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HILLE-YOSIDA THEOREMS FOR LOCAL CONVOLUTED
C-SEMIGROUPS AND COSINE FUNCTIONS

Marko Kostić

Abstract

The theory of convoluted C-operator families is an active research field.
The main purpose of this paper is to prove several Hille-Yosida type theorems
for local convoluted C-semigroups and cosine functions.

1 Introduction and preliminaries

There is an enormous literature studying global integrated C-semigroups and their
applications to evolution equations. For the excellent and brief introduction to this
subject, we refer the reader to the monographs [1] and [14]. A large numbers of pa-
pers, starting presumably with [2] and [35], written over the last twenty years, have
concerned local integrated C-semigroups and cosine functions. Standard references
are [26]-[29], [31], [33]-[34] and [36]-[38].

Compared with the above, there is notably little written about convoluted C-
semigroups and cosine functions. The class of local convoluted C-semigroups was
introduced in the papers of I. Ciorănescu and G. Lumer [9]-[12], who related them
to (ω-)ultradistribution semigroups (see [4]-[5], [7]-[8], [13], [16]-[17] and [21] for this
notion). The classes of (local) convoluted C-cosine functions and global convoluted
C-semigroups have been recently introduced in [25] and further analyzed in [23].
The references [3], [19] and [24] are also of importance.

In this note, we will report a few results on spectral properties of subgenerators
of local convoluted C-semigroups and cosine functions, and continue the researches
raised in [2], [12], [29]-[30] and [36]. The spectral characterization of subgenerators
of local convoluted C-cosine functions relies upon safe and sound passing to the
corresponding theory of semigroups. It is also worth noticing that we exploit the
profiling of C-pseudoresolvents given in the construction of fractional powers of
operators [15].
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By E and L(E) are denoted a non-trivial complex Banach space and the Banach
algebra of bounded linear operators on E. Given a closed linear operator A acting
on E, we designate by D(A), N(A), R(A) and ρ(A) its domain, kernel, range and
resolvent set, respectively.

Henceforth we assume C ∈ L(E), C is injective, τ ∈ (0,∞], K is a complex
valued locally integrable function in [0, τ) and K is not identical to zero. Let us
remind that the C resolvent set of A, denoted by ρC(A), is the set consisted of
all complex numbers λ such that the operator λ − A is injective and that R(C) ⊆
R(λ−A). Put Θ(t) :=

t∫
0

K(s)ds, t ∈ [0, τ); then it is clear that Θ is an absolutely

continuous function in [0, τ) and that Θ′(t) = K(t) for a.e. t ∈ [0, τ). We employ
occasionally the following condition for the function K :

(P1) K is Laplace transformable, i.e., K ∈ L1
loc([0,∞)) and there exists β ∈ R so

that K̃(λ) := L(K)(λ) := lim
b→∞

b∫
0

e−λtK(t)dt :=
∞∫
0

e−λtK(t)dt exists for all

λ ∈ C with Reλ > β. Put abs(K) :=inf{Reλ : K̃(λ) exists} and denote by
L−1 the inverse Laplace transform.

Let us recall that a function K ∈ L1
loc([0, τ)) is called a kernel, if for every φ ∈

C([0, τ)), the supposition
t∫
0

K(t−s)φ(s)ds = 0, t ∈ [0, τ), implies φ ≡ 0; due to the

famous E. C. Titchmarsh’s theorem ([1]), the condition 0 ∈ suppK implies that K
is a kernel.

Definition 1. ([9]-[12], [25]) Suppose τ ∈ (0,∞], A is a closed operator and K ∈
L1

loc([0, τ)). If there exists a strongly continuous family (SK(t))t∈[0,τ) in L(E) such
that:

(i) SK(t)A ⊆ ASK(t), t ∈ [0, τ),

(ii)
t∫
0

SK(s)xds ∈ D(A), x ∈ E, t ∈ [0, τ) and

A

t∫

0

SK(s)xds = SK(t)x−Θ(t)Cx, x ∈ E, t ∈ [0, τ),

(iii) SK(t)C = CSK(t), t ∈ [0, τ),

then it is said that A is a subgenerator of a (local) K-convoluted C-semigroup
(SK(t))t∈[0,τ).

Definition 2. ([23], [25]) Suppose τ ∈ (0,∞], A is a closed operator and K ∈
L1

loc([0, τ)). If there exists a strongly continuous family (CK(t))t∈[0,τ) in L(E) such
that:

(i) CK(t)A ⊆ ACK(t), t ∈ [0, τ),
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(ii)
t∫
0

(t− s)CK(s)xds ∈ D(A), x ∈ E, t ∈ [0, τ),

A

t∫

0

(t− s)CK(s)xds = CK(t)x−Θ(t)Cx, x ∈ E, t ∈ [0, τ) and

(iii) CK(t)C = CCK(t), t ∈ [0, τ),

then it is said that A is a subgenerator of a (local) K-convoluted C-cosine function
(CK(t))t∈[0,τ).

Plugging K(t) = tα−1

Γ(α) , where α > 0, in Definition 1 and Definition 2, we obtain
the well known classes of α-times integrated semigroups and cosine functions. The
integral generator of (SK(t))t∈[0,τ), resp. (CK(t))t∈[0,τ), is defined by

{
(x, y) ∈ E × E : SK(t)x−Θ(t)Cx =

t∫

0

SK(s)yds, t ∈ [0, τ)
}

, resp.,

{
(x, y) ∈ E × E : CK(t)x−Θ(t)Cx =

t∫

0

(t− s)CK(s)yds, t ∈ [0, τ)
}

,

and it is a closed linear operator which is an extension of any subgenerator of
(SK(t))t∈[0,τ), resp. (CK(t))t∈[0,τ). Suppose A is a subgenerator of (SK(t))t∈[0,τ),

resp. (CK(t))t∈[0,τ). It could be of interest to accent that the integral generator Â

of (SK(t))t∈[0,τ), resp. (CK(t))t∈[0,τ), satisfies Â = C−1ÂC = C−1AC. Denote by
℘(SK) the set consisted of all subgenerators of a (local) convoluted C-semigroup
(SK(t))t∈[0,τ). Then ℘(SK) need not be finite ([23]) and, equipped with correspond-
ing algebraic operations, ℘(SK) becomes a complete lattice whose partially ordering
coincides with the usual set inclusion. In the case card(℘(SK)) < ∞, one can prove
that ℘(SK) is a Boolean lattice and that, specifically, card(℘(SK)) = 2n for some
n ∈ N0. The preceding assertions possess natural reformulations in the case of
(local) convoluted C-cosine functions.

Suppose a > 0 and b > 0. The logarithmic region Λ̃a,b [18] and the exponential
region E(a, b) [2] are defined as follows:

Λ̃a,b :=
{

λ ∈ C : Reλ ≥ a + b ln(1 + |λ|)
}

and

E(a, b) :=
{

λ ∈ C : Reλ ≥ b, |Imλ| ≤ eaReλ
}

.

Set Λ̃2
a,b := {λ2 : λ ∈ Λ̃a,b}, E2(a, b) := {λ2 : λ ∈ E(a, b)} and notice that, by the

proof of [2, Lemma 2.6] and [22, Remark, p. 759], we have that

Λ̃a,b ⊆ E(
1
b
, a), a > 0, b > 0. (1)
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¿From now on, we assume that (Mp) is a sequence of positive real numbers such
that M0 = 1 and that the following conditions hold:

(M.1) M2
p ≤ Mp+1Mp−1, p ∈ N,

(M.2) Mn ≤ AHn min
p, q∈N, p+q=n

MpMq, n ∈ N, for some A > 1 and H > 1, and

(M.3)’
∞∑

p=1

Mp−1
Mp

< ∞.

The Gevrey sequences (p!s), (pps) and (Γ(1 + ps)) satisfy the above conditions,
where Γ(·) denotes the Gamma function and s > 1. Put mp := Mp

Mp−1
, p ∈ N; then

(M.1) implies that (mp) is increasing and (M.3)’ simply means that
∞∑

p=1

1
mp

< ∞.

The associated function of (Mp) is defined by M(λ) := sup
p∈N0

ln |λ|p
Mp

, λ ∈ C \ {0},
M(0) := 0. It is well known that the function t 7→ M(t), t ≥ 0 is increasing
as well as that lim

|λ|→∞
M(λ) = +∞ and that the function M vanishes in some

open neighborhood of zero. Denote by m(λ) the number of mp ≤ λ. Since (Mp)

satisfies (M.1), it follows that (cf. [20, p. 50]) M(t) =
t∫
0

m(λ)
λ dλ, t ≥ 0. This

implies that the mapping t 7→ M(t), t ≥ 0 is absolutely continuous and that the
mapping t 7→ M(t), t ∈ [0,∞) \ {mp : p ∈ N} is continuously differentiable with
M ′(t) = m(t)

t , t ∈ [0,∞) \ {mp : p ∈ N}.
Suppose l ≥ 1, α > 0, β ∈ R and denote by Λα, β, l the ultra-logarithmic region

of type l introduced by J. Chazarain in [8] (cf. also [30, Section 2.3]) as follows:

Λα,β,l :=
{

λ ∈ C : Reλ ≥ αM(l|Imλ|) + β
}

.

We assume that the boundary of Λα, β, l, denoted by Γl, is upwards oriented.
We need the following auxiliary lemma; notice only that the assertion (ii) follows

from the arguments given in the proof of [22, Lemma 1.10].

Lemma 1.

(i) ([23]) Suppose A is a closed linear operator, 0 < τ ≤ ∞ and K ∈ L1
loc([0, τ)).

Then the following assertions are equivalent:

(i.1) The operator A is a subgenerator of a K-convoluted C-cosine function
(CK(t))t∈[0,τ) in E.

(i.2) The operator A ≡
( 0 I

A 0

)
is a subgenerator of a Θ-convoluted C-semigroup

(SΘ(t))t∈[0,τ) in E × E, where C :=
( C 0

0 C

)
.
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If (i.1) holds, then

SΘ(t) =




t∫
0

CK(s)ds
t∫
0

(t− s)CK(s)ds

CK(t)−Θ(t)C
t∫
0

CK(s)ds


 , 0 ≤ t < τ,

and the integral generators of (CK(t))t∈[0,τ) and (SΘ(t))t∈[0,τ), denoted respectively

by B and B, satisfy B =
( 0 I

B 0

)
. Furthermore, the integral generator of

(CK(t))t∈[0,τ), resp. (SΘ(t))t∈[0,τ), is C−1AC, resp. C−1AC ≡
(

0 I
C−1AC 0

)
.

(ii) Suppose A is a closed linear operator, CA ⊆ AC and λ ∈ C. Then λ ∈ ρC(A) ⇔
λ2 ∈ ρC(A). If this is the case, then the following holds:

(λ−A)−1C =
( λ(λ2 −A)−1C (λ2 −A)−1C

A(λ2 −A)−1C λ(λ2 −A)−1C

)
,

||(λ−A)−1C|| ≤ (1 + |λ|)
√

1 + |λ|2||(λ2 −A)−1C|| and

||(λ2 −A)−1C|| ≤ ||(λ−A)−1C||.
(iii) ([23]) Suppose K is a kernel and A is a subgenerator of a local K-convoluted
C-semigroup (SK(t))t∈[0,τ), resp. K-convoluted C-cosine function (CK(t))t∈[0,τ).
Then SK(t)SK(s) = SK(s)SK(t), resp. CK(t)CK(s) = CK(s)CK(t) for all (t, s) ∈
[0, τ)× [0, τ).

2 Spectral properties of subgenerators of local con-
voluted C-semigroups and cosine functions

The following recollection of results known in the existing literature will be helpful
in our further work. We mention in passing that the assertion (i) essentially follows
from the argumentation given in the proof of [30, Theorem 1.3.1].

Proposition 1. (i) ([12], [30]) Suppose α > 0, M > 0, β ≥ 0, Φ : C → [0,∞),
|K(t)| ≤ Meβt, t ≥ 0, (SK(t))t∈[0,τ) is a local K-convoluted semigroup gen-
erated by A and

1
|K̃(λ)| ≤ eΦ(αλ) for all λ ∈ C with Reλ > β and K̃(λ) 6= 0.

Then, for every t ∈ (0, τ), there exist β(t) > 0 and M(t) > 0 such that

Λt,α,β(t) :=
{

λ ∈ C : K̃(λ) 6= 0, Reλ ≥ Φ(αλ)
t

+ β(t)
}
⊆ ρ(A) and

||R(λ : A)|| ≤ M(t)eΦ(αλ), λ ∈ Λt,α,β(t), K̃(λ) 6= 0.
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Furthermore, the existence of a sequence (tn) in [0, τ) satisfying lim
n→∞

tn = τ

and sup
n∈N

ln ||SK(tn)|| < ∞ implies that there exist β′ > 0 and M ′ > 0 such

that Λτ,α,β′ ⊆ ρ(A) and that ||R(λ : A)|| ≤ M ′eΦ(αλ), λ ∈ Λτ,α,β′ .

(ii) ([2], [29]) Suppose α > 0, τ ∈ (0,∞] and A generates an α-times integrated
semigroup (Sα(t))t∈[0,τ). Then, for every a ∈ (0, τ

α ), there exist b > 0 and
M > 0 such that:

E(a, b) ⊆ ρ(A) and ||R(λ : A)|| ≤ M(1 + |λ|)α, λ ∈ E(a, b). (2)

(iii) ([2], [29]) Suppose α > 0, a > 0, b > 0, M > 0,

E(a, b) ⊆ ρ(A) and ||R(λ : A)|| ≤ M(1 + |λ|)α, λ ∈ E(a, b).

Then, for every β ∈ (α + 1,∞), the operator A generates a local β-times
integrated semigroup (Sβ(t))t∈[0,a(β−α−1)).

Before proceeding further, of concern is to stress that there exist examples of
local twice integrated C-semigroups (once integrated C-cosine functions) whose
integral generators possess empty C-resolvent sets ([28]).

The main objective in the next theorem is to prove the converse of Proposition
1(i) as well as to transfer the assertion of Proposition 1(iii) to local integrated
C-semigroups.

Theorem 1. (i) Suppose CA ⊆ AC, K satisfies (P1), r0 ≥ max(0, abs(K)) and
Φ : [r0,∞) → [0,∞) is a continuously differentiable, strictly increasing map-
ping. Suppose, further, lim

t→∞
Φ(t) = +∞, Φ′(·) is bounded on [r0,∞) and there

exist α > 0, γ > 0 and β > r0 such that

Ψα,β,γ :=
{

λ ∈ C : Reλ ≥ Φ(α|Imλ|)
γ

+ β
}
⊆ ρC(A).

Designate by Γα,β,γ the upwards oriented boundary of Ψα,β,γ and by Ωα,β,γ

the open region which lies to the right of Γα,β,γ . Let the following conditions
hold.

(i.1) The mapping λ 7→ K̃(λ)(λ−A)−1C is analytic on Ωα,β,γ and continuous
on Γα,β,γ .

(i.2) There exist M > 0 and σ > 0 such that:
∥∥∥K̃(λ)(λ−A)−1C

∥∥∥ ≤ Me−Φ(σ|λ|), λ ∈ Ωα,β,γ .

(i.3) There exists a function m : [0,∞) → (0,∞) such that m(s) = 1, s ∈ [0, 1]
and that, for every s > 1, there exists a number rs > r0 so that:

Φ(t)
Φ(st)

≥ m(s), t ≥ rs.
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(i.4) lim
t→∞

te−Φ(σt) = 0.

(i.5) (∃a ≥ 0)(∃r′a > r0)(∀t > r′a) ln t
Φ(t) ≥ a.

Then the operator A is a subgenerator of a local K-convoluted C-semigroup
on [0, a + m( α

σγ )).

(ii) Suppose α > 0, a > 0, b > 0, M > 0, CA ⊆ AC,

E(a, b) ⊆ ρC(A), ‖(λ−A)−1C‖ ≤ M(1 + |λ|)α, λ ∈ E(a, b),

and the mapping λ 7→ (λ−A)−1C, λ ∈ E(a, b) is continuous. Then, for every
β ∈ (α + 1,∞), the operator A is a subgenerator of a local β-times integrated
C-semigroup (Sβ(t))t∈[0,a(β−α−1)).

Proof. To prove (i), set

SK(t) :=
1

2πi

∫

Γα,β,γ

eλtK̃(λ)(λ−A)−1Cdλ, t ∈ [0, a + m(
α

σγ
)). (3)

Let us show that the improper integral appearing in (3) converges for all t ∈ [0, a +
m( α

σγ )). Denote by Γ1
α,β,γ := {λ ∈ Γα,β,γ : Imλ ≥ 0} and Γ2

α,β,γ := {λ ∈ Γα,β,γ :

Imλ ≤ 0}. Clearly, Γ1
α,β,γ = {Φ(αs)

γ +β+is : s ≥ 0}. Taking into account the equality
lim

t→∞
Φ(t) = +∞ as well as (i.3) and (i.5), we easily infer that there exist a sufficiently

large real number r′ ≥ r0σ
−1 + 1 and a number ζ > 1 so that tΦ(αs)

γ − Φ(σs) ≤
ln M − ζ ln s, s ≥ r′. Hence, there exists M ′ > 0 such that:

et
Φ(αs)

γ −Φ(σs) ≤ M ′s−ζ , s ≥ r′. (4)

Then the choice of r0 gives that, for every s ≥ r′, Φ(σ|Φ(αs)
γ + β + is|) ≥ Φ(σs).

Thanks to the estimate (4), one gets:

∥∥∥
∫

Γ1
α,β,γ ∩ {λ∈C : Imλ≥r′}

eλtK̃(λ)(λ−A)−1Cdλ
∥∥∥

≤
∞∫

r′

e(
Φ(αs)

γ +β)te−Φ(σs)
(
1 +

αΦ′(αs)
γ

)
ds

≤Const.eβt

∞∫

r′

et
Φ(αs)

γ −Φ(σs)ds ≤ Const.eβt

∞∫

1

ds

sζ
< ∞.

This implies the convergence of the curve integral over Γ1
α,β,γ ; the convergence of

the curve integral over Γ2
α,β,γ can be proved analogically. Hence, SK(t) ∈ L(E),

SK(t)A ⊆ ASK(t) and SK(t)C = CSK(t), t ∈ [0, a + m( α
σγ )). Further on, notice
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that [15, Proposition 2.6, Remark 2.7] and the assertion (i.1) imply that the map-
ping λ 7→ (λ−A)−1C, λ ∈ Ωα,β,γ is analytic. Using the Cauchy formula, (i.2) and
(i.4), one can simply prove that

∫

Γα,β,γ

K̃(λ)(λ−A)−1Cdλ = 0.

Arguing as in the final part of the proof of [30, Theorem 1.3.2], one gets that

A
t∫
0

SK(s)x = SK(t)x − Θ(t)Cx, x ∈ E, t ∈ [0, a + m(σγ
α )), which completes the

proof of (i). Having in mind [15, Proposition 2.6, Remark 2.7], the proof of (ii)
follows immediately from that of [2, Theorem 2.2]. ( Notice also that the proof
of (ii) can be derived from the assertion (i) with Φ(t) = ln(1 + t), t ≥ 0 and a
non-trivial computation. )

Remark 1. The suppositions of Theorem 1(i) are satisfied for the function Φ(t) =
ct

1
s +d, where s > 1, c > 0 and d ∈ R. For example, the item (i.3) holds for the func-

tion m(ς) = ε

ς
1
s
, where ε > 0 can be chosen arbitrarily, and the item (i.5) holds with

a = 0. If K(t) = L−1(e−λ
1
s )(t), t ≥ 0 and ||R(λ : A)|| = O(e(cos( π

2s )−cσ
1
s )|λ| 1s ), λ ∈

Ωα,β,γ , then we may apply Theorem 1(i) to deduce that A generates a local K-

convoluted semigroup on [0, σ
1
s γ

α
1
s

). Further on, the assumption on continuous dif-
ferentiability of the function Φ(·) given in the formulation of Theorem 1(ii), and
Theorem 2(iii) given below, can be slightly weakened. In fact, one can assume that
there exists an increasing sequence (np) in [r0,∞) such that the function Φ(·) is of
class C1 in [r0,∞) \ {np : p ∈ N}. Suppose now that there exist numbers α > 0,
β ∈ R and l ≥ 1 such that Λα,β,l ⊆ ρ(A) and that ||R(λ : A)|| = O(eM(l|λ|)). Since,
for every L ≥ 1, there exist constants K > 1 and B > 0, and a number EL > 0,
such that M(Lt) ≤ 3

2LM(t)+K, t ≥ 0 and that LM(t) ≤ M(BL−1t)+EL (cf. [6,
Lemma 2.1.3] and [12]), it can be proved by means of Theorem 1(i) (with a = 0 and
m(s) = 1

3
2 s+ε

, s > 1, 0 < ε given in advance) that, for every ς > 0, A generates a

local L−1(1/Π∞i=1(1+ B(l+ς)λ
mp

))-convoluted semigroup on [0, 2
3

σ
lα ). By Theorem 2, the

previous example can be simply reformulated in the case of local convoluted cosine
functions.

Theorem 2. (i) Suppose K is a kernel, M > 0, β ≥ 0, α > 0, Φ : C → [0,∞),
|Θ(t)| ≤ Meβt, t ≥ 0, (CK(t))t∈[0,τ) is a local K-convoluted cosine function
generated by A and

1
|Θ̃(λ)| ≤ eΦ(αλ) for all λ ∈ C with Reλ > β and K̃(λ) 6= 0.

Then, for every t ∈ (0, τ), there exist β(t) > 0 and M(t) > 0 such that

Λ2
t,α,β(t) :=

{
λ2 ∈ C : K̃(λ) 6= 0, Reλ ≥ Φ(αλ)

t
+ β(t)

}
⊆ ρ(A) and
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∥∥∥R(λ2 : A)
∥∥∥ ≤ M(t)

eΦ(αλ)

|λ| , λ ∈ Λt,α,β(t), K̃(λ) 6= 0.

Furthermore, the existence of a sequence (tn) in [0, τ) satisfying lim
n→∞

tn = τ

and sup
n∈N

ln ||CK(tn)|| < ∞ implies that there exist β′ > 0 and M ′ > 0 such

that Λ2
τ,α,β′ ⊆ ρ(A) and that ||R(λ2 : A)|| ≤ M ′ eΦ(αλ)

|λ| , λ ∈ Λτ,α,β′ .

(ii) Suppose α > 0 and A generates a (local) α-times integrated cosine function
(Cα(t))t∈[0,τ). Then, for every a ∈ (0, τ

α+1 ), there exist b > 0 and M > 0 such
that:

E2(a, b) ⊆ ρ(A) and ||R(λ2 : A)|| ≤ M(1 + |λ|)α, λ ∈ E(a, b). (5)

(iii) Suppose CA ⊆ AC, K(·) satisfies (P1), r0 ≥ max(0, abs(K)) and Φ : [r0,∞) →
[0,∞) is a continuously differentiable, strictly increasing mapping. Suppose,
further, lim

t→∞
Φ(t) = +∞, Φ′(·) is bounded on [r0,∞) and there exist α > 0,

γ > 0 and β > r0 such that

Ψ2
α,β,γ :=

{
λ2 : λ ∈ Ψα,β,γ

}
⊆ ρC(A). (6)

Designate by Γα,β,γ the upwards oriented boundary of Ψα,β,γ (cf. also the
formulation of Theorem 1) and by Ωα,β,γ the open region which lies to the
right of Γα,β,γ . Let the following conditions hold.

(iii.1) The mapping λ 7→ K̃(λ)(λ2−A)−1C is analytic on Ωα,β,γ and continuous
on Γα,β,γ .

(iii.2) There exist M > 0 and σ > 0 such that:

∥∥∥K̃(λ)
[
(λ2 −A)−1C +

C

λ

]∥∥∥ ≤ Me−Φ(σ|λ|), λ ∈ Ωα,β,γ .

(iii.3) The conditions (i.3), (i.4) and (i.5) given in the formulation of Theorem
1 hold.

Then A is a subgenerator of a local K-convoluted C-cosine function on [0, a+
m( α

σγ )).

(iv) Suppose α > 0, a > 0, b > 0, M > 0, CA ⊆ AC,

E2(a, b) ⊆ ρC(A), ||(λ2 −A)−1C|| ≤ M(1 + |λ|)α, λ ∈ E(a, b),

and the mapping λ 7→ (λ2 − A)−1C, λ ∈ E(a, b) is continuous. Then, for
every β ∈ (α + 2,∞), A is a subgenerator of a local β-times integrated C-
cosine function (Cβ(t))t∈[0,a(β−α−1)).
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Proof. Suppose t ∈ (0, τ), σ ∈ (0, 1) and proj1 : E × E → E is defined by
proj1

(
x
y

)
:= x, x, y ∈ E. Then it is clear from Lemma 1(i) that A generates a

(local) Θ-convoluted semigroup (SΘ(s))s∈[0,τ) in E×E and that, thanks to Theorem
1(i), Lemma 1(ii) and the proof of [30, Theorem 2.3.1], there exist β(t) > 0 and
M(t) > 0 such that, for every x ∈ E,

R(λ2 : A)x = proj1[R(λ : A)
(
0
x

)
]

= proj1
[

1
Θ̃(λ)

t∫
0

e−λs
(

s∫
0

CK(v)dv
s∫
0

(s− v)CK(v)dv

CK(s)−Θ(s)C
s∫
0

CK(v)dv

)
(I −Bt(λ))−1

(
0
x

)
ds

]
,

for all λ ∈ Λt,α,β(t), where Bt(λ) = 1
Θ̃(λ)

(
e−λtSΘ(t)I +

∞∫
t

e−λsΘ(s)Ids
)
, ||Bt(λ)||

≤ σ and ||(I − Bt(λ))−1|| ≤ 1
1−σ , λ ∈ Λt,α,β(t). Since K is a kernel, Lemma

1(iii) yields CK(t)CK(s) = CK(s)CK(t), 0 ≤ t, s < τ and the last equality gives
(I−Bt(λ))−1SΘ(s) = SΘ(s)(I−Bt(λ))−1, 0 ≤ t, s < τ. Then the partial integration
implies:

R(λ2 : A)x

= proj1
[ 1
Θ̃(λ)

t∫

0

e−λs(I −Bt(λ))−1
(

s∫
0

CK(v)dv
s∫
0

(s− v)CK(v)dv

CK(s)−Θ(s)I
s∫
0

CK(v)dv

)(
0
x

)]

= proj1
[
− (I −Bt(λ))−1

K̃(λ)
e−λt

(
t∫
0

(t− s)CK(s)xds

t∫
0

CK(s)xds

)]

+ proj1
[ (I −Bt(λ))−1

K̃(λ)

t∫

0

e−λs

( s∫
0

CK(r)xdr

CK(s)x

)
ds

]

≤ 1
1− σ

(∥∥∥
t∫

0

(t− s)CK(s)xds
∥∥∥ +

∥∥∥
t∫

0

CK(s)xds
∥∥∥
) e−Reλt

|λ||Θ̃(λ)|

+
1

1− σ

1
|λ||Θ̃(λ)|

t∫

0

e−Reλs
(∥∥∥

s∫

0

CK(r)xdr
∥∥∥ +

∥∥∥CK(s)x
∥∥∥
)
ds

≤ 1
1− σ

(∥∥∥
t∫

0

(t− s)CK(s)xds
∥∥∥ +

∥∥∥
t∫

0

CK(s)xds
∥∥∥
)eΦ(αλ)

|λ|

+
1

1− σ

eΦ(αλ)

|λ|

t∫

0

(∥∥∥
s∫

0

CK(r)xdr
∥∥∥ +

∥∥∥CK(s)x
∥∥∥
)
ds
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and this, in turn, implies that (i) holds. The proof of (ii) follows from the assertion
(i) of this theorem with K(t) = tα−1

Γ(α) , t > 0 and Φ(λ) = (α + 1) ln(1 + |λ|), λ ∈ C.

Strictly speaking, one gets from (i) that, for every t ∈ (0, τ), we have the existence
of numbers β(t) > 0 and M(t) > 0 such that Λ̃2

β(t), α+1
t

⊆ ρ(A) and that ||R(λ2 :

A)|| ≤ M(t)|λ|α, λ ∈ Λ̃β(t), α+1
t

. The proof of (ii) completes an application of (1).
The proof of (iii) can be obtained by passing to the theory of semigroups. Indeed,
the assumption (6) and Lemma 1(ii) imply that Ωα,β,γ ⊆ ρC(A) and (iii.1) gives
that the mapping λ 7→ Θ̃(λ)(λ − A)−1C, λ ∈ Ωα,β,γ is analytic on Ωα,β,γ and
continuous on Γα,β,γ . By (iii.2), we easily infer that there exists M ′ > 0 such that
||Θ̃(λ)(λ−A)−1C|| ≤ M ′e−Φ(σ|λ|), λ ∈ Ωα,β,γ . Since (iii.3) holds, we obtain that the
operator A is a subgenerator of a local Θ-convoluted C-semigroup on [0, a+m( α

σγ )).
The proof of (iii) completes an employment of Lemma 1(i). Notice only that we
have the following structural equality:

CK(t) =
1

2πi

∫

Γα,β,γ

eλtλK̃(λ)(λ2 −A)−1Cdλ, t ∈ [0, a + m(
α

σγ
)).

In order to prove (iv), let us set, for every t ∈ [0, a(β − α− 1)),

Cβ(t) :=
1

2πi

∫

Γ

eλt (λ
2 −A)−1C

λβ−1
dλ,

where Γ denotes the upwards oriented boundary of E(a, b). Having in mind Lemma
1(ii) and Theorem 1(iv), the proof of (iv) follows from that of (iii).

Remark 2. Suppose α > 0, 0 < τ < ∞ and A generates an α-times integrated
semigroup (Sα(t))t∈[0,τ), resp. an α-times integrated cosine function (Cα(t))t∈[0,τ).
If there exists a sequence (tn) in [0, τ) satisfying lim

n→∞
tn = τ and sup

n∈N
ln ||Sα(tn)|| <

∞, resp. sup
n∈N

ln ||Cα(tn)|| < ∞, then, for every a ∈ (0, τ
α ], resp. a ∈ (0, τ

α+1 ], there

exist b > 0 and M > 0 such that (2), resp. (5), holds.
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C. R. Acad. Sci. Paris Sér. I Math. 319 (1995), 1273–1278.

[11] I. Cioranescu, G. Lumer, On K(t)-convoluted semigroups, in: Recent Devel-
opments in Evolution Equations (Glasgow, 1994), 86–93. Longman Sci. Tech.,
Harlow, 1995.
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