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INEQUALITIES FOR TWO SPECIFIC CLASSES OF

FUNCTIONS USING CHEBYSHEV FUNCTIONAL

Mohammad Masjed-Jamei

Abstract

In this paper, we introduce two specific classes of functions in Lp - spaces
that can generate new and known inequalities in the literature. By using
some recent results related to the Chebyshev functional, we then obtain up-
per bounds for the absolute value of the two introduced functions and consider
three particular examples. One of these examples is a suitable tool for finding
upper and lower bounds of some incomplete special functions such as incom-
plete gamma and beta functions.

1 Introduction

Let Lp[a, b] (1 ≤ p < ∞) denote the space of p-power integrable functions on the
interval [a, b] with the standard norm

‖f‖p =

(∫ b

a

| f(t) |p dt

)1/p

,

and L∞[a, b] show the space of all essentially bounded functions on [a, b] with
the norm

‖f‖∞ = sup
x∈[a,b]

| f(x) | .

For two absolutely continuous functions f, g : [a, b] → R and the positive function
w : [a, b] → R+ such that wf,wg, wfg ∈ L1[a, b] , the weighted Chebyshev func-
tional [1] is defined by

T (w, f, g) =
∫ b

a

w(x)f(x) g(x) dx−
(∫ b

a

w(x)f(x) dx

) (∫ b

a

w(x)g(x) dx

)
. (1)
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If w(x) is uniformly distributed on [a, b] then (1) is reduced to the usual Cheby-
shev functional

T (f, g) =
1

b− a

∫ b

a

f(x) g(x) dx− 1
(b− a)2

(∫ b

a

f(x) dx

) (∫ b

a

g(x) dx

)
. (2)

To date, extensive research has been done on the bounds of Chebyshev func-
tional, see e.g. [1,2,5]. The first work dates back to 1882, when Chebyshev [3]
proved that if f ′, g′ ∈ L∞[a, b] then

|T (f, g) | ≤ 1
12

(b− a)2 ‖ f ′ ‖∞ ‖ g′ ‖∞ . (3)

Later on, in 1934 Gruss [9] showed that

|T (f, g) | ≤ 1
4
(M1 −m1)(M2 −m2), (4)

where m1,m2,M1 and M2 are real numbers satisfying the conditions

m1 ≤ f(x) ≤ M1 and m2 ≤ g(x) ≤ M2 for all x ∈ [a, b]. (5)

The constant 1/4 is the best possible number in (4) in the sense that it cannot
be replaced by a smaller quantity.
An inequality related to usual Chebyshev functional is due to Ostrowski [16] in
1938. If f : [a, b] → R is a differentiable function with bounded derivative, then

∣∣∣∣∣ f(x)− 1
b− a

∫ b

a

f(t) dt

∣∣∣∣∣ ≤
(

1
4

+
(x− (a + b)/2)2

(b− a)2

)
(b− a) ‖ f ′ ‖∞ (6)

for all x ∈ [a, b].
Today this inequality plays a key role in numerical quadrature rules [7,8,13].
A mixture type of inequalities (3) and (4) was introduced in [17] as

|T (f, g) | ≤ 1
8
(b− a)(M1 −m1) ‖ g′ ‖∞ , (7)

in which f is a Lebesgue integrable function satisfying (5) and g is absolutely con-
tinuous so that g′ ∈ L∞[a, b] . The constant 1/8 is also the best possible number in
(7).
The following theorem, due to Niezgoda [15], is probably the most recent work
about finding appropriate bounds for the usual Chebyshev functional.

1.1. Theorem A. Let f, α, β ∈ Lp[a, b] and g ∈ Lq[a, b] (1/p + 1/q = 1 , 1 ≤
p ≤ ∞) be functions such that α(t) + β(t) is a constant function and α(t) ≤ f(t) ≤
β(t) for all t ∈ [a, b]. Then we have

|T (f, g) | ≤ 1
2(b− a)

‖β − α ‖p

∥∥∥∥∥ g − 1
b− a

∫ b

a

g(t) dt

∥∥∥∥∥
q

. (8)
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For p = q = 2 , (8) leads to the well-known inequality [14]

|T (f, g) | ≤ 1
2
(M1 −m1)

√
T (g, g) s.t. m1 ≤ f(x) ≤ M1. (9)

On the other hand, in 1997 Dragomir and Wang [6] introduced an inequality of
Ostrowski-Grss type, according to the following theorem.

1.2. Theorem B. If f : [a, b] → R is a differentiable function with bounded
derivative and α0 ≤ f ′(t) ≤ β0 for all t ∈ [a, b] , then
∣∣∣∣∣ f(x)− 1

b− a

∫ b

a

f(t) dt− f(b)− f(a)
b− a

(
x− a + b

2

) ∣∣∣∣∣ ≤
1
4
(b− a)(β0 − α0). (10)

There are many improvements and refinements of the right hand side of inequality
(10) in the literature. See e.g. [4,10].
In this paper, we introduce two specific classes of functions in Lp - spaces that can
generate many new and known inequalities in the literature and obtain their upper
bounds using theorem A. Hence, let us first consider the following kernel defined on
[a, b]

K(x; t, u, v) =
{

u(t) t ∈ [a, x],
v(t) t ∈ (x, b], (11)

where u(t) and v(t) are two arbitrary integrable functions such that u(t) ∈ C1[a, x]
and v(t) ∈ C1(x, b]. Based on kernel (11), we now define the two following specific
functions

F1 (x; f, u, v) = (u(x)− v(x)) f(x) + v(b)f(b)− u(a)f(a)
− ∫ x

a
u′(t)f(t) dt− ∫ b

x
v′(t)f(t) dt ,

(12)

and

F2 (x; f, u, v) = F1 (x; f, u, v)− f(b)− f(a)
b− a

(∫ x

a

u(t) dt +
∫ b

x

v(t) dt

)
. (13)

It can be verified that the two functions (12) and (13) are respectively produced by

∫ b

a

f ′(t) K (x; t, u, v) dt = F1 (x; f, u, v) , (14)

and
(b− a)T (f ′(t),K (x; t, u, v)) = F2 (x; f, u, v) , (15)

where T ( . , . ) is the same as usual Chebyshev functional.

2. Main Theorem. Let f : I → R, where I is an interval, be a function
differentiable in the interior I0 of I, and let [a, b] ⊂ I0. Suppose that f ′, α, β ∈
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Lp[a, b] are functions such that α(t) + β(t) is a constant function and α(t) ≤ f ′(t)
≤ β(t) for all t ∈ [a, b] . Then we respectively have

|F1 (x; f, u, v) | ≤





(∫ x

a
|u(t)|q dt +

∫ b

x
| v(t)|q dt

)1/q

‖f ′‖p ( 1/p + 1/q = 1 ),(∫ x

a
|u(t)| dt +

∫ b

x
| v(t)| dt

)
‖f ′‖∞ (p = ∞ ; q = 1 ),

max
t∈[a,b]

|K(x; t, u, v) | ‖f ′‖1 (q = ∞ ; p = 1) ,

(16)
in which

max
t∈[a,b]

|K(x; t, u, v) | = max
x∈[a,b]

{
max

t∈[a,x]
|u(t) | , max

t∈(x,b]
| v(t) |

}
,

and
|F2 (x; f, u, v) | ≤ 1

2 ‖β − α ‖p ×(∫ x

a

∣∣∣ u(t)− 1
b−a

(∫ x

a
u(t) dt +

∫ b

x
v(t) dt

) ∣∣∣
q

dt

+
∫ b

x

∣∣∣ v(t)− 1
b−a

(∫ x

a
u(t) dt +

∫ b

x
v(t) dt

) ∣∣∣
q

dt
)1/q

,

(17)

where u(t) and v(t) are two arbitrary integrable functions such that u(t) ∈ C1[a, x]
and v(t) ∈ C1(x, b].

Proof. The proof of (16) is straightforward if one applies the well-known Hlder’s
inequality [14]

‖ fg ‖1 ≤ ‖ f ‖p ‖ g ‖q (1/p + 1/q = 1), (18)

for identity (14) and then refers to the general kernel (11). To prove (17) one should
refer to identity (15) and then use Theorem A, so that we have

|F2 (x; f, u, v) | ≤ 1
2
‖β − α ‖p

∥∥∥∥∥K(.)− 1
b− a

∫ b

a

K(.) dt

∥∥∥∥∥
q

, (19)

and since
∥∥∥K(.)− 1

b−a

∫ b

a
K(.) dt

∥∥∥
q

=
(∫ x

a

∣∣∣ u(t)− 1
b−a

(∫ x

a
u(t) dt +

∫ b

x
v(t) dt

) ∣∣∣
q

dt

+
∫ b

x

∣∣∣ v(t)− 1
b−a

(∫ x

a
u(t) dt +

∫ b

x
v(t) dt

) ∣∣∣
q

dt
)1/q

,

(20)

the proof is complete.
One of the straightforward cases of theorem 2.1 is when p = q = 2. In other

words, applying the well known Cauchy-Schwartz inequality [12] on (14) and using
the main theorem 2.1 for (15) respectively yield

|F1 (x; f, u, v) | ≤
(∫ x

a

u2(t) dt +
∫ b

x

v2(t) dt

)1/2

‖f ′‖2 , (21)
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and
|F2 (x; f, u, v) | ≤ 1

2 ‖β − α ‖2 ×(∫ x

a

(
u(t)− 1

b−a (
∫ x

a
u(t) dt +

∫ b

x
v(t) dt)

)2

dt

+
∫ b

x

(
v(t)− 1

b−a (
∫ x

a
u(t) dt +

∫ b

x
v(t) dt)

)2

dt

)1/2

.

(22)

Clearly various subclasses can be considered for the main theorem 2. We here study
three cases. Other cases can naturally be studied separately.

2.1. Subclass 1. If u(x)− v(x) is a constant function

If u(x)−v(x) is a constant number, say c 6= 0, then the kernel (11) and functions
(12) and (13) are respectively reduced to

K(x; t, v + c, v) =
{

v(t) + c t ∈ [a, x],
v(t) t ∈ (x, b], (23)

F1 (x; f, v + c, v) = c f(x) + v(b)f(b)− (c + v(a))f(a)−
∫ b

a

v′(t)f(t) dt , (24)

and

F2 (x; f, v + c, v) = F1 (x; f, v + c, v)− f(b)− f(a)
b− a

(
c(x− a) +

∫ b

a

v(t) dt

)
.

(25)
In fact, relations (24) and (25) show that

F1 (x; f, v + c, v) = c f(x) + A and F2 (x; f, v + c, v) = c f(x) + A + Bx + D,
(26)

where c, A, B and D are real constants.
Let us consider a particular example of the first subclass here.

Example 1. Suppose that [a, b] = [0, 1] , c = 1 and v(t) = t2. Under these
assumptions, relations (23), (24) and (25) change to

K(x; t, 1 + t2, t2) =
{

1 + t2 t ∈ [0, x],
t2 t ∈ (x, 1], (27)

F1

(
x; f, 1 + t2, t2

)
= f(x) + f(1)− f(0)− 2

∫ 1

0

t f(t) dt , (28)

and
F2

(
x; f, 1 + t2, t2

)
= f(x) + f(1)− f(0)− 2

∫ 1

0
t f(t) dt

− (f(1)− f(0))
(
x +

∫ 1

0
t2f(t) dt

) (29)
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After some calculations, substituting the above relations in each two parts of the
main theorem respectively yields

∣∣∣∣ f(x)− 2
∫ 1

0

t f(t) dt + f(1)− f(0)
∣∣∣∣ ≤





(∫ x

0
(1 + t2)qdt + 1−x2q+1

2q+1

)1/q

‖f ′‖p ,

(x + 1/3) ‖f ′‖∞ ,
(1 + x2) ‖f ′‖1 ,

(30)
and

∣∣∣ f(x)− 2
∫ 1

0
t f(t) dt + (f(1)− f(0))

(
1− x− ∫ 1

0
t2f(t) dt

) ∣∣∣
≤ 1

2 ‖β − α ‖p

(∫ x

0

∣∣ t2 − x + 2/3
∣∣q dt +

∫ 1

x

∣∣ t2 − x− 1/3
∣∣q dt

)1/q

,

(31)
where α(t) ≤ f ′(t) ≤ β(t), 1/p + 1/q = 1 and x, t ∈ [0, 1] . For instance, p = q = 2
in inequality (31) gives

∣∣∣ f(x)− 2
∫ 1

0
t f(t) dt + (f(1)− f(0))

(
1− x− ∫ 1

0
t2f(t) dt

) ∣∣∣
≤

√
5

30

√
30x3 − 45x2 + 15x + 4

(∫ 1

0
(β(t)− α(t))2 dt

)1/2

for all x ∈ [0, 1].
(32)

2.2. Subclass 2. If u(x) and v(x) are linear functions

Suppose that u(t) = p1t + q1 and v(t) = p2t + q2 where p1, q1 and p2, q2 are all
real parameters. Therefore we have

K (x; t, p1t + q1, p2t + q2) =
{

p1t + q1 t ∈ [a, x],
p2t + q2 t ∈ (x, b], (33)

F1 (x; f, p1t + q1, p2t + q2) = ((p1 − p2)x + q1 − q2) f(x) + (p2b + q2)f(b)
−(p1a + q1)f(a)− p1

∫ x

a
f(t) dt− p2

∫ b

x
f(t) dt ,

(34)

and

F2 (x; f, p1t + q1, p2t + q2) = F1 (x; f, p1t + q1, p2t + q2)
− f(b)−f(a)

b−a

(
p1−p2

2 x2 + (q1 − q2)x + 1
2 (p2b

2 − p1a
2) + q2b− q1a

)
.

(35)

For the sake of simplicity, if we rearrange (34) and (35) by taking

p1 − p2 = r1, q1 − q2 = r2, p2b + q2 = r3 and − p1a− q1 = r4, (36)

then these assumptions would change relations (33), (34) and (35) as follows

K
(
x; t, {ri}4i=1

)
=

{ br1+r2+r3+r4
b−a t− abr1+ar2+ar3+br4

b−a t ∈ [a, x],
ar1+r2+r3+r4

b−a t− abr1+br2+ar3+br4
b−a t ∈ (x, b],

(37)

F1

(
x; f, {ri}4i=1

)
= (r1x + r2) f(x) + r3f(b) + r4f(a)

− br1+r2+r3+r4
b−a

∫ x

a
f(t) dt− ar1+r2+r3+r4

b−a

∫ b

x
f(t) dt ,

(38)
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and

F2

(
x; f, {ri}4i=1

)
= F1

(
x; f, {ri}4i=1

) − f(b)−f(a)
2 (b−a)

× (
r1x

2 + 2r2x− abr1 − (a + b)r2 + (b− a)(r3 − r4)
)

.
(39)

By noting that there are four free parameters r1, r2, r3 and r4 in the kernel (37),
many subclasses exist for (38) and (39). The following example shows one of them.

Example 2. Let r1 = 0 in (38) and (39). Then by referring to the main theorem
we have

∣∣F1

(
x; f, {ri}4i=2

) ∣∣ =
∣∣∣ r2f(x) + r3f(b) + r4f(a) − r2+r3+r4

b−a

∫ b

a
f(t) dt

∣∣∣

≤





| r2+r3+r4|
b−a

(∫ x

a

∣∣∣ t− ar2+ar3+br4
r2+r3+r4

∣∣∣
q

dt +
∫ b

x

∣∣∣ t− br2+ar3+br4
r2+r3+r4

∣∣∣
q

dt
)1/q

‖f ′‖p ,

| r2+r3+r4|
b−a

(∫ x

a

∣∣∣ t− ar2+ar3+br4
r2+r3+r4

∣∣∣ dt +
∫ b

x

∣∣∣ t− br2+ar3+br4
r2+r3+r4

∣∣∣ dt
)
‖f ′‖∞ ,

max
t∈[a,b]

∣∣ K
(
x; t, {ri}4i=2

) ∣∣ ‖f ′‖1 ,

(40)
and

∣∣F2

(
x; f, {ri}4i=2

) ∣∣ =
=

∣∣∣F1

(
x; f, {ri}4i=2

)− f(b)−f(a)
2 (b−a) (2r2x− (a + b)r2 + (b− a)(r3 − r4))

∣∣∣
≤ 1

2 ‖β − α ‖p

(∫ x

a

∣∣∣ r2+r3+r4
b−a t− r2

b−ax− (3a+b) r2+(a+b)(r3+r4)
2(b−a)

∣∣∣
q

dt

+
∫ b

x

∣∣∣ r2+r3+r4
b−a t− r2

b−ax− (a+3b) r2+(a+b)(r3+r4)
2(b−a)

∣∣∣
q

dt
) 1/q

.

(41)
Note, to compute the integrals of relations (40) and (41), we can use the following
general identity

∫ d∗

c∗
| t− θ | q dt =





(d∗−θ)q+1+(c∗−θ)q+1

q+1 if c∗ < θ < d∗ ,
(d∗−θ)q+1−(c∗−θ)q+1

q+1 if θ < c∗ < d∗ ,
−(d∗−θ)q+1+(c∗−θ)q+1

q+1 if c∗ < d∗ < θ ,

(42)

in which c∗ < d∗ and θ ∈ R.

Remark 1. For (r1, r2, r3, r4) = (0, 1, 0, 0) inequality (41) generates inequality
(10).

Remark 2. For r1 = 0 and r2 + r3 + r4 = 0 , since the kernel (37) is reduced to

K (x; t,−r4, r3) =
{ −r4 t ∈ [a, x],

r3 t ∈ (x, b], (43)
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so inequalities (38) and (39) are respectively transformed to

| r3f(b) + r4f(a) − (r3 + r4) f(x) | ≤




( | r4|q (x− a) + | r3|q (b− x)) 1/q ‖f ′‖p ,

( | r4| (x− a) + | r3| (b− x)) ‖f ′‖∞ ,
max { | r4| , | r3| } ‖f ′‖1 ,

(44)
and

∣∣∣ bf(a)−af(b)
b−a + f(b)−f(a)

b−a x− f(x)
∣∣∣ ≤ ‖ β−α ‖p

2| r3+r4| ×(∣∣∣ r4 + r3b+r4a−(r3+r4) x
b−a

∣∣∣
q

(x− a) +
∣∣∣ r3 − r3b+r4a−(r3+r4) x

b−a

∣∣∣
q

(b− x)
) 1/q

.

(45)
Remark 3. For r1 = 0, r2 + r3 + r4 = 0 and a = 0, since the kernel (37) is reduced
to

K (x; t, t− r4,−r3) =
{

t− r4 t ∈ [0, x],
−r3 t ∈ (x, b], (46)

so we have

|F1 (x; f, t− r4,−r3) | =
∣∣ (x− (r3 + r4))f(x) + r3f(b) + r4f(0) − ∫ x

0
f(t) dt

∣∣

≤





(∫ x

0
| t− r4|q dt + | r3|q (b− x)

)1/q ‖f ′‖p ,(∫ x

0
| t− r4| dt + | r3| (b− x)

) ‖f ′‖∞ ,

max
x∈[0,b]

{
| r3| , max

t∈[0,x]
| t− r4|

}
‖f ′‖1 ,

(47)
2.3. Subclass 3. If v(x) is a constant function

If v(x) is a constant number, say d 6= 0, then the kernel (11) and functions (12)
and (13) respectively take the forms

K(x; t, u, d) =
{

u(t) t ∈ [a, x],
d t ∈ (x, b], (48)

F1 (x; f, u, d) = (u(x)− d) f(x) + df(b)− u(a)f(a)−
∫ x

a

u′(t)f(t) dt , (49)

and

F2 (x; f, u, d) = F1 (x; f, u, d)− f(b)− f(a)
b− a

(∫ x

a

u(t) dt + d (b− x)
)

. (50)

Hence, by applying the main theorem for the two above functions (49) and (50) one
can get

|F1 (x; f, u, d) | ≤





(∫ x

a
|u(t) |q dt + | d |q (b− x)

)1/q ‖f ′‖p ,(∫ x

a
|u(t) | dt + | d | (b− x)

) ‖f ′‖∞ ,

max
x∈[a,b]

{
| d | , max

t∈[a,x]
|u(t) |

}
‖f ′‖1 ,

(51)
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and
|F2 (x; f, u, d) | ≤ 1

2 ‖β − α ‖p ×(∫ x

a

∣∣∣ u(t)− 1
b−a

(∫ x

a
u(t) dt + d(b− x)

) ∣∣∣
q

dt

+
∫ b

x

∣∣∣ d− 1
b−a

(∫ x

a
u(t) dt + d(b− x)

) ∣∣∣
q

dt
)1/q

.

(52)

One of the advantages of inequalities (51) and (52) is to find two upper bounds
for the absolute value of some incomplete special functions. In other words, since
many incomplete special functions have an integral form as

∫ x

a
g(t) dt, the two latter

inequalities can be used for this purpose, see also [11] in this regard. For example,
since the incomplete gamma function can be represented as

Γ(x;α) =
∫ x

0

tα−1 exp(−t) dt (α > 1) , (53)

so by choosing u(t) = tα/α, f(t) = exp(−t) and a = 0 in (49) and employing the
first inequality of (51) we obtain

∣∣∣∣
1
α

xαe−x − Γ(x; α)+d (e−b − e−x)
∣∣∣∣≤

(
xαq+1

αq(αq + 1)
+! |d|q (b− x)

) 1
q
(

1− e−bp

p

) 1
p

,

(54)
where 0 < x ≤ b, d 6= 0 and 1/p+1/q = 1 for p ∈ [1,∞). Also, since the incomplete
beta function can be represented as

B (x; α, β) =
∫ x

0

tα−1(1− t)β−1dt (α, β > 1 ) , (55)

so by choosing u(t) = tα/α, f(t) = (1− t)β−1 and a = 0 in (49) and employing the
first inequality of (51) we obtain

∣∣ 1
αxα(1− x)β−1 −B(x;α, β) + d ((1− b)β−1 − (1− x)β−1)

∣∣
≤ (β − 1)

(
xαq+1

αq(αq+1) + |d|q (b− x)
) 1

q
(

1−(1−b)1+(β−2)p

1+(β−2)p

) 1
p

,
(56)

where 0 < x ≤ b ≤ 1, d 6= 0 and 1/p + 1/q = 1 for p ∈ [1,∞).
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