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FIXED POINT THEOREMS IN MINIMAL

GENERALIZED CONVEX SPACES

Rahmat Darzi, Mohsen Rostamian Delavar and Mehdi Roohi

Abstract

This paper deals with coincidence and fixed point theorems in minimal
generalized convex spaces. By establishing a kind of KKM Principle in mini-
mal generalized convex space, we obtain some results on coincidence point and
fixed point theorems. Generalized versions of Ky Fan’s lemma, Fan-Browder
fixed point theorem, Nash equilibrium theorem and some Urai’s type fixed
point theorems in minimal generalized convex spaces are given.

1 Introduction

As it is known, fixed point theory, as a relevant topic both in pure and applied
mathematics, is a flourishing branch of nonlinear analysis with many directions of
development and has a broad set of applications in other sciences and engineering,
for example differential equations, chaos and etc.

Park and Kim introduced the concept of generalized convex space in 1993, which
it extends many generalized convex structures on topological vector spaces [18]. Al-
though this new concept generalizes topological vector space, it was mainly devel-
oped in connection with the fixed point theory and KKM theory. This new concept
comes at the top of a chain of several well known generalizations of convex space
that can now be seen as particular forms of G-convex spaces, for details see [4]. A
brief survey of some recent generalization of Fan-KKM principle and its applications
in coincidence point and fixed point theory can be found in [13] and [23].

The concept of minimal structure and minimal spaces, as a generalization of
topology and topological spaces were introduced in [12]. Further results about
minimal spaces can be found in [1, 2, 3, 5, 11] and [19]. Recently, authors in [4]
introduced the notion of minimal generalized convex space as an extended version
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of generalized convex space. At the present paper, Fan-KKM principle in minimal
generalized convex space applied to obtain some coincidence and fixed point theo-
rems. In fact, Ky Fan’s lemma, Fan-Browder fixed point theorem, Nash equilibrium
theorem and some Urai’s type fixed point theorems in minimal generalized convex
space are extended.

2 Preparatory results

To ease understanding of the material incorporated in this paper we recall
some basic definitions and results. For details on the following notions we refer to
[3, 4, 6, 11, 12] and [19] and references therein.

A family M⊆ P(X) is said to be a minimal structure on X if ∅, X ∈M. In this
case (X,M) is called a minimal space. For some examples in this setting see [11]. In
a minimal space (X,M), A ∈ P(X) is said to be an m-open set if A ∈M and also
B ∈ P(X) is an m-closed set if Bc ∈M. We set m-Int(A) =

⋃{U : U ⊆ A,U ∈M}
and m-Cl(A) =

⋂{F : A ⊆ F, F c ∈M}.
Proposition 1. [11] For any two sets A and B,

(a) m-Int(A) ⊆ A and m-Int(A) = A if A is an m-open set.
(b) A ⊆ m-Cl(A) and A =m-Cl(A) if A is an m-closed set.
(c) m-Int(A) ⊆m-Int(B) and m-Cl(A) ⊆ m-Cl(B) if A ⊆ B.
(d) m-Int(A∩B) ⊆ (m-Int(A))∩ (m-Int(B)) and (m-Int(A))∪ (m-Int(B)) ⊆m-

Int(A ∪B).
(e) m-Cl(A∪B) ⊇ (m-Cl(A))∪ (m-Cl(B)) and m-Cl(A∩B) ⊆ (m-Cl(A))∩ (m-

Cl(B)).
(f) m-Int(m-Int(A)) =m-Int(A) and m-Cl(m-Cl(B))= m-Cl(B).
(g) (m-Cl(A))c = m-Int(Ac) and (m-Int(A))c =m-Cl(Ac).

Definition 1. [19] A minimal space (X,M) enjoys the property U if the arbitrary
union of m-open sets is m-open.

Proposition 2. [19] For a minimal structure M on a set X, the following are
equivalent.

(a) (X,M) has the property U .
(b) If m-Int(A) = A, then A ∈M.
(c) If m-Cl(B) = B, then Bc ∈M.

Definition 2. [19] Suppose (X,M) and (Y,N ) are minimal space. A function
f : (X,M) → (Y,N ) is called m-continuous if f−1(B) ∈M for any B ∈ N .

Definition 3. Suppose (X, τ) is a topological space and also suppose (Y,N ) is
a minimal space. A function f : (X, τ) → (Y,N ) is called (τ, m)-continuous if
f−1(B) ∈ τ for any B ∈ N .
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Theorem 1. [4] Suppose (X, τ) is a topological space, (Y,N ) is a minimal space.
Also suppose that f : (X, τ) → (Y,N ) is a function. Then the following are equiva-
lent.

(a) f is (τ,m)-continuous.
(b) f−1(B) is closed set for each m-closed set B in Y .
(c) Cl(f−1(B)) ⊆ f−1(m-Cl(B)) for each subset B of Y .
(d) f(Cl(A)) ⊆m-Cl(f(A)) for each subset A of X.
(e) f−1(m-Int(B)) ⊆ Int(f−1(B)) for each subset B of Y .

Definition 4. [19] For a minimal space (X,M),
(a) a family of m-open sets A = {Aj : j ∈ J} in X is called an m-open cover of

K if K ⊆ ⋃
j Aj . Any subfamily of A which is also an m-open cover of K is called

a subcover of A for K;
(b) a subset K of X is m-compact whenever given any m-open cover of K has

a finite subcover.

Definition 5. [3] For two minimal spaces (X,M) and (Y,N ) we define minimal
product structure for X × Y as follows :

M×N = {A ⊆ X × Y : ∀ (x, y) ∈ A, ∃U ∈M, ∃V ∈ N ; (x, y) ∈ U × V ⊆ A}.

Definition 6. [3] A linear minimal structure on a vector space X over the complex
field F is a minimal structure M on X such that the two mappings

+ : X ×X → X, (x, y) 7→ x + y

. : F×X → X, (t, x) 7→ tx

are m-continuous, where F has the usual topology and both F×X and X×X have
the corresponding product minimal structures. A linear minimal space (or minimal
vector space) is a vector space together with a linear minimal structure.

Obviously, any topological vector space is a minimal vector space. Consider the
real field R. Clearly M = {(a, b) : a, b ∈ R ∪ {±∞}} is a minimal structure on R.
In [4] it is shown that M is a linear minimal structure on R. This implies there is
some linear minimal spaces which are not topological vector space.

A multimap F : X ( Y is a function from a set X into the power set of Y ; that
is, a function with the values F (x) ⊆ Y for all x ∈ X. Given A ⊆ X, set

F (A) =
⋃

x∈A

F (x).

Definition 7. We say that a multimap F : X ( X has a fixed point if x0 ∈ F (x0),
for some x0 ∈ X.

Definition 8. Consider two multimaps F, T : X ( Y . We say that F and T has
coincidence point if there is some x0 ∈ X for which F (x0) ∩ T (x0) 6= ∅.
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Let 〈D〉 denote the set of all nonempty finite subsets of a set D and let ∆n be the
n-simplex with vertices e0, e1, . . . , en, ∆J be the face of ∆n corresponding to J ∈ 〈A〉
where A ∈ 〈D〉; for example, if A = {a0, a1, . . . , an} and J = {ai0 , ai1 , . . . , aik

} ⊆ A,
then ∆J = co{ei0 , ei1 , . . . , eik

}. A minimal generalized convex space (briefly MG-
convex space) (X,D, Γ) consists of a minimal space (X,M), a nonempty set D, and
a multimap Γ : 〈D〉 ( X in which for A ∈ 〈D〉 with n + 1 elements, there exists a
(τ,m)-continuous function φA : ∆n → ΓA := Γ(A) for which J ∈ 〈A〉 implies that
φA(∆J) ⊆ ΓJ = Γ(J) and also A ⊆ B implies that ΓA ⊆ ΓB . In case to emphasize
X ⊇ D, (X, D, Γ) will be denoted by (X ⊇ D, Γ); and if X = D, then (X ⊇ X; Γ)
by (X, Γ). For an MG-convex space (X ⊇ D, Γ), a subset Y ⊆ X is said to be
MG-convex if N ∈ 〈D〉 and N ⊆ Y implies that ΓN ⊆ Y .

Obviously, any G-convex space is an MG-convex space. On the other hand,
suppose that (X,M) is a minimal vector space which is not a topological vector
space (for example see [4]). Consider the multimap Γ : 〈X〉 ( X defined by

Γ({a0, a1, . . . , an}) = {
n∑

i=0

λiai : 0 ≤ λi ≤ 1,
n∑

i=0

λi = 1}. One can deduce that

(X, Γ) is a minimal generalized convex space, of course (X, Γ) is not a generalized
convex space [4].

Definition 9. Suppose (X,D, Γ) is an MG-convex space and Y is a minimal space.
A multimap F : D ( X is called a KKM multimap if ΓA ⊆ F (A) for any A ∈ 〈D〉.
F : X ( Y is said to have the minimal KKM property (briefly MKKM property)
if, for any multimap G : D ( Y with m-closed (resp. m-open) values satisfying

F (ΓA) ⊆ G(A) for all A ∈ 〈D〉,

the family {G(z)}z∈D has the finite intersection property. Set

MKKM(X, Y ) = {F : X ( Y : F has the MKKM property}.

MKKMC(X,Y ) denotes the class MKKM for m-closed valued multimaps G and
also MKKMO(X,Y ) for m-open valued multimaps G.

Theorem 2. [4] Suppose (X,D, Γ) is an MG-convex space and F : D ( X is a
multimap satisfying

(a) F has m-closed values,
(b) F is a KKM map.

Then {F (z) : z ∈ D} has the finite intersection property.
Further, if

(c)
⋂

z∈M F (z) is m-compact for some M ∈ 〈D〉,
then

⋂
z∈D

F (z) 6= ∅.

The open version of the KKM principle was presented by Kim [9], Shih and Tan
[20] and later Lassonde [10] showed that the classical (closed) and open versions of
the KKM principle can be derived from each other.
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Theorem 3. [4] Suppose (X, D,Γ) is an MG-convex space and F : D ( X is a
multimap satisfying

(a) F has m-open values,
(b) F is KKM map.

Then {F (z) : z ∈ D} has the finite intersection property.
Further, if

(c)
⋂

z∈N

m-Cl(F (z)) is m-compact for some N ∈ 〈D〉,
(d) minimal space (X,M) has the property U .

Then
⋂

z∈D

m-Cl(F (z)) 6= ∅.

Corollary 1. [4] Suppose (X, D, Γ) is an MG-convex space. Then IX defined by
IX(x) = {x} is an element of MKKM(X,X) = MKKMC(X, X)∩MKKMO(X,X).

3 Fixed Point Theorems

The present section is focused on fixed point theory for m-closed and m-open valued
multimaps in minimal generalized convex spaces.

Theorem 4. Suppose (X,D, Γ) is an MG-convex space, (Y,M) is a minimal space,
S : D ( Y , T : X ( Y and F ∈ MKKMC(X, Y ) are multimaps satisfying

(a) S has m-open values,
(b) for each y ∈ F (X), M ∈ 〈S−(y)〉 implies that ΓM ⊆ T−(y),
(c) Y = S(N) for some N ∈ 〈D〉.

Then F and T have a coincidence point.

Proof. Since S is m-open valued, so the multimap G : D ( Y defined by
G(z) = Y \ S(z) for all z ∈ D is an m-closed valued multimap. Condition (c)
implies that ⋂

z∈N

G(z) =
⋂

z∈N

(Y \ S(z)) = Y \
⋃

z∈N

S(z) = ∅;

i.e., {G(z) : z ∈ D} doesn’t have the finite intersection property. Now, F ∈
MKKMC(X, Y ) and Definition 9 imply that there exists A ∈ 〈D〉 for which F (ΓA) *
G(A). Therefore, there is y0 ∈ F (ΓA) such that y0 /∈ G(z) = Y \ S(z) for all
z ∈ A. Thus y0 ∈ S(z) for each z ∈ A and hence z ∈ S−(y0) for all z ∈ A;
i.e., A ∈ 〈S−(y0)〉. Since y0 ∈ F (X), so (b) implies that ΓA ⊆ T−(y0) and so
y0 ∈ F (ΓA) ⊆ F (T−(y0)). Consequently, there is an element x0 ∈ T−(y0) for which
y0 ∈ F (x0) and so y0 ∈ F (x0) ∩ T (x0).

Corollary 2. Suppose (X, D, Γ) is an MG-convex space, S : D ( X and T : X (
X are two multimaps satisfying

(a) S has m-open values,
(b) x ∈ X and M ∈ 〈S−(x)〉 imply that ΓM ⊆ T−(x),
(c) X = S(N) for some N ∈ 〈D〉.

Then T has a fixed point.
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Proof. From Corollary 1, IX ∈ MKKMC(X, X). Assume F = IX and Y = X.
Theorem 4 implies that, there is x0 ∈ X such that IX(x0) ∩ T (x0) 6= ∅; i.e., x0 ∈
T (x0).

Corollary 3. Suppose (X, D, Γ) is an m-compact MG-convex space, S : X ( D
and T : X ( X are two multimaps satisfying

(a) S− has m-open values,
(b) x ∈ X and M ∈ 〈S(x)〉 imply that ΓM ⊆ T (x),
(c) S has nonempty values.

Then T has a fixed point.

Proof. It follows from (c) and (a) that {S−(z) : z ∈ D} is an m-open cover of
X, also m-compactness of X implies that, there is N ∈ 〈D〉 for which X = S−(N).
Therefore, since (S−)− = S, so all conditions in Corollary 2 hold for (S−, T−)
instead of (S, T ). Consequently, there is an element x0 ∈ X for which x0 ∈ T−(x0);
i.e., x0 ∈ T (x0).

Corollary 4. Suppose (X, D, Γ) is an MG-convex space with the property U , S :
X ( D and T : X ( X are two multimaps satisfying

(a) x ∈ X and M ∈ 〈S(x)〉 imply that ΓM ⊆ T (x),
(b) X =

⋃{m-Int(S−(z)) : z ∈ N} for some N ∈ 〈D〉.
Then T has a fixed point.

Proof. Consider the multimap m-Int(S−) : D ( X. It follows from Proposition
2 that m-Int(S−) is m-open valued. Since 〈(m-Int(S−))−(x)〉 ⊆ 〈S(x)〉, so condition
(b) in Corollary 2 satisfies for (m-Int(S−), T−) instead of (S, T ). Now, applying
Corollary 2 completes the proof.

Corollary 5. Suppose (X,D, Γ) is an m-compact MG-convex space with the prop-
erty U , S : X ( D and T : X ( X are two multimaps satisfying

(a)
⋃{S−(z) : z ∈ D} =

⋃{m-Int(S−(z)) : z ∈ D},
(b) x ∈ X and M ∈ 〈S(x)〉 imply that ΓM ⊆ T (x),
(c) S has nonempty value.

Then T has a fixed point.

Proof. Since S has nonempty value, so for each x ∈ X, there is an element
z ∈ D such that z ∈ S(x) and so x ∈ S−(z); i.e., X =

⋃{S−(z) : z ∈ D}. Therefore,
(a) implies that X =

⋃{m-Int(S−(z)) : z ∈ D}. It follows from property U that
m-Int(S−) is m-open valued. Thus {m-Int(S−(z)) : z ∈ D} is an m-open cover of
X. Consequently, there is N ∈ 〈D〉 for which X =

⋃{m-Int(S−(z)) : z ∈ N}. Now,
by Corollary 4, T has a fixed point.

Remark 1. Note that
(a) Theorem 4 for G-convex space is due to Park [14] and also in [16] it applied

to various form of the Fan-Browder theorem, Ky Fan intersection theorem and Nash
equilibrium theorem for G-convex space.
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(b) Corollary 2 is an extension of the open version of Theorem 4.1 in [14] which
it gives various forms of the Fan-Browder Theorem, Ky Fan intersection theorem,
and the Nash equilibrium theorem for G-convex spaces [15].

(c) Corollary 3 is an extended version of Theorem 4.3 in [14] and Theorem 3
in [17] and since it is a generalization of the Fan-Browder fixed point theorem for
topological vector spaces, which it applied to the existence of maximal elements in
mathematical economics by Borglin and Keiding [7] and Yannelis and Prabhakar
[22].

(d) Corollary 4 and Corollary 5 extend Theorem 3′ and Theorem 3′′ in [17]
respectively.

Theorem 5. Suppose (X,D, Γ) is an MG-convex space, (Y,M) is a minimal space,
S : D ( Y , T : X ( Y and F ∈ MKKMO(X, Y ) satisfying

(a) S has m-closed value,
(b) for each y ∈ F (X), M ∈ 〈S−(y)〉 implies that ΓM ⊆ T−(y),
(c) Y = S(N) for some N ∈ 〈D〉.

Then F and T have a coincidence point.

Proof. It is suffice to interchange the position of the terms “m-open” and
“F ∈ MKKMC(X, Y )” by “m-closed” and “F ∈ MKKMO(X, Y )” in the proof
of Theorem 4.

Similar to the Corollary 2, applying Corollary 1 and Theorem 5 we have the
following result.

Corollary 6. Suppose (X, D, Γ) is an MG-convex space, S : D ( X and T : X (
X are two multimaps satisfying

(a) S has m-closed values,
(b) x ∈ X and M ∈ 〈S−(x)〉 imply that ΓM ⊆ T−(x),
(c) X = S(N) for some N ∈ 〈D〉.

Then T has a fixed point.

Proof. From Corollary 1, IX ∈ MKKMO(X,X). Assume F = IX and Y = X.
Theorem 5 implies that, there is x0 ∈ X such that IX(x0) ∩ T (x0) 6= ∅; i.e., x0 ∈
T (x0).

Remark 2. It should be noticed that,
(a) Theorem 5 improves a result due to Park (Theorem 3.1′ in [14]).
(b) Corollary 6 is an extension of the closed version of Theorem 4.1 in [14].

Theorem 6. Suppose (X, D, Γ) is an MG-convex space also suppose S : D ( X
and T : X ( X are two multimaps satisfying

(a) S has m-open (resp. m-closed) values,
(b) y ∈ X and M ∈ 〈S−(y)〉 imply that ΓM ⊆ T−(y),
(c) T (X) ⊆ S(N) for some N ∈ 〈D〉,
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(d) T− has nonempty values.
Then T has a fixed point.

Proof. Since T− is a nonempty valued multimap, so for each x ∈ X, there is
y ∈ X in which y ∈ T−(x) and hence x ∈ T (y); it implies that X = T (X). It follows
from condition (c) that X = T (X) = S(N). That T has a fixed point follows from
Corollary 2 (resp. Corollary 6).

Theorem 7. Suppose (X ⊇ D, Γ) is an MG-convex space and T : X ( X is a
multimap such that T (x) is an MG-convex set in X for each x ∈ X. If there exist
z1, z2, . . . , zn ∈ D and nonempty m-open (resp. m-closed) subsets Ai ⊆ T−(zi) for

i = 1, 2, . . . , n such that X =
n⋃

i=1

Ai, then T has a fixed point.

Proof. Set N := {z1, z2, . . . , zn} and define the multimap S : D ( X by
S(zi) = Ai for each zi ∈ N , and S(z) = ∅ for each z ∈ D \N . It is easy to see that
X = S(N) and S(z) is m-open (resp. m-closed) for all z ∈ D. Hence, (a) and (c)
of Corollary 2 (resp. Corollary 6) satisfy. From definition of the multimap S we
have S(z) ⊆ T−(z) for all z ∈ D, so for any y ∈ X and z ∈ D, y ∈ S(z) implies
that y ∈ T−(z) consequently, z ∈ S−(y) implies that z ∈ T (y); i.e., S−(y) ⊆ T (y)
for all y ∈ X. Assume F : X ( X is defined by F (x) = T−(x) for each x ∈ X.
Then S−(y) ⊆ T (y) = F−(y). Since F−(y) is MG-convex for each y ∈ X, so
(b) in Corollary 2 (resp. Corollary 6) holds and so there is x0 ∈ X such that
x0 ∈ F−(x0) = T (x0).

Remark 3. Theorem 6 and Theorem 7 are extended versions of Theorem 4.4 and
Theorem 4.2 in [14] respectively.

Lemma 1. Suppose (X, D, Γ) is an MG-convex space and D′ is a nonempty subset
of D. Then (ΓD′ , D′, Γ|〈D′〉) is an MG-convex space too, where ΓD′ =

⋃
N∈〈D′〉

ΓN .

Proof. Consider an arbitrary set A in 〈D′〉 having n + 1 elements. Since
A ∈ 〈D〉, so from the assumption there is a (τ, m)-continuous function φA : ∆n −→
Γ(A) = Γ|〈D′〉(A) for which J ∈ 〈A〉 implies that φA(∆J) ⊆ Γ(J) = Γ|〈D′〉(J).
Therefore, (ΓD′ , D′, Γ|〈D′〉) is an MG-convex space.

Suppose (X,D, Γ) is an MG-convex space. For a multimap T : X ( D, we
define Γ ¦ T : X ( X as the following

Γ ¦ T (x) =
⋃

N∈〈T (x)〉
ΓN .

Theorem 8. Suppose (X,D, Γ) is an MG-convex space, T : X ( D is a multimap
and also suppose that there exist z1, . . . , zn ∈ D and nonempty m-open (resp. m-

closed) subsets Gi ⊆ T−(zi) for each i = 1, . . . , n. If Γ{z1,...,zn} ⊆
n⋃

i=1

Gi, then Γ ¦T

has a fixed point.
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Proof. Set Y = ΓD′ where D′ = {z1, . . . , zn}. It follows from Lemma 1 that
(Γ(D′), D′, Γ|〈D′〉) is an MG-convex space. Consider the multimap F : D′ ( Y
defined by F (zi) = Y \ Gi for each zi ∈ D′. Therefore, F (zi) is m-closed (resp.

m-open) in Y and
n⋂

i=1

F (zi) = Y \
n⋃

i=1

Gi = ∅ and so the family {F (z) : z ∈ D′} does

not have the finite intersection property. It follows from Theorem 2 (resp. Theorem
3) that F is not a KKM map; i.e., there exists N = {zi1 , . . . , zik

} ∈ 〈D′〉 for which

ΓN * F (N) =
n⋃

j=1

(Y \Gij
). There exits x0 ∈ ΓN in which x0 ∈ Gij

⊆ T−(zij
) for

each j ∈ {1, . . . , k}, consequently, zij
∈ T (x0) for all zij

∈ N . Therefore, N ⊆ T (x0)
which implies that x0 ∈ ΓN ⊆ Γ ¦ T (x0).

Corollary 7. Suppose Y is a nonempty m-compact MG-convex subset of an MG-
convex space (X, Γ) and also T : Y ( Y is a nonempty MG-convex valued mul-
timap. If T− is m-open valued, then T has a fixed point.

Proof. Since Y is MG-convex subset of X, so one can verify that (Y, Y, Γ|〈Y 〉)
is an MG-convex space. We claim that all conditions of Theorem 8 satisfy for
(Y, Y, Γ|〈Y 〉). To see this, since T is nonempty valued and T− is m-open valued, so
{T−(y) : y ∈ Y } is an m-open cover of the m-compact set Y . Therefore, there are

z1, . . . , zn in Y for which Γ{z1,...,zn} ⊆ Y =
n⋃

i=1

T−(zi). Put Gi = T−(zi). According

to Theorem 8 we have Γ ¦ T has a fixed point. That T has a fixed point follows
from the definition of Γ ¦T and the fact that T is an MG-convex valued multimap.

Here and in the sequel, for a multimap T : X ( X, let KT = {x ∈ X : x /∈
T (x)}.
Corollary 8. Suppose (X, Γ) is an MG-convex space and also T : X ( X is an
MG-convex valued multimap. If there exist z1, . . . , zn ∈ X and nonempty m-open

(resp. m-closed) subsets Gi ⊆ T−(zi)(1 ≤ i ≤ n) for which KT ⊆
n⋃

i=1

Gi, then T

has a fixed point.

Proof. On the contrary, suppose T has no fixed point. It follows from the

assumption that X = KT ⊆
n⋃

i=1

Gi. Theorem 8 implies that T has a fixed point,

which is a contradiction.

Corollary 9. Suppose (X, Γ) is an MG-convex space and T : X ( X is an MG-
convex valued multimap such that for all x ∈ KT , there is an m-open (resp. m-
closed) set Gx in X containing x and there is yx ∈ X for which Gx ∩KT ⊆ T−(yx)
and KT is covered by a finite subset of {Gx : x ∈ X}. Then T has a fixed point.

Proof. On the contrary, suppose T has no fixed point. Then KT = X and so
for all x ∈ X there is an m-open (resp. m-closed) set Gx in X and there is yx ∈ X
for which Gx ∩KT = Gx ⊆ T−(yx). Therefore,

X =
n⋃

i=1

Gxi =
n⋃

i=1

T−(yxi),
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for some {yx1 , . . . , yxn} ∈ X. Corollary 8 implies that T has a fixed point, which is
a contradiction.

Corollary 10. Suppose (X, Γ) is an MG-convex space and T : X ( X is a
multimap satisfying

(a) T has nonempty values,
(b) there is a multimap S : X ( X with MG-convex values such that for all

x ∈ KT there exists an m-open set Gx in X containing x and there is yx ∈ X for
which Gx ∩KT ⊆ KS ∩ S−(yx),

(c) KT is covered by a finite subset of {Gx : x ∈ X}.
Then T has a fixed point.

Proof. Suppose T has no fixed point; i.e., KT = X. One can verify that all
conditions of Corollary 9 satisfy for the multimap S. Therefore, S has a fixed point
which it contradicts with Gx ⊆ KS ∩ S−(yx) for all x ∈ X.

Corollary 11. Suppose that (X, Γ) is an MG-convex space and T, F : X ( X are
two multimaps satisfying

(a) KF ⊆ KT and T (x) 6= ∅ for any x ∈ KF ,
(b) there is a multimap S : X ( X with MG-convex values such that for all

x ∈ KF there exists an m-open set Gx in X containing x and there is yx for which
Gx ∩KF ⊆ KS ∩ S−(yx),

(c) KF is covered by a finite subset of {Gx : x ∈ KT }.
Then F has a fixed point.

Proof. On the contrary, suppose that F has no fixed point. Then (a) implies
that X = KF = KT and so T has no fixed point. Now, one can deduce that all
conditions of corollary 10 satisfy for T . Therefore, T has a fixed point, which is a
contradiction with the fact that KF ⊆ KT .

Remark 4. Note that
(a) The particular form of Theorem 8 goes back to S. Park [16] for convex spaces.
(b) Corollary 7 is a generalization of Browder’s Theorem (Theorem 1 in [8]) and

also it is an extended version of a result due to Park [16].
(c) Corollary 8 extends Theorem 2.5 in [16] and so it improves a result of Urai

[21].
(d) Corollary 9, Corollary 10 and Corollary 11 for convex space were considered

in [16] which they extend corresponding results of Urai [16, 21].
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