Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Filomat **25:4** (2011), 127–136 DOI: 10.2298/FIL1104127T

ON THE CONVERGENCE OF THREE-STEP ITERATIVE SEQUENCES WITH ERRORS FOR NONSELF ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE MAPPINGS IN BANACH SPACES

Seyit Temir and Hukmi Kiziltunc

Abstract

In this paper, it is proved that the three-step iteration sequence converges strongly to a fixed point for nonself asymptotically quasi-nonexpansive type mappings in Banach space. The results obtained in this paper extend and improve the recent ones announced by S.S. Chang and Y.Y. Zhou[2], S. Quan, S.Chang and J.Long [13], W. Nilsrakoo, S. Saejung [10] and many others.

1 Introduction and Preliminaries

Throughout this paper, we assume that X be a real Banach space, K is a nonempty closed subset X and F(T) is the set of fixed points of mapping T.

- **Definition 1.1.** (1) A mapping T is called *nonexpansive* if $||Tx Ty|| \le ||x y||$ for all $x, y \in K$.
 - (2) T is called quasi-nonexpansive if $F(T) \neq \emptyset$ and $||Tx p|| \le ||x p||$ for all $x \in K$ and $p \in F(T)$.
 - (3) T is called asymptotically nonexpansive mapping if there exist a sequence $\{v_n\} \subset [1,\infty)$ with $\lim_{n\to\infty} v_n = 1$ such that $||T^nx T^ny|| \le v_n ||x-y||$ for all $x, y \in K$ and $n \ge 1$.

²⁰¹⁰ Mathematics Subject Classifications. 47H09; 47H10.

 $Key\ words\ and\ Phrases.$ Nonself asymptotically quasi-nonexpansive-type, fixed point, strong convergence theorem.

Received: January 10, 2011

Communicated by Dragan S. Djordjević

(4) T is called asymptotically quasi-nonexpansive mapping if $F(T) \neq \emptyset$ and there exist a sequence $\{v_n\} \subset [1, \infty)$ with $\lim_{n \to \infty} v_n = 1$ such that

 $||T^n x - p|| \le v_n ||x - p||$ for all $x \in K, p \in F(T)$ and $n \ge 1$.

- (5) T is called asymptotically nonexpansive type mapping if $\limsup_{n \to \infty} \{ \sup\{ \|T^n x - T^n y\|^2 - \|x - y\|^2 \} \} \le 0 \text{ for all } x, y \in K \text{ and } n \ge 1.$
- (6) T is called asymptotically quasi-nonexpansive type mapping if $\limsup_{n \to \infty} \{ \sup\{ \|T^n x - p\|^2 - \|x - p\|^2 \} \} \le 0 \text{ for all } x \in K, p \in F(T) \text{ and } n \ge 1.$

From above definitions, it follows that if F(T) is nonempty, a quasi-nonexpansive, asymptotically nonexpansive, asymptotically quasi-nonexpansive and asymptotically nonexpansive type are all special cases of asymptotically quasi-nonexpansive type. But the converse does not hold.

The iterative approximation problems for nonexpansive mapping, asymptotically nonexpansive mapping and asymptotically quasi-nonexpansive mapping were studied Ghosh and Debnath [4], Goebel and Kirk [3], Liu [6]-[7], Petryshyn and Williamson [12] in the settings of Hilbert spaces and uniformly convex Banach spaces. The strong and weak convergence of the sequence of Mann iterates to a fixed point of quasi-nonexpansive mappings were studied by Petryshyn and Williamson [12]. Subsequently, the convergence of Ishikawa iterates of quasi-nonexpansive mappings in Banach spaces were discussed by Ghosh and Debnath [4]. The above results and obtained some necessary and sufficient conditions for Ishikawa iterative sequences to converge to a fixed point for asymptotically quasi-nonexpansive mappings were extended by Liu [6]-[7]. In [2], the convergence theorems for Ishikawa iterative sequences with mixed errors of asymptotically quasi-nonexpansive type mappings in Banach spaces were studied.

In 2000, Noor [11] introduced a three-step iterative scheme and studied the approximate solutions of variational inclusion in Hilbert spaces. Glowinski and Le Tallec [5] proved that the three-step iterative scheme gives better numerical results than the Mann-type(one-step) and the Ishikawa-type (two-step) approximate iterations. Xu and Noor [16] introduced and studied a three-step iterative for asymptotically nonexpansive mappings and they proved weak and strong convergence theorems for asymptotically nonexpansive mappings in a Banach space. Very recently, Nilsrakoo and Saejung [10] defined a new three-step iterations which is an extension of Noor iterations for asymptotically nonexpansive mappings in Banach space.

The iterative scheme given in [10] is defined as follows.

$$\begin{cases} z_n = a_n T^n x_n + (1 - a_n) x_n \\ y_n = b_n T^n z_n + c_n T^n x_n (1 - b_n - c_n) x_n \\ x_{n+1} = \alpha_n T^n y_n + \beta_n T^n z_n + \gamma_n T^n x_n + (1 - \alpha_n - \beta_n - \gamma_n) x_n, \forall n \ge 1, \end{cases}$$
(1.1)

where $\{a_n\}$, $\{b_n\}$, $\{c_n\}$, $\{b_n + c_n\}$, $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$ and $\{\alpha_n + \beta_n + \gamma_n\}$ in [0, 1] satisfy certain conditions.

If $\{\gamma_n\} = 0$, then (1.1) reduces to the modified Noor iterations defined by Suantai [14] as follows:

$$\begin{cases} z_n = a_n T^n x_n + (1 - a_n) x_n \\ y_n = b_n T^n z_n + c_n T^n x_n + (1 - b_n - c_n) x_n \\ x_{n+1} = \alpha_n T^n y_n + \beta_n T^n z_n + (1 - \alpha_n - \beta_n) x_n, \forall n \ge 1, \end{cases}$$
(1.2)

where $\{a_n\}, \{b_n\}, \{c_n\}, \{b_n\} + \{c_n\}, \{\alpha_n\}, \{\beta_n\}$ and $\{\alpha_n\} + \{\beta_n\}$ in [0, 1] satisfy certain conditions.

If $\{c_n\} = \{\beta_n\} = \{\gamma_n\} = 0$, then (1.1) reduces to Noor iterations defined by Xu and Noor [16] as follows:

$$z_n = a_n T^n x_n + (1 - a_n) x_n$$

$$y_n = b_n T^n z_n + (1 - b_n) x_n$$

$$x_{n+1} = \alpha_n T^n y_n + (1 - \alpha_n) x_n, \forall n \ge 1,$$
(1.3)

If $\{a_n\} = \{c_n\} = \{\beta_n\} = \{\gamma_n\} = 0$, then (1.1) reduces to modified Ishikawa iterations[9] as follows:

$$\begin{cases} y_n = b_n T^n z_n + (1 - b_n) x_n \\ x_{n+1} = \alpha_n T^n y_n + (1 - \alpha_n) x_n, \forall n \ge 1, \end{cases}$$
(1.4)

If $\{a_n\} = \{b_n\} = \{c_n\} = \{\beta_n\} = \{\gamma_n\} = 0$, then (1.1) reduces to Mann iterative process [8] as follows:

$$x_{n+1} = \alpha_n T^n x_n + (1 - \alpha_n) x_n, \quad \forall n \ge 1,$$

$$(1.5)$$

A closed convex subset K of X is called a *retract* of X if there exists a continuous map $P: X \longrightarrow K$ such that Px = x for all $x \in K$. A map $P: X \longrightarrow K$ is called a retraction if $P^2 = P$. In particular, a subset K is called a *nonexpansive retract* of X if there exists a *nonexpansive retraction* $P: X \longrightarrow K$ such that Px = x for all $x \in K$.

The concept of nonself asymptotically nonexpansive mappings was introduced Chidume et al.[1] as the generalization of asymptotically nonexpansive self-mappings and obtained some strong and weak convergence theorems for such mappings as follows: for $x_1 \in K$,

$$\begin{cases} y_n = P(\beta_n T(PT)^{n-1} x_n + (1 - \beta_n) x_n) \\ x_{n+1} = P(\alpha_n T(PT)^{n-1} y_n + (1 - \alpha_n) x_n), \forall n \ge 1, \end{cases}$$
(1.6)

where $\{\alpha_n\}$ and $\{\beta_n\} \subset [\delta, 1-\delta]$ for some $\delta \in (0,1)$.

Next, we introduce the following concepts for nonself mapping.

Let X be a real Banach space. A subset K of X be nonempty nonexpansive retraction of X and P be nonexpansive retraction from X onto K. Let $T: K \longrightarrow X$ be a nonself asymptotically nonexpansive mappings.

A nonself mapping T is called *asymptotically nonexpansive* if there exist a sequence $\{v_n\} \subset [1, \infty)$ with $\lim_{n \to \infty} v_n = 1$ such that

$$||T(PT)^{n-1}x - T(PT)^{n-1}y|| \le v_n ||x - y||$$

for all $x, y \in K$ and $n \ge 1$. T is called *uniformly L-Lipschitzian* if there exists constant L > 0 such that

$$||T(PT)^{n-1}x - T(PT)^{n-1}y|| \le L||x - y||$$

for all $x, y \in K$ and $n \ge 1$. From above definition, it is obvious that nonself asymptotically nonexpansive mappings is uniformly L-Lipschitzian.

Next,

$$\limsup_{n \to \infty} \left(\sup_{x \in X, p \in F(T)} \{ \|T(PT)^{n-1}x - p\| - \|x - p\| \} \right) \le 0$$

Observe that

$$\lim_{n \to \infty} \sup_{x \in X, p \in F(T)} \{ \|T(PT)^{n-1}x - p\| - \|x - p\| \}$$

×
$$\lim_{n \to \infty} \sup_{x \in X, p \in F(T)} \{ \|T(PT)^{n-1}x - p\| + \|x - p\| \}$$

=
$$\lim_{n \to \infty} \sup_{x \in X, p \in F(T)} \{ \|T(PT)^{n-1}x - p\|^2 - \|x - p\|^2 \}$$

$$\leq 0.$$

、

Therefore we have

$$\limsup_{n \to \infty} \left(\sup_{x \in X, p \in F(T)} \{ \|T(PT)^{n-1}x - p\| - \|x - p\| \} \right) \le 0.$$

This implies that for any given $\varepsilon > 0$, there exists a positive integer n_0 such that for $n \ge n_0$ we have

$$\left(\sup_{x \in X, p \in F(T)} \{ \|T(PT)^{n-1}x - p\| - \|x - p\| \} \right) \le 0.$$

Now, we give the following nonself version of (1.1): for $x_1 \in K$,

$$z_{n} = P(a_{n}T(PT)^{n-1}x_{n} + (1 - a_{n} - \psi_{n})x_{n} + \psi_{n}u_{n})$$

$$y_{n} = P(b_{n}T(PT)^{n-1}z_{n} + c_{n}T(PT)^{n-1}x_{n} + (1 - b_{n} - c_{n} - \varphi_{n})x_{n} + \varphi_{n}v_{n})$$

$$x_{n+1} = P(\alpha_{n}T(PT)^{n-1}y_{n} + \beta_{n}T(PT)^{n-1}z_{n} + \gamma_{n}T(PT)^{n-1}x_{n} + (1 - \alpha_{n} - \beta_{n} - \gamma_{n} - \phi_{n})x_{n} + \phi_{n}w_{n}),$$

$$+(1 - \alpha_{n} - \beta_{n} - \gamma_{n} - \phi_{n})x_{n} + \phi_{n}w_{n}),$$

(1.7)

 $\forall n \geq 1$, where $\{a_n\}$, $\{\psi_n\}$, $\{a_n + \psi_n\}$, $\{b_n\}$, $\{c_n\}$, $\{\varphi_n\}$, $\{b_n + c_n + \varphi_n\}$, $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$, $\{\phi_n\}$ and $\{\alpha_n + \beta_n + \gamma_n + \phi_n\}$ in [0, 1] and $\{u_n\}$, $\{v_n\}$, $\{w_n\}$ are three bounded sequences in K with the following restrictions: $\sum_{n=1}^{\infty} \psi_n < \infty$, $\sum_{n=1}^{\infty} \phi_n < \infty$,

$$\sum_{n=0}^{\infty} \psi_n < \infty, \sum_{n=0}^{\infty} \varphi_n < \infty, \sum_{n=0}^{\infty} \phi_n < \infty.$$

The aim of this paper is to prove the strong theorem of the three-step iterative scheme given in (1.7) to a fixed point for nonself asymptotically quasi-nonexpansive-type mappings in a Banach space. In general, the results presented in this paper improve and extend some recent W. Nilsrakoo and S. Saejung [10] and many others.

In order to prove our main result the following lemma is needed.

Lemma 1.2. [15] Let $\{a_n\}$ and $\{b_n\}$ be sequences of nonnegative real sequences satisfying the following conditions: $\forall n \ge 1$, $a_{n+1} \le a_n + b_n$, where $\sum_{n=0}^{\infty} b_n < \infty$. Then

(i) $\lim_{n \to \infty} a_n$ exists;

(ii) In particular, $\{a_n\}$ has a subsequence $\{a_{n_k}\}$ converging to 0, then $\lim_{n \to \infty} a_n = 0$.

2 Main result

Theorem 2.1. Let X be a Banach space and K be a nonempty closed subset of Banach space. Let $T : K \longrightarrow X$ be a nonself asymptotically quasi-nonexpansive type in Banach space with $F(T) \neq \emptyset$. Let the sequence $\{x_n\}$ be defined by (1.7). Then $\{x_n\}$ converges strongly to a fixed point of T in K iff

$$\liminf_{n \to \infty} d(x_n, F(T)) = 0.$$
(2.1)

Proof. The necessity of condition (2.1) is obvious.

Next we prove the sufficiency of condition (2.1). Let the sequence $\{x_n\}$ be defined by (1.7). For $p \in F(T)$, by boundedness of the sequences $\{u_n\}, \{v_n\}, \{w_n\}$, we can put

$$M = \max\{\sup_{n \ge 1} \|u_n - p\|, \sup_{n \ge 1} \|v_n - p\|, \sup_{n \ge 1} \|w_n - p\|\}.$$

For any given $\varepsilon > 0$, there exists a positive integer n_0 such that $n \ge n_0$ we have

$$\sup_{x \in K, p \in F(T)} \{ \|T(PT)^{n-1}x - p\| - \|x - p\| \} < \varepsilon.$$

Since $\{z_n\}, \{y_n\}, \{x_n\} \subset X$, then we have

4

$$||T(PT)^{n-1}z_n - p|| - ||z_n - p|| \le \varepsilon, \forall p \in F(T), \forall n \ge n_0,$$
(2.2)

$$||T(PT)^{n-1}y_n - p|| - ||y_n - p|| \le \varepsilon, \forall p \in F(T), \forall n \ge n_0,$$

$$||T(PT)^{n-1}x_n - p|| - ||x_n - p|| \le \varepsilon, \forall p \in F(T), \forall n \ge n_0.$$
(2.4)

Thus for any $p \in F(T)$, using (1.7) and (2.2)-(2.4)

$$\begin{aligned} \|x_{n+1} - p\| &= \|\alpha_n T(PT)^{n-1} y_n + \beta_n T(PT)^{n-1} z_n + \gamma_n T(PT)^{n-1} x_n \\ &+ (1 - \alpha_n - \beta_n - \gamma_n - \phi_n) x_n + \phi_n w_n - p\| \\ &\leq \|\alpha_n (T(PT)^{n-1} y_n - p) + \beta_n (T(PT)^{n-1} z_n - p) \\ &+ \gamma_n (T(PT)^{n-1} x_n - p) \\ &+ (1 - \alpha_n - \beta_n - \gamma_n - \phi_n) (x_n - p) + \phi_n (w_n - p)\| \\ &\leq \alpha_n (\|T(PT)^{n-1} y_n - p\| - \|y_n - p\|) + \alpha_n \|y_n - p\| \\ &+ \beta_n (\|T(PT)^{n-1} z_n - p\| - \|z_n - p\|) + \beta_n \|z_n - p\| \\ &+ \gamma_n (\|T(PT)^{n-1} x_n - p\| - \|x_n - p\|) + \gamma_n \|x_n - p\| \\ &+ (1 - \alpha_n - \beta_n - \gamma_n - \phi_n) \|x_n - p\| + \phi_n \|w_n - p\| \\ &\leq \alpha_n \varepsilon + \alpha_n \|y_n - p\| + \beta_n \varepsilon + \beta_n \|z_n - p\| + \gamma_n \varepsilon \\ &+ (1 - \alpha_n - \beta_n - \phi_n) \|x_n - p\| + \phi_n M. \end{aligned}$$

$$(2.6)$$

Consider the second and fourth term in right-hand side of the (2.5), using (1.7), (2.2) and (2.4), we have

$$||y_n - p||$$

$$(2.7)$$

$$= ||b_n T(PT)^{n-1} z_n + c_n T(PT)^{n-1} x_n + (1 - b_n - c_n - \varphi_n) x_n + \varphi_n v_n - p||$$

$$\leq ||b_n (T(PT)^{n-1} z_n - p) + c_n (T(PT)^{n-1} x_n - p) + (1 - b_n - c_n - \varphi_n) (x_n - p) + \varphi_n (v_n - p)||$$

$$\leq b_n (||T(PT)^{n-1} z_n - p|| - ||z_n - p||) + b_n ||z_n - p|| + c_n (||T(PT)^{n-1} x_n - p|| - ||x_n - p||) + c_n ||x_n - p|| + (1 - b_n - c_n - \varphi_n) ||x_n - p|| + \varphi_n ||v_n - p||$$

$$\leq b_n \varepsilon + b_n ||z_n - p|| + c_n \varepsilon + (1 - b_n - \varphi_n) ||x_n - p|| + \varphi_n M.$$

$$(2.8)$$

Consider the second in right-hand side of the (2.7), using (1.7) and (2.4), we have

$$\begin{aligned} \|z_{n} - p\| &= \|a_{n}T(PT)^{n-1}x_{n} + (1 - a_{n} - \psi_{n})x_{n} + \psi_{n}u_{n} - p\| \\ &\leq \|a_{n}(T(PT)^{n-1}x_{n} - p) + (1 - a_{n} - \psi_{n})(x_{n} - p) + \psi_{n}(u_{n} - p)\| \\ &\leq a_{n}(\|T(PT)^{n-1}x_{n} - p\| - \|x_{n} - p\|) + a_{n}\|x_{n} - p\| \\ &+ (1 - a_{n} - \delta_{n})\|x_{n} - p\| + \psi_{n}\|u_{n} - p\| \\ &\leq a_{n}\varepsilon + (1 - \psi_{n})\|x_{n} - p\| + \psi_{n}M. \end{aligned}$$

$$(2.9)$$

Substituting (2.9) into (2.7) and simplifying, we have

$$\|y_n - p\| \leq (1 - b_n \psi_n - \varphi_n) \|x_n - p\| + b_n \varepsilon (1 + a_n) + c_n \varepsilon + b_n \psi_n M + \varphi_n M.$$
(2.10)

Substituting (2.10) and (2.9) into (2.7) and simplifying, we have

$$\begin{aligned} \|x_{n+1} - p\| &\leq \alpha_n \varepsilon + \alpha_n \Big[(1 - b_n \psi_n - \varphi_n) \|x_n - p\| \\ &+ \alpha_n b_n \varepsilon (1 + a_n) + c_n \varepsilon + b_n \psi_n M + \varphi_n M \Big] \\ &+ \beta_n \varepsilon + \beta_n \Big[a_n \varepsilon + (1 - \psi_n) \|x_n - p\| + \psi_n M \Big] \\ &+ (1 - \alpha_n - \beta_n - \varphi_n) \|x_n - p\| + \phi_n M \\ &= \Big[\alpha_n (1 - b_n \psi_n - \varphi_n) \\ &+ \beta_n (1 - \psi_n) + (1 - \alpha_n - \beta_n - \varphi_n) \Big] \|x_n - p\| \\ &+ \alpha_n^2 b_n \varepsilon (1 + a_n) + \alpha_n c_n \varepsilon + \alpha_n b_n \psi_n M + \alpha_n \varphi_n M \Big] \\ &+ \beta_n a_n \varepsilon + \beta_n \psi_n M + \gamma_n \varepsilon + \phi_n M \\ &= \Big[1 - \alpha_n b_n \psi_n - \alpha_n \varphi_n - \beta_n \psi_n - \phi_n \Big] \|x_n - p\| \\ &+ \varepsilon \Big[\alpha_n (\alpha_n b_n (1 + a_n) + c_n) + \beta_n a_n + \gamma_n \Big] \\ &+ M \Big[\alpha_n b_n \psi_n + \alpha_n \varphi_n + \beta_n \psi_n + \phi_n \Big] \\ &\leq \|x_n - p\| + 5\varepsilon + (2\psi_n + \varphi_n + \phi_n) M. \end{aligned}$$

$$(2.12)$$

Let $S_n = 5\varepsilon + (2\psi_n + \varphi_n + \phi_n)M$. Then $\sum_{n=0}^{\infty} S_n < \infty$ since $\sum_{n=0}^{\infty} \psi_n < \infty$, $\sum_{n=0}^{\infty} \varphi_n < \infty$, $\sum_{n=0}^{\infty} \phi_n < \infty$. Then by (2.11), we have

$$\inf_{p \in F(T)} \|x_{n+1} - p\| \le \inf_{p \in F(T)} \|x_n - p\| + S_n, \forall n \ge n_0.$$
(2.13)

From (2.13) and $\sum_{n=0}^{\infty} S_n < \infty$, one can write

$$d(x_{n+1}, F(T)) \le d(x_n, F(T)) + S_n.$$
(2.14)

By Lemma 1.2 and from (2.14), we can get that $\lim_{n\to\infty} d(x_n, F(T))$ exists. Again by the condition $\liminf_{n\to\infty} d(x_n, F(T)) = 0$, we have

$$\lim_{n \to \infty} d(x_n, F(T)) = 0.$$
(2.15)

We now show that $\{x_n\}$ is Cauchy sequence in X. For $n \ge n_0, m \ge 1$ and any $p \in F(T)$, we have

$$\begin{aligned} \|x_{n+m} - p\| &\leq \|x_{n+m-1} - p\| + S_{n+m-1} \\ &\leq \|x_{n+m-2} - p\| + (S_{n+m-1} + S_{n+m-2}) \\ &\leq \dots \leq \|x_n - p\| + \sum_{k=n}^{n+m-1} S_k. \end{aligned}$$
(2.16)

Let $\varepsilon > 0$. From (2.15) and $\sum_{n=0}^{\infty} S_n < \infty$, there exists a positive integer $n_1 \ge n_0$ such that for all $n \ge n_1$, we have

$$d(x_{n_1}, F(T)) < \frac{\varepsilon}{4},\tag{2.17}$$

and

$$\sum_{n=n_1}^{\infty} S_n < \frac{\varepsilon}{4}.$$
(2.18)

By (2.17) and the definition of infimum, there exists $p_1 \in F(T)$ such that

$$\|x_{n_1} - p_1\| \le \frac{\varepsilon}{4}.$$
 (2.19)

Combining (2.16), (2.17), (2.18) and (2.19), for any $m \ge 1$ and any $p_1 \in F(T)$, we have

$$\begin{aligned} \|x_{n+m} - x_n\| &\leq \|x_{n+m} - p_1\| + \|x_n - p_1\| \\ &\leq \|x_{n_1} - p_1\| + \sum_{k=n_1}^{n+m-1} S_k + \|x_{n_1} - p_1\| + \sum_{k=n_1}^{n-1} S_k \\ &\leq 2\Big(\|x_{n_1} - p_1\| + \sum_{k=n_1}^{\infty} S_k\Big) \\ &\leq 2\Big(\frac{\varepsilon}{4} + \frac{\varepsilon}{4}\Big) = \varepsilon, \end{aligned}$$
(2.20)

which implies that $\{x_n\}$ is Cauchy sequence in X. Since X is complete, there exists a $p \in X$ such that $x_n \to p$ as $n \to \infty$. It is easily to see that F(T) is closed. Then from (2.15) and from $x_n \to p$ as $n \to \infty$, the continuity of $d(x_n, F(T)) \to 0$ implies that $d(p, F(T)) \to 0$. Hence $p \in F(T)$.

This completes the proof of Theorem 2.1.

References

[1] C. E. Chidume, E. U. Ofoedu, H. Zegeye, Strong and weak convergence theorems for asymptotically nonexpansive mappings, J. Math. Analy. Appl. 280 (2003), 364-374.

- [2] S.S. Chang and Y.Y. Zhou, Some convergence theorems for mappings of asymptotically quasi-nonexpansive type in Banach spaces, J. Appl. Math. and Computing 12 (2003), No. 1-2 119-127.
- [3] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
- [4] M.K. Ghosh and L. Debnath, Convergence of Ishikawa iterates of quasinonexpansive mappings, J. Math. Anal. Appl. 207 (1997), 96-103.
- [5] R. Glowinski, P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, 1989.
- [6] Q. H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 259 (2001), 1-7.
- [7] Q. H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings with Error Member, J. Math. Anal. Appl. 259 (2001), 18-24.
- [8] W.R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc. 4 (1953) 506-510.
- [9] I. Ishikawa, Fixed point by a new iteration method, Proc. Am. Math. Soc. 44 (1974) 147-150.
- [10] W. Nilsrakoo, S. Saejung, A new three-step fixed point iteration scheme for asymptotically nonexpansive mappings, Applied Mathematics and Computation 181 (2006) 1026-1034.
- M.A. Noor, New approximation schemes for general variational inequalities, J. Math. Analy. Appl. 251 (2000), 217-229.
- [12] W. V. Petryshyn and T. E. Williamson, Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Analy. Appl. 43 (1973), 459-497.
- [13] J. Quan, S.S. Chang, X.J. Long, Approximation common fixed point of asymptotically quasi-nonexpansive-type mappings by the finite steps iterative sequences, Fixed Point Theory and Appl., Article ID 70830 (2006), Pages 1-8.
- [14] S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math. Analy. Appl. 311 (2) (2005) 506-517.
- [15] K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iterative process, J. Math. Analy. Appl. 178 (1993), 301-308.
- [16] B.L. Xu, M.A. Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Analy. Appl. 267 (2002) 444-453.

Seyit Temir:

Department of Mathematics, Faculty of Science and Arts, Harran University, 63200, Sanliurfa, Turkey

E-mail: temirseyit@@harran.edu.tr

Hukmi Kiziltunc:

Department of Mathematics, Faculty of Sciences, Ataturk University, 25240, Erzurum, Turkey

E-mail: hukmu@atauni.edu.tr