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ON 1-GAPS IN 3D DIGITAL OBJECTS

Angelo Maimone and Giorgio Nordo

Abstract

In Digital Geometry, a gap is a location of a digital object through which
a discrete ray can penetrate with no intersection. More specifically, for a 3D
digital object we distinguish between 0- and 1-gaps depending on the relative
position of such a ray. Although in some applications it is important to know
how many gaps has a set of voxels, it is quite complicated to find an efficient
algorithm to directly count them. In this paper, we provide a formula that
states the number of 1-gaps of a generic 3D object using the notion of free cell
of dimension 1 and 2.

1 Introduction

Several definitions of gap are available in the literature (see, e.g., [2, 3, 9]). Roughly
speaking, a gap is a location of a digital object that can be locally penetrated by
some discrete path (usually called ray). In particular, the definition of a gap in a
3D digital space finds several useful applications in fields like computer aided design
(CAD) and computer graphics, where it is relevant to know whether an apparently
“solid” surface can have some “unreal” (or “immaterial”) holes, and it is useful to
understand the type of gap we are dealing with.

It is worth remembering that, at the moment, there is no efficient algorithm
that can directly compute the number of gaps. For such a reason, it is necessary
to reconduct the computation by means of some parameters which are relatively
easier to count. Following this approach, in some recent works [5, 7] two equivalent
formulas which gives the total number of gaps of a generic 2D digital object D by
means of some basic parameters of the object were given.

In this paper, we extend to 3-dimensional case some results obtained in [7]. More
precisely, we provide a formula that states the number of 1-gaps of a generic 3D
object using the notion of free cell.
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In the next section, we introduce some fundamental notions and notations of
Digital Geometry that we use throughout the paper. In Section 3, some basic
definitions and propositions dealing with the notion of 1-gap and free cells are
presented. In Section 4, we prove our main result, consisting in a formula which
counts the number of 1-gap of a generic 3D digital object.

2 Preliminaries

Digital Geometry studies the geometric and topological properties of digital objects,
i.e. collections of pixels (if we consider digital plane) or voxels (if we consider digital
space). In this paper, we choose to represent digital objects by means of the grid
cell model C3 (also referred as cellular model), originally introduced by Alexandroff
and Hopf [1], adopting the notation and the terminology used in [10] and [12].

In the Euclidean space R3, we can consider some families of sets: cubes, faces,
edges, and vertices which are generically called cells. More precisely, the cube
centered at a point p = (pi) ∈ Z3 is defined by

∏3
i=1

[
pi − 1

2 , pi + 1
2

]
. Such a set is

called a 3-cell of R3 or, simply, a voxel. The set of all 3-cells of R3 is denoted by
C(3)

3 . The faces of every cube, i.e. the squares bounding the 3-cells, are called 2-cells
of R3. The set of all 2-cells of R3 is denoted by C(2)

3 . Finally, edges and vertices
which are sides and points of the 3-cells are called 1- and 0-cells of R3, respectively.
The set of all 1-cells (resp. 0-cells) of R3 is denoted by C(1)

3 (resp. C(0)
3 ). The digital

3-dimensional space considered as a cellular model is denoted by C3 and it is the
union of all k-cells of R3 (with k ∈ {0, 1, 2, 3}), that is we set C3 =

⋃3
i=0 C

(i)
3 . A

digital object D is a finite subset of C(3)
3 . We denote by ck(D) (k = 0, 1, 2, 3) (or

simply by ck if no confusion arises) the number of k-cells of D.
Two voxels v, v′ are k-adjacent, k = 0, 1, 2 iff v 6= v′ and v ∩ v′ ⊂ C(k)

3 , that
is iff they are distinct, and they share at least a k-cell. The symmetric, irreflexive
relation of k-adjacency is denoted by Ak. Given a voxel v, the set of all voxels which
are k-adjacent to v is denoted by Ak(v), and it is called the k-adjacent neighborhood
of v. If two voxels v, v′ are k-adjacent for some k = 0, 1, 2, we simply say that they
are adjacent.

Two voxels v and v′ are strictly k-adjacent (with k = 0, 1) iff v and v′ are k-
adjacent but not j-adjacent, for any j > k. This is equivalent to say that v, v′ share
exactly one k-cell, i.e. v ∩ v′ ∈ C(k)

3 . Finally, we say that two cells e and e′ are
incident each other, and we write eIe′, iff either e ⊆ e′ or e′ ⊆ e.

3 Basic Propositions

In this section, some basic definitions and propositions dealing with the notion of
1-gap and free cells are presented. These notions are the 3D generalization of the
ones given in [5] and [7]. Let us start by introducing some particular configurations
of voxel.
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Definition 1. Let e be a k-cell (with 0 ≤ k ≤ 2) of C3. A k-block centered in e is
the union of all voxels containing e, i.e. Bk(e) =

⋃{v ∈ C(3)
3 : e ⊂ v}.

Let us note that, for any k-cell e, Bk(e) is the union of exactly 23−k voxels and
e ∈ Bk(e).

Definition 2. An L-block is, up to symmetry, a 1-block from which we take away
a voxel.

Definition 3. Let D be a digital object, v1, v2 be two voxels of D, and e be
a k-cell, with k = 0, 1, 2. We say that {v1, v2} forms a k-tandem of D over e if
D ∩Bk(e) = {v1, v2}, v1 and v2 are strictly k-adjacent and v1 ∩ v2 = e.

Definition 4. Let D be a digital object of C3 and e be a k-cell. We say that D
has a k-gap (k = 0, 1) over e if there is a k-block Bk(e) such that Bk(e) \ D is a
k-tandem over e. The cell e is called the k-hub of the gap. Finally, we denote by
gk(D) (or simply by gk if no confusion arises) the number of k-gaps of D.

Proposition 1. A digital object D has a 1-gap over a 1-cell e iff there exist two
voxels v1 and v2 of D such that:

1) e ⊂ v1 and e ⊂ v2,

2) v1 ∈ A1(v2) \A2(v2),

3) A2(v1) ∩A2(v2) ∩D = ∅.
Proof. Let us suppose that D has a 1-gap over a 1-cell e. So there exists a 1-block
B1(e) such that B1(e) \D is a 1-tandem over e. Hence B1(e) \D is composed by
two strictly 1-adjacent voxels v1, v2 and v1∩ v2 = e. Since v1 and v2 are 1-adjacent,
we have that e ⊂ v1 and e ⊂ v2.
Let suppose, by contradiction, that v1 /∈ A1(v2) \ A2(v2). Then it should be v1 /∈
A1(v2) or v1 ∈ A2(v2). Both expressions lead to a contradiction, since v1 and v2

are strictly 1-adjacent.
Finally, let us suppose that A2(v1) ∩ A2(v2) ∩D 6= ∅. Then it should exist a voxel
v3 ∈ D such that v3 ∈ A2(v1) and v3 ∈ A2(v2). So {v1, v2, v3} forms an L-block,
and this contradicts the fact that {v1, v2} is a 1-tandem of D.

Conversely, let v1, v2 ∈ D such that conditions 1), 2) and 3) are verified, and
let us suppose by contradiction that, for any 1-cell e belonging to D, the set E =
Bk(e) \D is not a 1-tandem over e. Then we have one of the following cases: E is
either a k-block (with k = 0, 1, 2) or an L-block, but each of these cases contradicts
our hypothesis.

Definition 5. We say that a k-cell e (with k = 0, 1, 2) is free if Bk(e) * D.

The number of free k-cells (with k = 0, 1, 2) of a digital object D is denoted by
c∗k(D) (or simply by c∗k if no confusion arises). Moreover, we denote by c′k(D) (or
simply by c′k) the number of non-free k-cells.
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Definition 6. Let D be a digital object of C3. We define the border of D, and
we denote it by bd(D), the set of all cells e of D such that the block Bk(e) (with
k = 0, 1, 2) meets both D and C3 \D.

Proposition 2. A k-cell e of a digital object D is free iff e ∈ bd(D).

Proof. The cell e is free iff Bk(e) 6⊆ D, which is equivalent to Bk(e)∩ (C3 \D) 6= ∅.
Since it is also e ∈ Bk(e) ∩D 6= ∅, we have that e ∈ bd(D).

Thanks to Proposition 2, we have that the border bd(D) of a digital object D
is the set of all free-cells of D. Moreover, c′k (k=0,1,2) coincides with the number
of k-blocks Bk(e) such that Bk(e) ⊆ D.

4 Main Results

In this section, we present our main result, that is a formula which establishes a
relation between the number of 1-gaps of a generic digital 3-object and the number
of cells of its border. To this purpose, we point out the following facts.

Definition 7. Let D be a non-empty digital object in C3. We call armor of D, and
we denote it by A(D), the graph (V, E) whose set of vertices is V = C(2)

3 ∩ bd(D)
and the set of edges is E = {(e, e′) ∈ V × V : e 6= e′ and e ∩ e′ ∈ C(1)

3 }, that is the
set of all pairs of distinct free 2-cells that share a 1-cell.

Lemma 1. Let D be a digital object and e be a 1-hub. Then the free 2-cells of D
sharing e are exactly 4. More precisely, each of the two voxels forming the gap have
2 of such free 2-cells.

Proof. The number of free 2-cells of D sharing e is 4. Moreover, since the pair of
voxels composing the set B1(e) \D is symmetric respect to e, it follows that each
voxel contributes with the half of such free 2-cells, i.e. 2.

Lemma 2. Let A(D) be the armor of a digital object D and e be one of its vertices
(i.e. a free 2-cell of D). Then:

• deg(e) = 4 (respect to the armor A(D)) iff the free 2-cell e does not incide
any 1-hub.

• deg(e) = 6 iff the free 2-cell e incides some 1-hub.

Proof. By Definition 7, deg(e) (where e is considered as a vertex in the armor A(D))
coincides with the number of all free 2-cells, distinct from e, which share a 1-cell
with e.
Let us suppose that e does not incide a 1-hub. Then deg(e) is given by the number
of 1-cells of a 2-cell, i.e. deg(e) = 4.
Let us suppose, instead, that e incides a 1-hub e. Then, by Proposition 1, there exist
two voxels v1, v2 that form the 1-gap. Without loss of generality, let us suppose
that e is a 1-cell of v1. Then deg(e) is given by the sum of the 4 free 2-cells of v1,
and, by Lemma 1, of the 2 free 2-cells of v2, i.e deg(e) = 6.
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Lemma 3. The number of 2-cells of a digital object that are incident to some 1-hub
is 4g1.

Proof. It directly follows from Lemma 1.

Lemma 4. Let H be the set of all 1-hubs of a digital object D. Then H generates
χ = 6g1 edges of A(D).

Proof. First, let us note that |H| = g1. Let e ∈ H. Since e is incident to four 2-cells
of D, it generates a number of edges of A(D) equal to the 2-combination of four
elements, that is

(
4
2

)
= 6. Hence χ = 6|H| = 6g1.

Lemma 5. Let N be the set of free 1-cells that are not 1-hubs of D. Then N
generates η = c∗1 − g1 edges of A(D).

Proof. Let e ∈ N . Since only a couple of 2-cells sharing e exists, it follows that e
generates

(
2
2

)
= 1 edge of A(D). Moreover, N is the set of free 1-cells that do not

belong to H. Hence N generates η = c∗1 − |H| = c∗1 − g1 edges.

We are now able to prove the main theorem which expresses the number of 1-gap
of a digital object by means of the number of its free cells.

Theorem 1. Let D be a digital object of C3. Then:

g1 = 2c∗2 − c∗1.

Proof. Let A(D) = (V, E) be the armor of D. Since A(D) is a graph, it is∑
deg(v) = 2l, where l = |E| and deg(v) is the degree of the vertex v ∈ V . Let

F be the set of free 2-cells that incides some 1-hub. By Lemma 3, it is |F| = 4g1.
Moreover, by Lemma 2, we have

∑
deg(v) = 4(f∗ − |F|) + 6|F| = 4f∗ + 2|F| = 4f∗ + 8g1.

E is the disjoint union of the edges generated by H and the ones generated by N .
Hence l = |E| = χ + η, and, thanks to Lemma 4 and 5, we get l = c∗2 + 5g1.
Combining the previous expressions, we obtain 4c∗2 + 8g1 = 2(c∗1 + 5g1), that is
g1 = 2c∗2 − c∗1.

Proposition 3. Let D be a 3D digital object with c3 voxels and c′2 non-free 2-cells.
Then, the number of 2-cells of D is given by c2 = 6c3 − c′2.

Proof. First, let us note that there are six 2-cells for each voxel of D. Furthermore,
some of these 2-cells, more precisely the ones that are centers of 2-blocks contained
in D, are repeated in different 3-cells, and their number coincides with c′2. Hence,
the number of 2-cells of D is given by c2 = 6c3 − c′2.

Corollary 1. Let D be a digital object, and let ck (k = 0, 1, 2, 3), and B1 the
number of k-cells, and 1-blocks of D, respectively. Then g1 = 4c2 − c1 − 12c3 + B1.

Proof. By Proposition 3, we have 2f − 12p + 2f ′ = 0. Hence g1 = 2c∗2 − c∗1 =
2c2 − 2c′2 − c1 + B1 + 2c2 − 12c3 + 2c′2 = 4c2 − 12c3 − c1 + B1.
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5 Conclusion, Perspective and Acknowledgements

Although in some applications it is important to know how many gaps has a given
digital object, it is well-known that, at the moment, there exists no efficient al-
gorithm for counting them. For such a reason, in the present paper, we have ap-
proached the problem and we solved it in an indirect way, finding a formula which
expresses the number of 1-gaps of a digital object D by means of the number of
free 1- and 2-cells only. Since it is relatively easy to automatically compute the
number of free cells of a digital object, that formula simplifies the calculation of
total number of 1-gaps in a 3D-spaces. Such a task can be tackled in several ways,
but it always need the use of an appropriate data structure that can save both
informations about all the voxels of the digital object and the relative adjacency
relation between them. The study of such a data structure and of the algorithm to
compute efficiently the number of free cells of a 3D digital object will be the focus
of some our forthcoming paper.

Finally, the authors would like to thank the anonymous referee for his careful
revision and valuable comments. In particular, he raised to our attention a formula
for n− 2-gaps in arbitrary dimension obtained in [8] with different methodologies.
The authors plan to extend the method used in this paper in order to give a more
extensive generalization of Theorem 1, for the general n-dimensional digital space
Cn.

References

[1] P. Alexandroff and H. Hopf, Topologie, Erster Band: Grundbegriffe der men-
gentheoretischen Topologie · Topologie der Komplexe · Topologische Invari-
anzstze und anschließende Begriffsbildungen · Verschlingungen im mdimension-
alen euklidischen Raum · stetige Abbildungen von Polyedern, Die Grundlehren
der mathematischen Wissenschaften in Einzeldarstellungen, Band XLV, Verlag
von Julius Springer, Berlin, 1935.

[2] E. Andres, R. Acharya and C. Sibata, Discrete analytical hyperplanes, Graph-
ical Models and Image Processing 59 (1997), 302-309.
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