 1

> −1
2

(
1√
n

+
1√

n + 1

)
.

Then

2
√

n− 4√
n
− r(n)

= 2
√

n− 4√
n
− 2

√
n + 1− 1√

2 (n− 1)
+

6√
n + 1

= − 2√
n +

√
n + 1

− 4√
n
− 1√

2 (n− 1)
+

6√
n + 1

> −1
2

(
1√
n

+
1√

n + 1

)
− 4√

n
− 1√

2 (n− 1)
+

6√
n + 1

= − 9
2
√

n
+

11
2
√

n + 1
− 1√

2(n− 1)

=
(
− 9

2
√

n
+

9
2
√

n + 1

)
+

(
1√

2(n + 1)
− 1√

2(n− 1)

)

+
√

2− 1√
2(n + 1)

=
√

2− 1
2
√

2(n + 1)
+

(
− 9

2
√

n
+

9
2
√

n + 1

)

+
√

2− 1
2
√

2(n + 1)
+

(
1√

2(n + 1)
− 1√

2(n− 1)

)

=
1

2
√

2 (n + 1)

(√
2− 1− 9

√
2√

n(
√

n + 1 +
√

n)

)
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+
1

2
√

2 (n + 1)

(√
2− 1− 4√

n− 1(
√

n + 1 +
√

n− 1)

)

≥ 1
2
√

2 (n + 1)

(√
2− 1− 9

√
2√

16(
√

17 +
√

16)

)

+
1

2
√

2 (n + 1)

(√
2− 1− 4√

15(
√

17 +
√

15)

)

> 0.

The result follows.

Lemma 2.3. For x ≥ 3 + i, r(x)− r(x− i) is decreasing in x, where i = 2, 3.

Proof. For x ≥ 3, it is easily seen that 6
√

2
(

x−1
x+1

)5/2

≥ 6
√

2
(

3−1
3+1

)5/2

> 1, implying

that 3
4
√

2
(x− 1)−5/2

< 9
2 (x + 1)−5/2. Then

r′′(x) = −1
2

(x + 1)−3/2 +
3

4
√

2
(x− 1)−5/2 − 9

2
(x + 1)−5/2

< −1
2

(x + 1)−3/2

< 0.

By the Lagrange mean-value theorem, r′(x)− r′(x− i) < 0 for x ≥ 3 + i, and thus
the result follows.

Let f(x, y) = 1√
x+y

− 1√
x+y−2

+ x−1√
x+2

− x−2√
x+1

+ y−1√
y+2

− y−2√
y+1

, where x, y ≥ 2.

Lemma 2.4. For x, y ≥ 3, f(x, y) is decreasing in x and y.

Proof. Let g(x) = (x + 2) x−3/2 − (x + 1)−3/2 for x ≥ 4. Then

g′(x) = −
(

1
2
x + 3

)
x−5/2 +

3
2

(x + 1)−5/2
< 0,

i.e., g(x) is decreasing in x. It is easily seen that

∂f(x, y)
∂x

=
1
2
(x + 5)(x + 2)−3/2 − 1

2
(x + 4)(x + 1)−3/2

−1
2
(x + y)−3/2 +

1
2
(x + y − 2)−3/2,

and thus

∂

∂y

(
∂f(x, y)

∂x

)
= −3

4
(x + y − 2)−5/2 +

3
4
(x + y)−5/2 < 0,

implying that

∂f(x, y)
∂x

≤ ∂f(x, 3)
∂x
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=
1
2
(x + 5)(x + 2)−3/2 − 1

2
(x + 3)(x + 1)−3/2 − 1

2
(x + 3)−3/2

=
1
2

(g(x + 2)− g(x + 1))

< 0.

Similarly, ∂f(x,y)
∂y < 0. Now the result follows.

Let Ka,b be the complete bipartite graph with a and b vertices in its two partite
sets, respectively. For n ≥ 4, let K∗

2,n−2 be the graph obtained from K2,n−2 by
joining an edge between the two vertices of degree n− 2. Obviously, R+(K∗

2,n−2) =
r(n). Let δ(G) be the minimum degree of the graph G.

Lemma 2.5. Let G be a graph with n vertices and δ(G) = 2. Let u be a vertex of
degree two with two adjacent neighbors, both of degree at least three. Then R+(G)−
R+(G− u) ≥ f(n− 1, n− 1) with equality if and only if G = K∗

2,n−2.

Proof. Let N(u) = {v, w}. Obviously, 1√
x
− 1√

x−1
is increasing for x > 1. We have

R+(G)−R+(G− u)

=
1√

dv + 2
+

1√
dw + 2

+
1√

dv + dw

− 1√
dv + dw − 2

+
∑

z∈N(v)\{u,w}

(
1√

dv + dz

− 1√
dv + dz − 1

)

+
∑

z∈N(w)\{u,v}

(
1√

dw + dz

− 1√
dw + dz − 1

)

≥ 1√
dv + 2

+
1√

dw + 2
+

1√
dv + dw

− 1√
dv + dw − 2

+(dv − 2)
(

1√
dv + 2

− 1√
dv + 2− 1

)

+(dw − 2)
(

1√
dw + 2

− 1√
dw + 2− 1

)

= f(dv, dw),

and thus R+(G) − R+(G − u) ≥ f(dv, dw) with equality if and only if dz = 2 for
z ∈ N(v) \ {u,w} or z ∈ N(w) \ {u, v}. By Lemma 2.4, R+(G) − R+(G − u) ≥
f(n − 1, n − 1) with equality if and only if dv = dw = n − 1 and dz = 2 for
z ∈ N(v) \ {u,w} or z ∈ N(w) \ {u, v}, i.e., G = K∗

2,n−2.

Lemma 2.6. Let G be a triangle-free graph with n vertices and δ(G) = 2. Let u be
a vertex of degree two in G. Then R+(G) − R+(G − u) ≥ 2

(
n−2√

n
− n−2−1√

n−1

)
with

equality if and only if G = K2,n−2.
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Proof. Let N(u) = {v1, v2}. Since G is a triangle-free graph, dv1 , dv2 ≤ n − 2 and
v1v2 6∈ E(G). Note that x√

δ+x
− x−1√

δ+x−1
is decreasing for x ≥ 1. We have

R+(G)−R+(G− u)

=
2∑

i=1


 1√

2 + dvi

+
∑

z∈N(vi)\{u}

(
1√

dz + dvi

− 1√
dz + dvi

− 1

)


≥
2∑

i=1

[
1√

2 + dvi

+ (dvi
− 1)

(
1√

2 + dvi

− 1√
2 + dvi − 1

)]

=
2∑

i=1

(
dvi√

2 + dvi

− dvi
− 1√

2 + dvi
− 1

)

≥ 2

(
n− 2√

2 + (n− 2)
− (n− 2)− 1√

2 + (n− 2)− 1

)

= 2
(

n− 2√
n
− n− 3√

n− 1

)

with equalities if and only if dv1 = dv2 = n− 2 and dz = 2 for z ∈ N(vi) \ {u} with
i = 1, 2, i.e., G = K2,n−2.

3 Result

Now we prove our main results.

Theorem 3.1. Let G be a graph with n ≥ 11 vertices and δ(G) ≥ 2. Then R+(G) ≥
r(n) with equality if and only if G = K∗

2,n−2.

Proof. Assume that G is a counterexample with minimal number of vertices for
which R+(G) is minimal. If δ(G) ≥ 3, then by Lemma 2.1, the deletion of an
edge of maximal weight yields a graph G

′
of minimal degree at least two such that

R+(G
′
) < R+(G), which is a contradiction to the choice of G. Hence δ(G) = 2.

Claim 1. The neighbors of every vertex of degree two are adjacent.
Suppose that the claim is false. Let u be a vertex of degree two with N(u) =

{v, w} and vw 6∈ E(G). Then G1 = G− u + vw is not a counterexample, and thus
R+(G1) ≥ r(n− 1).

Let t (x, y) = 1√
2+x

+ 1√
2+y

− 1√
x+y

, where x, y ≥ 2. Then ∂t(x,y)
∂x = − 1

2 (2 +

x)−3/2 + 1
2 (x + y)−3/2, and thus ∂

∂y

(
∂t(x,y)

∂x

)
= − 3

4 (x + y)−5/2 < 0, implying that
∂t(x,y)

∂x ≤ ∂t(x,2)
∂x = 0. Similarly, ∂t(x,y)

∂y ≤ 0. Since 2 ≤ dv, dw ≤ n − 2, we have
t(dv, dw) ≥ t(n− 2, n− 2). By Lemma 2.2, we have

R+(G) = R+(G1) +
1√

2 + dv

+
1√

2 + dw

− 1√
dv + dw
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= R+(G1) + t (dv, dw)
≥ r(n− 1) + t (n− 2, n− 2)

= 2
√

n− 4√
n

> r(n),

which is a contradiction. Claim 1 follows.
Claim 2. Every pair of adjacent vertices of degree two has no common neighbor.

Suppose that the claim is false. Let u1 and u2 be two adjacent vertices of degree
two and u3 a common neighbor of them. Obviously, 2 ≤ du3 ≤ n− 1.

Suppose that du3 = 2. Then G2 = G−u1−u2−u3 is not a counterexample, and
thus R+(G2) ≥ r(n−3). By Lemma 2.3, r(n)−r(n−3) ≤ r(11)−r(8) = 1.1525 < 3

2 ,
implying that

R+(G) = R+(G2) +
3
2
≥ r(n− 3) +

3
2

> r(n),

which is a contradiction.
Now suppose that du3 ≥ 4. Then G3 = G − u1 − u2 is not a counterexample,

and thus R+(G3) ≥ r(n− 2). Then

R+(G) = R+(G3) +
∑

v∈N(u3)\{u1,u2}

(
1√

dv + du3

− 1√
dv + du3 − 2

)

+
2√

2 + du3

+
1
2

≥ r(n− 2) + (du3 − 2)

(
1√

2 + du3

− 1√
2 + du3 − 2

)

+
2√

2 + du3

+
1
2

= r(n− 2) +
du3√

2 + du3

− du3 − 2√
du3

+
1
2
.

It is easily seen that a√
2+a

− a−2√
a

is decreasing for a ≥ 2. If 11 ≤ n ≤ 20, then
du3 ≤ n− 1, and by Lemma 2.3 and direct calculation, we have

R+(G)− r(n) ≥ (r(n− 2)− r(n)) +

(
du3√

2 + du3

− du3 − 2√
du3

)
+

1
2

≥ (r(11− 2)− r(11)) +
(

19√
2 + 19

− 19− 2√
19

)
+

1
2

> 0.

It is easily seen that a−2√
a

is increasing for a ≥ 2. If n ≥ 21, then by Lemma 2.3 and
direct calculation, we have

R+(G)− r(n) ≥ (r(n− 2)− r(n)) +

(
du3√

2 + du3

− du3 − 2√
du3

)
+

1
2
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≥ (r(21− 2)− r(21)) +
1
2

> 0.

Thus R+(G) ≥ r(n), which is a contradiction.
Suppose that du3 = 3. Denote by u4 the neighbor of u3 in G different from u1

and u2, where 2 ≤ du4 ≤ n − 3. First suppose that du4 = 2. Denote by u5 the
neighbor of u4 in G different from u3. By Claim 1, u3u5 ∈ E(G). Since du3 = 3, the
neighbors of u3 are u1, u2, u4, which is a contradiction. Then du4 6= 2. Next suppose
that 3 ≤ du4 ≤ n−3. Then G4 = G−u1−u2−u3 is not a counterexample, and thus
R+(G4) ≥ r(n− 3). By Lemma 2.3, r(n)− r(n− 3) ≤ r(11)− r(8) < 1

2 + 1√
6

+ 1√
5
.

Then

R+(G) = R+(G4) +
∑

v∈N(u4)\{u3}

(
1√

dv + du4

− 1√
dv + du4 − 1

)

+
1√

3 + du4

+
1
2

+
2√
5

≥ r(n− 3) + (du4 − 1)

(
1√

2 + du4

− 1√
2 + du4 − 1

)

+
1√

3 + du4

+
1
2

+
2√
5

= r(n− 3) +
1√

3 + du4

− 1√
2 + du4

+
1
2

+
2√
5

+

(
du4√

2 + du4

− du4 − 1√
1 + du4

)

> r(n− 3) +
1√

3 + du4

− 1√
2 + du4

+
1
2

+
2√
5

≥ r(n− 3) +
1√

3 + 3
− 1√

2 + 3
+

1
2

+
2√
5

= r(n− 3) +
1√
6

+
1√
5

+
1
2

> r(n),

which is a contradiction.
Now Claim 2 follows.
Let v ∈ V (G) be a vertex of degree two with neighbors v1 and v2. By Claim 1,

v1 and v2 are adjacent. By Claim 2, dv1 , dv2 ≥ 3. By Lemma 2.5,

R+(G) ≥ R+(G− v) + f(n− 1, n− 1)

≥ r(n− 1) +
1√

2(n− 1)
− 1√

2(n− 2)
+

2(n− 2)√
n + 1

− 2(n− 3)√
n

= r(n)
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with equality if and only if G = K∗
2,n−2, which is a contradiction.

It is easily checked that R+(K2,8) = 16√
2+8

= 5.05964 < 5.05988 = 2
√

10 + 1 +
1√

20−2
− 6√

10+1
. Thus the condition n ≥ 11 in Theorem 1 is necessary.

Theorem 3.2. Let G be a triangle-free graph of order n ≥ 11 with δ(G) ≥ 2. Then
R+(G) ≥ 2(n−2)√

n
with equality if and only if G = K2,n−2.

Proof. Assume that G is a counterexample with minimal number of vertices for
which R+(G) is minimal. By Lemma 2.1, we have δ(G) = 2. Let V2 be the set
of vertices of degree two in G. Suppose that there exists a vertex z ∈ V2 with
N(z) ∩ V2 = ∅. Let N(z) = {z1, z2}. Then zi 6∈ V2 for i = 1, 2. Note that
2 ≤ δ(G − z) ≤ n−1

2 as G − z is triangle-free. By the assumption of G, we have
R+(G) ≥ 2(n−1−2)√

n−1
. By Lemma 2.6, we have

R+(G) ≥ R+(G− z) + 2
(

n− 2√
n
− n− 2− 1√

n− 1

)

≥ 2(n− 2− 1)√
n− 1

+ 2
(

n− 2√
n
− n− 2− 1√

n− 1

)

=
2(n− 2)√

n
= R+(K2,n−2)

with equalities if and only if G = K2,n−2, which is a contradiction to the choice of
G. Thus N(z) ∩ V2 6= ∅ for any z ∈ V2.

Choose a vertex u ∈ V2 such that |N(u) ∩ V2| is as small as possible. Let
N(u) = {u1, u2} with u1 ∈ V2 and du2 ≥ 2.
Claim 1. N(u1) ∩N(u2)\ {u} 6= ∅.

Suppose that the claim is false. Then G1 = G−u+u1u2 is not a counterexample,
i.e., R+(G1) ≥ 2(n−3)√

n−1
. It is easily seen that 2(n−3)√

n−1
− 2(n−2)√

n
is increasing for n ≥ 11,

implying that 2(n−3)√
n−1

− 2(n−2)√
n

≥ 2(11−3)√
11−1

− 2(11−2)√
11

> − 1
2 . Thus

R+(G) = R+(G1) +
1√

2 + du2

+
1
2
− 1√

2 + du2

≥ 2(n− 3)√
n− 1

+
1
2

>
2(n− 2)√

n
,

which is a contradiction. Claim 1 follows.
Let v be the neighbor of u1, u2 different from u. For u1 ∈ V2, by Claim 1, we

have N(u1)∩N(u2) = {u, v}. Since G is a triangle-free graph, we have dv +du2 ≤ n.
Claim 2. v ∈ V2.

Suppose that the claim is false. Suppose that u2 6∈ V2. We have 3 ≤ dv, du2 ≤
n − 3 as G is triangle-free. Since G2 = G − u − u1 is not a counterexample, we
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have R+(G2) ≥ 2(n−4)√
n−2

. Let g(x) = 2√
x−2

+ 2(x−3)√
x−1

with x ≥ 11. Then g′′(x) =
3
2 (x− 2)−5/2− (

1
2x + 5

2

)
(x− 1)−5/2 < 0, implying that g(x)− g(x+1) is increasing

for x ≥ 11.
By Lemma 2.4, we have f(dv, du2) ≥ f(n− 3, n− 3), and thus

R+(G) = R+(G2) +
1
2

+
1√

2 + dv

+
1√

2 + du2

+
1√

dv + du2

− 1√
dv + du2 − 2

+
∑

w∈N(v)\{u1,u2}

(
1√

dw + dv

− 1√
dw + dv − 1

)

+
∑

w∈N(u2)\{u,v}

(
1√

dw + du2

− 1√
dw + du2 − 1

)

≥ 2(n− 4)√
n− 2

+
1
2

+
1√

2 + dv

+
1√

2 + du2

+
1√

dv + du2

− 1√
dv + du2 − 2

+(dv − 2)
(

1√
2 + dv

− 1√
1 + dv

)

+(du2 − 2)

(
1√

2 + du2

− 1√
1 + du2

)

=
2(n− 4)√

n− 2
+

1
2

+ f(dv, du2)

≥ 2(n− 4)√
n− 2

+
1
2

+ f(n− 3, n− 3)

=
2(n− 2)√

n
+

1
2

+
(

2√
n− 2

− 2(n− 2)√
n

+
2(n− 4)√

n− 1

)

+

(
1√

2(n− 3)
− 1√

2(n− 4)

)

=
2(n− 2)√

n
+

1
2

+ (g(n)− g(n + 1))

+

(
1√

2(n− 3)
− 1√

2(n− 4)

)

≥ 2(n− 2)√
n

+
1
2

+ (g(11)− g(11 + 1))

+

(
1√

2 · (11− 3)
− 1√

2 · (11− 4)

)
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>
2(n− 2)√

n
,

which is a contradiction.
Now suppose that u2 ∈ V2. Then 3 ≤ dv ≤ n − 2 and G3 = G − u − u1 − u2

is not a counterexample, and thus R+(G3) ≥ 2(n−5)√
n−3

. Let h(x) = x−2√
x

with x ≥ 2.

Then h′′(x) = − 3
2

(
1
6x + 1

)
x−5/2 < 0, implying that h(x− 3)−h(x) = x−5√

x−3
− x−2√

x

and h(x− 3)− h(x− 2) = x−5√
x−3

− x−4√
x−2

are both increasing in x. Then

R+(G) = R+(G3) + 1 +
2√

2 + dv

+
∑

w∈N(v)\{u1,u2}

(
1√

dw + dv

− 1√
dw + dv − 2

)

≥ 2(n− 5)√
n− 3

+ 1 +
2√

2 + dv

+ (dv − 2)
(

1√
2 + dv

− 1√
dv

)

=
2(n− 5)√

n− 3
+ 1 +

dv√
2 + dv

− dv − 2√
dv

≥ 2(n− 5)√
n− 3

+ 1 +
n− 2√

(n− 2) + 2
− (n− 2)− 2√

n− 2

=
2(n− 2)√

n
+

(
n− 5√
n− 3

− n− 2√
n

)
+

(
n− 5√
n− 3

− n− 4√
n− 2

)
+ 1

≥ 2(n− 2)√
n

+
(

11− 5√
11− 3

− 11− 2√
11

)
+

(
11− 5√
11− 3

− 11− 4√
11− 2

)
+ 1

>
2(n− 2)√

n
,

which is a contradiction. Claim 2 follows.
Claim 3. u2 6∈ V2.

Suppose that the claim is false. Then G4 = G − u − u1 − u2 − v is not a
counterexample. It is easily seen that 2(n−6)√

n−4
− 2(n−2)√

n
≥ 2·(11−6)√

11−4
− 2·(11−2)√

11
> −2,

and thus R+(G) = R+(G4) + 2 ≥ 2(n−6)√
n−4

+ 2 > 2(n−2)√
n

, which is a contradiction.
By Claims 2 and 3, we have v ∈ V2 and 3 ≤ du2 ≤ n − 2 as G is triangle-free.

Now we will complete our proof by considering the following two cases.
Case 1. du2 ≥ 4. Then G− u− u1 − v is not a counterexample. Replacing u2 by
v in the proof of the Claim 2 for the case u2 ∈ V2, we may derive a contradiction.
Case 2. du2 = 3. Let N(u2) \ {u, v} = {x} and y ∈ N(x) \ {u2}. If dx = 2, then
N(y)∩N(u2) \ {x} = ∅ as du = dv = 2. Thus we can derive a contradiction by the
same argument as in the proof of Case 1 by setting u2 = y. Hence dx ≥ 3. Note
that G5 = G − u − u1 − u2 − v is not a counterexample. Then R+(G5) ≥ 2(n−6)√

n−4
.

Since 1√
3+d

− 1√
2+d

is increasing for 3 ≤ d ≤ n − 4, noting the properties of h(x)
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used above, we have

R+(G) = R+(G5) + 1 +
2√
5

+
1√

3 + dx

+
∑

w∈N(x)\{u2}

(
1√

dx + dw

− 1√
dx + dw − 1

)

≥ 2(n− 6)√
n− 4

+ 1 +
2√
5

+
1√

3 + dx

+(dx − 1)
(

1√
dx + 2

− 1√
dx + 2− 1

)

=
2(n− 6)√

n− 4
+ 1 +

2√
5

+
1√

3 + dx

+
dx − 1√
dx + 2

− dx − 1√
dx + 1

>
2(n− 6)√

n− 4
+ 1 +

2√
5

+
1√

3 + dx

− 1√
dx + 2

≥ 2(n− 6)√
n− 4

+ 1 +
2√
5

+
1√

3 + 3
− 1√

3 + 2

>
2(n− 2)√

n
,

which is a contradiction.
The proof of our theorem is completed.

It is easily checked that for the cycle C10 (on 10 vertices), R+(C10) = 10
2 <

2(10−2)√
10

. Thus the condition n ≥ 11 in Theorem 2 is necessary.
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[14] B. Zhou, N. Trinajstić, On a novel connectivity index , J. Math. Chem. 46
(2009), 1252–1270.
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[17] Z. Du, B. Zhou, N. Trinajstić, Minimum sum-connectivity indices of trees and
unicyclic graphs of a given matching number , J. Math. Chem. 47 (2010), 842–
855.
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