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TOPOLOGIES IN GENERALIZED ORLICZ
SEQUENCE SPACES

Enno Kolk

Abstract

In 1994 S.D. Parashar and B. Choudhary defined certain paranorms in
some Orlicz sequence spaces of Maddox type. Their ideas are applied later by
many authors for topologization of various generalized Orlicz sequence spaces.
We determine alternative F-seminorms in such spaces by using the standard
arguments of modular spaces theory and a result about the topologization of
sequence spaces defined by modulus functions.

1 Notation and background

Let N = {1, 2, . . . } and let K be the field of real numbers R or complex numbers
C. We write limn, supn, infn and

∑
n instead of limn→∞, supn∈N, infn∈N and∑∞

n=1, respectively. By the symbol ι we denote the identity mapping ι(z) = z. The
superposition of two mappings f and g is denoted by fg, i.e., (fg)(z) = f(g(z)).
For two sequences x = (xk), y = (yk) we use the notation xy = (xkyk) provided
that xkyk is determined for all k ∈ N. We also use the notation R+ = [0,∞) and
ek = (eik)i∈N (k ∈ N), where eik = 1 if i = k and eik = 0 otherwise. In all
definitions which contain infinite series we tacitly assume the convergence of these
series.

An F-space is usually understood as a complete metrizable topological vector
space over K. It is known that the topology of an F-space E can be given by an
F-norm, i.e., by the functional g : E → R with the axioms (see [20], p. 13)

(N1) g(0) = 0;

(N2) g(x + y) ≤ g(x) + g(y) (x, y ∈ E);

(N3) |α| ≤ 1 (α ∈ K), x ∈ E =⇒ g(αx) ≤ g(x);
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(N4) limn αn = 0 (αn ∈ K), x ∈ E =⇒ limn g(αnx) = 0;

(N5) g(x) = 0 =⇒ x = 0.

A functional g with the axioms (N1)–(N4) is called an F-seminorm. A paranorm in
E is defined as a functional g : E → R satisfying the axioms (N1), (N2) and

(N6) g(−x) = g(x) (x ∈ E);

(N7) limn αn = α (αn, α ∈ K), limn g(xn−x) = 0 (xn, x ∈ E) =⇒ limn g(αnxn−
αx) = 0.

A seminorm in E is a functional g : E → R with the axioms (N1), (N2) and

(N8) g(αx) = |α|g(x) (α ∈ K, x ∈ E).

An F-seminorm (paranorm, seminorm) g is called total if (N5) holds. So, an F-norm
(norm) is a total F-seminorm (seminorm).

In the following, unlike the module | · |, the seminorm of an element x ∈ E is
sometimes denoted by |̇x|̇.
Remark 1. It is clear that every paranorm g with (N3) is an F-seminorm. Con-
versely, since (N3) yields (N6), and for limn αn = α, because of (N2) and (N3), we
have

g(αnxn − αx) ≤ 2(|α|+ 1)g(xn − x) + g((αn − α)x)

for sufficently large values of n, any F-seminorm is a paranorm which satisfies (N3).
Thereby, F-seminorms coincide with paranorms satisfying axiom (N3).

Let X be a sequence of seminormed linear spaces
(
Xk, |̇ · |̇k

)
(k ∈ N) over

K. Then the set s(X) of all sequences x = (xk), xk ∈ Xk (k ∈ N), together
with coordinatewise addition and scalar multiplication is linear space (over K).
Any linear subspace of s(X) is called a generalized sequence space. In the case(
Xk, |̇ · |̇k

)
= (X, |̇ · |̇) (k ∈ N) we write X instead of X, and if Xk = K (k ∈ N),

then we omit the symbol X in notation. So, for example, s denotes the linear space
of all K-valued sequences. As usual, linear subspaces of s are called sequence spaces.

A continuous and non-decreasing function φ : R+ → R+ is called a ϕ-function
(cf. [30], p. 4) if

φ(t) = 0 ⇐⇒ t = 0.

A ϕ-function φ is called a modulus function (or, briefly, a modulus) if

φ(t + u) ≤ φ(t) + φ(u) (t, u ∈ R+), (1)

and an Orlicz function if (1) is replaced by the condition of convexity

φ(αt + (1− α)u) ≤ αφ(t) + (1− α)φ(u) (t, u ∈ R+, 0 ≤ α ≤ 1).
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For example, the function ιp(t) = tp is an unbounded modulus function for p ≤ 1,
and it is an Orlicz function if p ≥ 1. The function φ(t) = t/(1 + t) is a bounded
modulus.

We remark that the modulus functions are the same as the moduli of continuity
(see [12], p. 866).

If p = (pk) is a sequence with 0 < pk ≤ sup pk < ∞ and X is a sequence of
seminormed linear spaces (Xk, |̇ · |̇k), then we can define the generalized sequence
spaces

`∞(p,X) =
{

(xk) ∈ s(X) : sup
k
|̇xk |̇pk

k < ∞
}

,

c0(p,X) =
{

(xk) ∈ s(X) : lim
k
|̇xk |̇pk

k = 0
}

,

`(p,X) =

{
(xk) ∈ s(X) :

∑

k

|̇xk |̇pk

k < ∞
}

,

w0(p,X) =

{
(xk) ∈ s(X) : lim

n
n−1

n∑

k=1

|̇xk |̇pk

k = 0

}
.

In the case Xk = K (k ∈ N) these spaces reduce to so-called Maddox sequence
spaces `∞(p), c0(p), `(p) and w0(p), respectively (see, for example, [19] or [28]). If
here pk = p (k ∈ N), then we get well-known sequence spaces `∞, c0, `p and wp

0 of
all bounded, convergent to zero, absolutely p-summable and strongly summable to
zero of index p sequences, respectively. As usual, in the case p = 1 we write ` and
w0 instead of `1 and w1

0.

If M = max{1, supk pk}, then the functions tpk/M (k ∈ N) are moduli. There-
fore, using also the equivalences

x ∈ c0(p,X) ⇐⇒
(
|̇xk |̇pk/M

k

)
∈ c0 and x ∈ `(p,X) ⇐⇒

(
|̇xk |̇pk/M

k

)
∈ `M ,

by Theorem 2 [23] we can define in c0(p,X) and `(p,X) the F-seminorms (or para-
norms)

g∞(x) = sup
k
|̇xk |̇pk/M

k and gM (x) =

(∑

k

|̇xk |̇pk

k

)1/M

,

respectively. These F-seminorms are total if X is a sequence of normed spaces
(about the special case Xk = K (k ∈ N) see [28]).

Let Φ = (φk) be a sequence of ϕ-functions φk (k ∈ N) and let λ ⊂ s be a
sequence spaces. For x = (xk) ∈ s(X) , using the notation |x| =

(
|̇xk |̇

)
, we write

Φ(|x|) =
(
φk

(
|̇xk |̇k

))
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and define the set

λ∃(Φ,X) =
{
x ∈ s(X) : (∃ρ > 0) Φ(|ρ−1x|) ∈ λ

}
.

For a constant sequence Φ with φk = φ (k ∈ N), we write φ instead of Φ.

Let φ be an Orlicz function. By an Orlicz sequence space we mean the Banach
sequence space `φ = `∃(φ) with the norm (see [27] or [30])

‖u‖φ = inf

{
ρ > 0 :

∑

k

φ(|ρ−1|uk|) ≤ 1

}
. (2)

Woo [42] showed that if Φ = (φk) is a sequence of Orlicz functions, then the set
`Φ = `∃(Φ) is also a Banach sequence space with the norm

‖u‖Φ = inf

{
ρ > 0 :

∑

k

φk(|ρ−1uk|) ≤ 1

}
. (3)

In the mathematical literature we may find a series of papers which deal with
various generalizations and modifications of `φ and `Φ, where the space ` is re-
placed by different sequence spaces including the spaces of Maddox type and do-
mains of various summability methods. For example, Parashar and Choudhary
[32] proved that the sets `(p)∃(φ) and w0(p)∃(φ) are linear spaces if φ is an Or-
licz function and p = (pk) is a bounded sequence of positive numbers. Denoting
M = max{1, supk pk}, they define in `(p)∃(φ) the total paranorm

g(u) = inf
ρ>0, m∈N



ρpm/M :

(∑

k

(φ(|ρ−1uk|))pk

)1/M

≤ 1



 , (4)

and in w0(p)∃(φ) the total paranorm

g0(u) = inf
ρ>0, m∈N



ρpm/M : sup

n

(
n−1

∑

k

(φ(|ρ−1uk|))pk

)1/M

≤ 1



 . (5)

We note that g and g0 are also F-norms because of Remark 1.

The idea to topologize different generalized Orlicz sequence spaces by the para-
norms of types (4) and (5) is used later by many authors (see, for example, [1], [2],
[3], [4], [5], [7], [8], [9], [10], [13], [14], [22], [31], [33], [35], [36], [37], [39]). Using the
standard arguments of modular spaces theory and a result about the topologization
of sequence spaces defined by moduli, we determine some alternative F-seminorms
(or paranorms) in these sequence spaces. It seems that our F-seminorms and norms,
in comparison with (4) and (5), are better connected to (2) and (3), and also to the
norms given in [16], [17], [25], [26], [30], [38], [40] and [41].
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2 Main theorems

Recall that a set E ⊂ s(X) is called solid if y = (yk) ∈ E whenever x = (xk) ∈ E

and |̇yk |̇ ≤ |̇xk |̇ (k ∈ N). Known solid sequence spaces are m, c0, `p and wp
0 .

Let T : s
T
(X) → s(X) be a linear operator, where s

T
(X) is a linear subspace of

s(X).

As an extension of λ∃(Φ,X) we consider the set

λ∃(Φ, T,X) = {x ∈ s
T
(X) : (∃ρ > 0) Φ(|ρ−1Tx|) ∈ λ},

where λ is a sequence space and Φ is a sequence of ϕ-functions. If T is the identity
mapping, then we omit the symbol T in notation.

Theorem 1. Let X be a sequence of seminormed linear spaces
(
Xk, |̇ · |̇k

)
(k ∈ N),

λ be a solid sequence space and T be a linear operator as defined above. If Φ = (φk)
is a sequence of Orlicz functions and Ψ = (Ψk) is a sequence consisting of modulus
and Orlicz functions, then λ∃(ΨΦ, T,X) is a generalized sequence space. At that,
the generalized sequence space λ∃(ΨΦ,X) is solid.

Proof. Let x ∈ λ∃(ΨΦ, T,X) with ΨΦ(|ρ−1Tx|) ∈ λ, ρ > 0. If 0 6= α ∈ K, then
by |(ρ|α|)−1T (αx)| = |(ρ−1Tx| we see that αx belongs to λ∃(ΨΦ, T,X). Since x ∈
λ∃(ΨΦ, T,X) clearly implies 0x ∈ λ∃(ΨΦ, T,X), the homogeneity of λ∃(ΨΦ, T,X)
is proved.

To prove the additivity, let x,y ∈ λ∃(ΨΦ, T,X). Then there exist positive
numbers ρ, σ such that ΨΦ(|ρ−1Tx|) and ΨΦ(|σ−1Ty|) are in λ. Let Tx = (Tkx).
Because any φk is non-decreasing and convex, for θ = max{2ρ, 2σ} and all k ∈ N
we have that

φk

(
|̇θ−1Tk(x + y)|̇

)
≤ φk

(
|̇(2ρ)−1Tk(x)|̇+ |̇(2σ)−1Tk(y|̇

)

≤ 1/2φk

(
|̇ρ−1Tk(x)|̇

)
+ 1/2φk

(
|̇σ−1Tk(y)|̇

)
.

(6)

Now, if ψk is an Orlicz function, then ψkφk is also an Orlicz function, so (6) is true
(for this index k) with ψkφk instead of φk. But if ψk is a modulus function, then
from (6), by condition (1), for such index k we get

ψkφk

(
|̇θ−1Tk(x + y)|̇

)
≤ ψkφk

(
|̇ρ−1Tk(x)|̇

)
+ ψkφk

(
|̇σ−1Tk(y)|̇

)
. (7)

Hence (7) is true for all k ∈ N. Since λ is solid, ΨΦ(|θ−1T (x + y)|) must be in λ
and, consequently, x + y ∈ λ∃(ΨΦ, T,X).

The solidity of λ∃(ΨΦ,X) follows by

|̇yk |̇ ≤ |̇xk |̇ =⇒ ψkφk

(
|̇ρ−1yk |̇

)
≤ ψkφk

(
|̇ρ−1xk |̇

)
(k ∈ N),

because λ is solid.
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Recall that an F-seminorm g in λ is called absolutely monotone if for any two
elements u = (uk), v = (vk) of λ with |uk| ≤ |vk| (k ∈ N) the inequality g(u) ≤ g(v)
holds.

In the following, using the standard arguments of theory of modular spaces (see
[30], proof of Theorem 1.5), we determine some F-seminorms in generalized Orlicz
sequence space λ∃(Φ, T,X).

Theorem 2. Let Φ = (φk) be a sequence of Orlicz functions and let λ be a solid
sequence space. If λ is topologized by an absolutely monotone F-seminorm g, then

ĥ(x) = inf{ρ > 0 : g(Φ(|ρ−1Tx|)) ≤ ρ}

is an F-seminorm in λ∃(Φ, T,X). If g is an absolutely monotone seminorm in λ,
then

h(x) = inf{ρ > 0 : g(Φ(|ρ−1Tx|)) ≤ 1}
is a seminorm in λ∃(Φ, T,X). Moreover, if all spaces Xk (k ∈ N) are normed and
T satisfies the condition

Tx = 0 =⇒ x = 0, (8)

then ĥ is an F-norm (h is a norm) in λ∃(Φ, T,X) whenever g is an F-norm (a
norm) in λ.

Proof. Let x ∈ λ∃(Φ, T,X) with Φ(|ρ−1Tx|) ∈ λ, ρ > 0. Since the functions φk are
convex and g is an absolutely monotone F-seminorm in solid sequence space λ, for
0 < α ≤ 1, Φ(|αρ−1Tx|) also belongs to λ and

g(Φ(|αρ−1Tx|)) ≤ g(αΦ(|ρ−1Tx|)). (9)

This shows, because of (N2), that the functionals ĥ and h are determined in
l∃(Φ, T,X). Moreover, it is clear that ĥ(0) = 0 and h(0) = 0.

Further, since T is linear and the functions φk are non-decreasing and convex,
by (N3) we get

g(Φ(|ρ−1T (αx)|)) ≤ g(Φ(|ρ−1Tx|)) (|α| ≤ 1) (10)

which implies

{ρ > 0 : g(Φ(|ρ−1Tx|)) ≤ ρ} ⊂ {ρ > 0 : g(Φ(|ρ−1T (αx)|)) ≤ ρ}.

Therefore,
ĥ(αx) ≤ ĥ(x) (|α| ≤ 1).

Now, let x, y ∈ λ∃(Φ, T,X) and ε > 0. If s = ĥ(x) + ε, t = ĥ(y) + ε, then

g(Φ(|s−1Tx|)) ≤ s, g(Φ(|t−1Ty|)) ≤ t,
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whence

g

(
Φ

(∣∣∣∣
T (x + y)

s + t

∣∣∣∣
))

≤ g

(
Φ

(∣∣∣∣
s

s + t

Tx
s

+
t

s + t

Ty
t

∣∣∣∣
))

≤ g(Φ(
∣∣∣∣
Tx
s

∣∣∣∣)) + g(Φ(
∣∣∣∣
Ty
t

∣∣∣∣))

≤ s + t

in the case of F-seminorm g. Hence ĥ(x + y) ≤ ĥ(x) + ĥ(y) + 2ε, and we obtain

ĥ(x + y) ≤ ĥ(x) + ĥ(y),

because ε > 0 is arbitrarily. But if g is a seminorm, then, denoting s = h(x) + ε,
t = h(y) + ε, by

g(Φ(|s−1Tx|)) ≤ 1, g(Φ(|t−1Ty|)) ≤ 1

we similary get

g

(
Φ

(∣∣∣∣
T (x + y)

s + t

∣∣∣∣
))

≤ s

s + t
g

(
Φ

(∣∣∣∣
Tx
s

∣∣∣∣
))

+
t

s + t
g

(
Φ

(∣∣∣∣
Ty
t

∣∣∣∣
))

≤ 1

which gives
h(x + y) ≤ h(x) + h(y).

To prove (N8) for h, we take α 6= 0. Then

h(αx) = inf
{

ρ > 0 : g

(
Φ

(∣∣∣∣
T (αx)

ρ

∣∣∣∣
))

≤ 1
}

= |α| inf
{

ρ

|α| > 0 : g

(
Φ

(∣∣∣∣
Tx

ρ/|α|

∣∣∣∣
))

≤ 1
}

= |α|h(x).

Next we show that ĥ and h are total whenever all spaces Xk (k ∈ N) are normed
with the norms ‖ · ‖k, operator T satisfies (8) and g is total. Since ĥ(x) = 0 implies
h(x) = 0, it suffices to prove that h satisfies (N5) if g satisfies. If now h(x) = 0,
then

(∀ρ > 0) g(Φ(|ρ−1Tx|)) ≤ 1. (11)

If we suppose x 6= 0, then also Tx 6= 0 by (8), and there exists an index j with
Tjx 6= 0. So, because λ is solid, the norm g is absolutely monotone and φj is
unbounded, φj(ρ−1‖Tjx‖j)ej belongs to λ and for sufficiently small ρ we get

g(Φ(|ρ−1Tx|)) ≥ φj(ρ−1‖Tjx‖j)g(ej) > 1

contrary to (11). Consequently, it must be x = 0.
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In the case of the identity operator T the following somewhat stronger version
of Theorem 2 is true.

Proposition 1. Let Φ = (φk) be a sequence of Orlicz functions and let λ be a solid
sequence space which is topologized by an absolutely monotone F-seminorm g. Then

ĥ(x) = inf{ρ > 0 : g(Φ(|ρ−1x|)) ≤ ρ}

is an absolutely monotone F-seminorm in generalized sequence space λ∃(Φ,X). If
g is an absolutely monotone seminorm, then

h(x) = inf{ρ > 0 : g(Φ(|ρ−1x|)) ≤ 1}

is a seminorm in λ∃(Φ,X). At that, if all spaces Xk (k ∈ N) are normed, then ĥ
is an F-norm (h is a norm) in λ∃(Φ,X) whenever g is an F-norm (a norm) in λ.

Proof. By Theorem 2, ĥ is an F-seminorm (or F-norm) and h is a seminorm (or
norm) in λ∃(Φ,X). Since

|̇xk |̇ ≤ |̇yk |̇ =⇒ φk

(
|̇ρ−1xk |̇

)
≤ φk

(
|̇ρ−1yk |̇

)
(k ∈ N),

and g is absolutely monotone, one has

{ρ > 0 : g(Φ(|ρ−1y|)) ≤ ρ} ⊂ {ρ > 0 : g(Φ(|ρ−1x|)) ≤ ρ},
{ρ > 0 : g(Φ(|ρ−1y|)) ≤ 1} ⊂ {ρ > 0 : g(Φ(|ρ−1x|)) ≤ 1}.

Consequently, ĥ(x) ≤ ĥ(y) and h(x) ≤ h(y) whenever |̇xk |̇ ≤ |̇yk |̇ (k ∈ N), i.e., ĥ
and h are absolutely monotone.

We remark that Ghosh and Srivastava [18] defined the norm h in generalized
sequence space λ∃(φ,X), where φ is an Orlicz function and X is a sequence of
Banach spaces.

3 Applications and corollaries

Almost all generalized Orlicz sequence spaces from the papers cited at the end
of Section 1, are related to concrete methods of summability. The most common
summability method is a matrix method defined by an infinite scalar matrix A =
(ank). If for a sequence x ∈ s(X) the series Anx =

∑
k ankxk (n ∈ N) converge

and the limit limn Anx = l exists in X, then we say that x is summable to l by the
method A. A summability method A is called regular in X if for all convergent in
X sequences x = (xk) we have,

lim
k

xk = l =⇒ lim
n

Anx = l.
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It is known that a matrix method A is regular in K if and only if (see, for example,
[11], Theorem 2.3.7)

‖A‖ = sup
n

∑

k

|ank| < ∞, (12)

lim
n

ank = 0 (k ∈ N), (13)

lim
n

∑

k

ank = 1. (14)

It turned out that conditions (12), (13) and (14) characterize the regularity of A also
in any Banach space X and, generally, in any sequentially complete locally convex
Hausdorff topological vector space X (see [21] and [29]). A well-known example of
a regular matrix method is Cesàro method C1 defined by the matrix C1 = (cnk),
where, for any n ∈ N, cnk = n−1 if k ≤ n and cnk = 0 otherwise. A (trivial)
regular method is defined by unit matrix I = (ink), inn = 1 and ink = 0 for n 6= k.

Let A = (ank) be a non-negative matrix, i.e., ank ≥ 0 (n, k ∈ N). We say that
A is column-positive if for any k ∈ N there exists an index nk such that ank,k > 0. A
sequence u = (uk) ∈ s is called strongly A-summable to l if limn

∑
k ank|uk− l| = 0,

and strongly A-bounded if supn

∑
k ank|uk| < ∞. It is clear that the set w0(A)

of all strongly A-summable to zero sequences and the set w∞(A) of all strongly
A-bounded sequences are linear spaces. Moreover, the functional

gA(u) = sup
n

∑

k

ank|uk|

is a seminorm in w∞(A) and w0(A), it is a norm if A is column-positive.
More generally, if µ is a solid sequence space, then the set

µ(A) = {u = (uk) ∈ s : (An|u|) ∈ µ}

is also a solid sequence space. Moreover, if µ is topologized by an absolutely mono-
tone F-seminorm (seminorm) g, then in µ(A) we may define an absolutely monotone
F-seminorm (seminorm) by the equality

gA(u) = g (A|u|) ,

where A|u| = (An|u|). At it, g
A

is an F-norm (norm) in µ(A) if g is an F-norm
(norm) in µ and A is column-positive. It should be noted that the set µ(A) is
non-trivial (i.e., it contains nonzero elements) only if (ank)n∈N ∈ µ for some k ∈ N.
In particular, the set w0(A) is non-trivial if (13) holds for some k.

As a generalized Orlicz sequence space connected with strong summability we
consider the set

µ∃(A,ΨΦ,X) = {x ∈ s(X) : (∃ρ > 0) ΨΦ(|ρ−1x|) ∈ µ(A)},
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where µ ⊂ s is a solid sequence space, A is a non-negative matrix, Φ is a sequence
of Orlicz functions and Ψ is a sequence of ϕ-functions. Moreover, if B = (bki) is an
arbitrary summability matrix, then we define also the set

µ∃(A, ΨΦ, B, X) = {x ∈ s(X) : (∃ρ > 0) ΨΦ(|ρ−1Bx|) ∈ µ(A)}.
Let us denote by

s
B
(X) =

{
x ∈ s(X) : series Bnx =

∑

k

bnkxk (n ∈ N) converge in X

}

the application domain of the matrix method B. Then the operator B : s
B
(X) →

s(X), Bx = (Bnx), is linear. Consequently, since µ∃(A,ΨΦ,X) and µ∃(A, ΨΦ, B, X)
are defined as the sets λ∃(ΨΦ,X) and λ∃(ΨΦ, T,X) with λ = µ(A) and T = B,
from Theorem 1 we immediately get the following proposition about the linearity
of µ∃(A,ΨΦ,X) and µ∃(A, ΨΦ, B, X).

Proposition 2. Let Φ be a sequence of Orlicz functions, and let Ψ be a sequence
consisting of modulus and Orlicz functions. If µ ⊂ s is a solid sequence space
and A = (ank) is a non-negative matrix, then µ∃(A, ΨΦ,X) is a solid gener-
alized sequence space. Moreover, if B is an arbitrary summability matrix, then
µ∃(A,ΨΦ, B, X) is a generalized sequence space.

We apply Proposition 2 in the case if Ψ is the sequence Ip = (ιpk) of ϕ-functions
ιpk(t) = tpk , where (pk) is a sequence of positive numbers.

Corollary 1. Let p = (pk) be a sequence of positive numbers. If Φ, µ, A and B
are the same as in Proposition 2, then

µ∃(A,p, Φ,X) =

{
x ∈ s(X) : (∃ρ > 0)

(∑

k

ank

(
φk

(
|̇ρ−1xk |̇

))pk

)
∈ µ

}

is a solid generalized sequence space and

µ∃(A,p, Φ, B,X)

=

{
x ∈ s(X) : (∃ρ > 0)

(∑

k

ank

(
φk

(
|̇ρ−1

∑

i

bkixi |̇
))pk

)
∈ µ

}

is a generalized sequence space.

In [2], [4], [5], [7], [9], [10], [13], [14], [22], [31], [32], [35] and [36] the authors prove
the linearity of µ∃(A,p,Φ,X) and µ∃(A,p,Φ, B, X) (mostly for µ ∈ {`, `∞, c0} and
some concrete matrices A, B) under the assumption that the sequence p is bounded.
Our results show that these sets are linear spaces also for unbounded sequence p.

To describe the topologies for the sequence spaces given above we need some
results about the topologization of generalized sequence space

µ(Ψ,X) = {x ∈ s(X) : Ψ(|x|) ∈ µ} (15)
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defined by a sequence space µ and by a sequence Ψ = (ψk) of modulus functions.
Also a lemma on the AK-property of µ(A) is necessary.

Recall that the mth section of a sequence u = (uk) is defined by u[m] =∑m
k=1 ukek. An F-seminormed sequence space (λ, g) is called an AK-space if λ

contains the sequences ek (k ∈ N) and limm u[m] = u for any u ∈ λ. Well-known
AK-spaces are c0 with the norm ‖u‖∞ = supk |uk| and `p (p ≥ 1) with the norm
‖u‖p = (

∑
k |uk|p)1/p.

The following proposition was proved in [34] and [23].

Proposition 3. Let (µ, g) be an F-seminormed (or a paranormed) solid sequence
space. If g is absolutely monotone and the sequence of modulus functions Ψ = (ψk)
satisfies one of equivalent conditions

(M1) There exist a function ν and a number δ > 0 such that ψk(ut) ≤ ν(u)ψk(t)
(0 ≤ u < δ, t ≥ 0) and limu→0+ ν(u) = 0;

(M2) lim
u→0+

sup
t>0

sup
k

ψk(ut)
ψk(t)

= 0,

then
gΨ(x) = g(Ψ(|x|)) (x ∈ µ(Ψ,X))

defines an absolutely monotone F-seminorm (or a paranorm) in solid generalized
sequence space µ(Ψ,X). If (µ, g) is an AK-space, then gΨ is an absolutely monotone
F-seminorm in µ(Ψ,X) for an arbitrary sequence Ψ of moduli, and (µ(Ψ,X), gΨ)
is an AK-space. If the spaces Xk (k ∈ N) are normed and g is an F-norm, then
gΨ is an F-norm in µ(Ψ,X).

Lemma 1. Let A be a non-negative matrix such that (ank)n∈N ∈ µ for any k ∈ N.
If (µ, g) is an F-seminormed AK-space such that g is absolutely monotone, then
(µ(A), gA) is an F-seminormed AK-space. At it, if g is an F-norm (a norm) and
A is column-positive, then (µ(A), g

A
) is an F-normed (a normed) AK-space.

Proof. The assumption (ank)n ∈ µ (k ∈ N) is equivalent to {ek : k ∈ N} ⊂ µ(A).
Let u ∈ µ(A). Then the sequence A|u| is in µ and, since (µ, g) is AK-space,

lim
m

g
(
A|u| −A|u|[m]

)

= lim
m

g







m︷ ︸︸ ︷
0, . . . , 0,

∑

k

am+1,k|uk|, . . .




 = 0.

(16)

To prove that limm u[m] = u, we use the inequality

gA

(
u− u[m]

)
≤

r∑
n=1

g

( ∞∑

k=m+1

ank|uk|en

)

+ g







r︷ ︸︸ ︷
0, . . . , 0,

∞∑

k=m+1

ar+1,k|uk|, . . .






= G1
rm + G2

rm.
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Let ε > 0. Because g is absolutely monotone,

G2
mm ≤ g

(
A|u| −A|u|[m]

)
,

and by (16) we get limm G2
mm = 0. Thus there exists a number m0 ∈ N with

G2
m0,m0

< ε/2.

Now, since the series
∑

k ank|uk| converge, we can fix m1 ≥ m0 such that, for any
m ≥ m1,

G1
m0,m < ε/2.

Hence, using also the inequalities G2
m0,m ≤ G2

m0,m0
(m ≥ m0), we have that

g
A

(
u− u[m]

)
≤ G1

m0,m + G2
m0,m < ε/2 + ε/2 = ε

if m ≥ m1. Consequently, limm g
A

(
u− u[m]

)
= 0, i.e., limm u[m] = u in µ(A).

Now we can determine F-seminorms in generalized Orlicz sequence spaces
µ∃(A,ΨΦ, B, X) and µ∃(A, ΨΦ,X).

Proposition 4. Let Φ be a sequence of Orlicz functions, µ be a solid sequence
space, A = (ank) be a non-negative matrix and B be an arbitrary matrix. For a
sequence Ψ of modulus functions which satisfies one of conditions (M1) and (M2),
the following is true:

(i) If g is an absolutely monotone F-seminorm in µ, then

ĥΨ(x) = inf
{
ρ > 0 : g

(
A

(
ΨΦ(|ρ−1Bx|))) ≤ ρ

}

is an F-seminorm in µ∃(A, ΨΦ, B, X);
(ii) If the space X is normed, matrix A is column-positive and g is an absolutely

monotone F-norm in µ, then ĥΨ is an F-norm in µ∃(A,ΨΦ, B, X) whenever the
operator B satisfies (8).

If (µ, g) is an AK-space with respect to the F-seminorm (F-norm) g and A is
such that (ank)n∈N ∈ µ (k ∈ N), then the statements (i) and (ii) are true for an
arbitrary sequence Ψ of modulus functions.

In the case B = I, all previous statements hold for the space µ∃(A, ΨΦ,X) with
absolutely monotone ĥΨ .

Proof. The set µ∃(A, p, ΨΦ, B,X) we may consider as the set λ∃(Φ, T, X), where
λ = µ(A)(Ψ) is the sequence space of type (15) and T = B. So, if we topologize
λ on the basis of Proposition 3, then our statements follow by Theorem 2 and
Proposition 1 in view of Lemma 1.
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Next we apply Proposition 4 to the sequence spaces µ∃(A,p, Φ, B,X) and
µ∃(A,p, Φ,X) in the case of bounded sequence p = (pk).

Proposition 5. Let Φ, µ, A and B be the same as in Proposition 4. Let p = (pk)
be a bounded sequence of positive numbers. If infk pk > 0, then the following is
true:

(i) If g is an absolutely monotone F-seminorm in µ, then

ĥp(x) = inf{ρ > 0 : g
(
A

(
Φ

(|ρ−1Bx|))p
)
≤ ρ}

= inf{ρ > 0 : g

((∑

k

ank

(
φk

(
|̇ρ−1

∑

i

bkixi |̇
))pk

))
≤ ρ}

is an F-seminorm in µ∃(A,p, Φ, B, X);
(ii) If the space X is normed, matrix A is column-positive and g is an absolutely

monotone F-norm in µ, then ĥp is an F-norm in µ∃(A,p,Φ, B, X) whenever the
operator B satisfies (8).

If (µ, g) is an AK-space with respect to the F-seminorm (F-norm) g and A is
such that (ank)n∈N ∈ µ (k ∈ N), then the statements (i) and (ii) are true without
the restriction infk pk > 0.

In the case B = I, our statements hold for µ∃(A,p, Φ,X) with absolutely mono-
tone ĥp.

Proof. Since the functions ιpk are not moduli for pk > 1, we introduce new sequence
r = (rk) of numbers rk = pk/M (k ∈ N), where M = max{1, supk pk}. Then the
functions ιrk are moduli for any k ∈ N. In addition, the sequence Ir = (ιrk)
satisfies (M2) if and only if infk pk > 0, since (M2) reduces to limu→0+ supk urk = 0
in this case. Thus, since ΦM = (ΨM

k ), ΨM
k (t) = (Ψk(t))M , is the sequence of Orlicz

functions and µ∃(A,p,Φ, B, X) is precisely the space µ∃(A, IrΦM , B,X), it suffices
to apply Proposition 4.

Corollary 2. Let Φ, p, A and B be the same as in Proposition 5. If g is an
absolutely monotone F-seminorm in µ, then

ĥ1(x) = inf{ρ > 0 :
∑

n

∑

k

ank

(
φk

(
|̇ρ−1

∑

i

bkixi |̇
))pk

≤ ρ}

is an F-seminorm in `∃(A,p,Φ, B, X) whenever the series
∑

n ank (k ∈ N) con-
verge, and

ĥ∞(x) = inf{ρ > 0 : sup
n

∑

k

ank

(
φk

(
|̇ρ−1

∑

i

bkixi |̇
))pk

≤ ρ}

is an F-seminorm in c0
∃(A,p,Φ, B, X) whenever A satisfies (13). Moreover, if

infk pk > 0, then ĥ∞ is an F-seminorm in `∞
∃(A,p,Φ, B, X).

If the space X is normed, g is an absolutely monotone F-norm in µ, matrix A
is column-positive and B satisfies (8), then ĥ1 and ĥ∞ are F-norms.
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Proof. Since `, ‖ · ‖1) and (c0, ‖ · ‖∞) are AK-spaces but (`∞, ‖ · ‖∞) is not, the
statements of corollary follow from Proposition 5.

The authors of [1], [3], [4], [5], [6], [7], [8], [9], [10], [13], [14], [32], [35] and
[36] defined paranorms of type (4) and (5) in some spaces µ∃(A,p,Φ,X) and
µ∃(A,p, Φ, B,X) with µ ∈ {`, `∞, c0}. Özdemir and Solak [31] defined the same
type paranorm in µ∃(D,p, φ,X), where D = (dki) with dkk = k−s, s > 0 and
dki = 0 otherwise. Alternatively, Proposition 5 and Corollary 2 allow us to use
F-seminorms of type ĥp by topologization of these spaces.

A sharpened version of Proposition 5 is possible in the case if A is the unit
matrix I.

Proposition 6. Let Φ be a sequence of Orlicz functions, Ψ be a sequence of ϕ-
functions and B be a summability matrix. Let µ and λ be solid sequence spaces,
where λ is topologized by an absolutely monotone seminorm g ′. If

ψk(1) = 1 (k ∈ N), (17)

µ(Ψ) ⊂ λ (18)

and
g ′(u) ≤ 1 ⇐⇒ |uk| ≤ 1 (k ∈ N), (19)

then
hp(x) = inf

{
ρ > 0 : g ′

(
ΨΦ

(|ρ−1Bx|)) ≤ 1
}

and
h(x) = inf

{
ρ > 0 : g ′

(
Φ

(|ρ−1Bx|)) ≤ 1
}

are seminorms, with hp = h, in µ∃(ΨΦ, B, X). Thereat, hp and h are norms if X
is normed, g ′ is an absolutely monotone norm in λ and B satisfies (8).

Proof. By Theorem 2 (with T = B) we see that h is a seminorm in λ∃(Φ, B,X).
At it, h is a norm in µ∃(Φ, B, X) if g ′ is an absolutely monotone norm in λ, X is
normed and B satisfies (8). Further, by (17) we have

ψk(t) ≤ 1 ⇐⇒ t ≤ 1 (t ∈ R+, k ∈ N).

So, using also (19), we get that hp(x) = h(x) for any x ∈ λ∃(Φ, B, X). Since

µ∃(ΨΦ, B, X) ⊂ λ∃(Φ, B, X)

because of (18), hp and h are seminorms (norms) also in µ∃(ΨΦ, B,X).
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Corollary 3. Let Φ be a sequence of Orlicz functions, B be a summability matrix
and p = (pk) be a sequence of positive numbers. Then

h∞,p(x) = inf

{
ρ > 0 : sup

k

(
φk

(
|̇ρ−1

∑

i

bkixi |̇
))pk

≤ 1

}

and

h∞(x) = inf

{
ρ > 0 : sup

k
φk

(
|̇ρ−1

∑

i

bkixi |̇
)
≤ 1

}

are seminorms, with h∞,p = h∞, in generalized Orlicz sequence space
c0
∃(p, Φ, B,X). Thereat, h∞,p and h∞ are norms if X is normed and B satis-

fies (8).

Proof. By Corollary 1 the set c0
∃(p, Φ, B, X) is a generalized sequence space. Fur-

ther, Theorem 4 [24] shows, because of

ιpk(1) = 1pk = 1 (k ∈ N),

that
c0(p) ⊂ `∞.

Since, besides this, the norm ‖ · ‖∞ in `∞ satisfies (19), we can apply Proposition
6 with µ = c0, λ = `∞ and Ψ = (ιpk).

In summability theory an infinite matrix A = (ank) is called normal if ank = 0
for k > n and ann 6= 0. For example, unit matrix I and Cesàro matrix C1 are
normal. If (vk) is a given scalar sequence, then the matrix D(vk) = (dki), where
dkk = vk and dki = 0 otherwise, is known as diagonal matrix. It is clear that
a diagonal matrix D(vk) is normal if vk 6= 0 for any k ∈ N. In connection with
applications of Propositions 4 – 6 and Corollaries 2 and 3 it is essential to remark
that every non-negative normal matrix A is column-positive and the summability
operator B, defined by a normal matrix B, satisfies (8).

In [4], [7], [14], [35], [36] and [39] the authors considered the spaces of type
µ∃(A,p, Φ, B, X), where the matrix A is column-positive and the matrix B is related
to difference sequences. For fixed m, r ∈ N the difference operator ∆m

r is defined by
(see [36])

∆m
r x = (∆m

r xk), ∆m
r xk = ∆m−1

r xk −∆m−1
r xk+r, ∆0

rxk = xk (k ∈ N).

If r = 1, then ∆m
r reduces to the difference operator ∆m introduced in [15].

Since

∆m
r xk =

m∑

i=0

(−1)i

(
n

i

)
xk+ri (k ∈ N),

∆m
r is the summability operator defined by the difference matrix ∆m

r = (δkj), where
δkj = (−1)i

(
m
i

)
if j = k + ri, (0 ≤ i ≤ m, k ∈ N) and δkj = 0 otherwise. It is not
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difficult to see that (19) fails for difference operators ∆m
r . Therefore, Proposition

5 allows not to define F-norms in generalized sequence spaces µ∃(A,p, Φ, ∆m
r , X).

To overcome this difficulty we introduce a new class of summability matrices which
contains all difference matrices.

Let m ∈ N be fixed. We say that an infinite scalar matrix B = (bki) is m-normal
if, for any k ∈ N, bk,k+m 6= 0 and bki = 0 if i > k + m. For example, the difference
matrix ∆m

r is rm-normal and ∆m is m-normal. Now, if the matrix B is m-normal,
then Bx = 0, x ∈ sB(X), implies x = 0 whenever x1 = · · · = xm = 0. This
approach and the definitions of paranorms from [14], [35], [36] and [39] lead us to
the following modification of Proposition 5.

Proposition 7. Let Φ, µ, A and B be the same as in Proposition 4. Assume
that B is m-normal and p = (pk) is a bounded sequence of positive numbers. If
infk pk > 0, then the following is true:

(i) If g is an absolutely monotone F-seminorm in µ, then

h̃p(x) =
m∑

j=1

|̇xj |̇+ inf{ρ > 0 : g
(
A

((
Φ

(|ρ−1Bx|))p
))

≤ ρ}

is an F-seminorm in µ∃(A,p, Φ, B,X);
(ii) If the space X is normed, matrix A is column-positive and g is an absolutely

monotone F-norm in µ, then h̃p is an F-norm in µ∃(A,p, Φ, B, X).
If (µ, g) is an AK-space with respect to the F-seminorm (F-norm) g and A is

such that (ank)n∈N ∈ µ for any k ∈ N, then the statements (i) and (ii) are true
without the restriction infk pk > 0.

Proposition 7 and Corollary 4 determine alternative topologies for the difference
sequence spaces from [2], [7], [14], [22], [35], [36] and [39].

Stronger versions of Propositions 5 and 7 hold in the case if p = (pk) is a
constant sequence with pk = 1 (k ∈ N).

Proposition 8. Let Φ be a sequence of Orlicz functions, µ be a solid sequence
space, A = (ank) be a non-negative matrix and B be an arbitrary matrix. Then the
following is true:

(i) If g is an absolutely monotone seminorm in µ, then

hΦ(x) = inf
{
ρ > 0 : g

(
A

(
Φ

(|ρ−1Bx|))) ≤ 1
}

= inf

{
ρ > 0 : g

((∑

k

ankφk

(
|̇ρ−1

∑

i

bkixi |̇
)))

≤ 1

}

is a seminorm in µ∃(A,Φ, B, X);
(ii) If the space X is normed, matrix A is column-positive and g is an absolutely

monotone norm in µ, then hΦ is a norm in µ∃(A, Φ, B,X) whenever the operator
B satisfies (8).

If B = I, then all previous statements hold for the space µ∃(A, Φ,X) with abso-
lutely monotone hΦ .
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Proof. As it was remarked above, µ(A) is a solid sequence space which is topologized
by an absolutely monotone seminorm (norm) g

A
(u) = g (A|u|) if g is an absolutely

monotone seminorm (norm and A is column-positive). Similarly to the proof of
Proposition 4, interpreting µ∃(A,Φ, B,X) as the space λ∃(Φ, T, X) with λ = µ(A)
and T = B, we may apply Theorem 2.

Proposition 9. Let Φ, µ and A be the same as in Proposition 8, and let B be an
m-normal matrix. Then the following is true:

(i) If g is an absolutely monotone seminorm in µ, then

h̃Φ(x) =
m∑

j=1

|̇xj |̇+ inf{ρ > 0 : g
(
A

(
Φ

(|ρ−1Bx|))) ≤ 1}

=
m∑

j=1

|̇xj |̇+ inf{ρ > 0 : g

((∑

k

ankφk

(
|̇ρ−1

∑

i

bkixi |̇
)))

≤ 1}

is a seminorm in µ∃(A, Φ, B,X);
(ii) If the space X is normed, matrix A is column-positive and g is an absolutely

monotone norm in µ, then h̃Φ is an norm in µ∃(A, Φ, B, X).

Based on Proposition 9, we may state a modified variant of Corollary 3.

Corollary 4. Let Φ be a sequence of Orlicz functions, B be a summability matrix
and p = (pk) be a sequence of positive numbers. If B is m-normal, then

h̃∞,p(x) =
m∑

j=1

|̇xj |̇+ inf

{
ρ > 0 : sup

k

(
φk

(
|̇ρ−1

∑

i

bkixi |̇
))pk

≤ 1

}

and

h̃∞(x) =
m∑

j=1

|̇xj |̇+ inf

{
ρ > 0 : sup

k
φk

(
|̇ρ−1

∑

i

bkixi |̇
)
≤ 1

}

are seminorms, with h̃∞,p = h̃∞, in generalized Orlicz sequence space
c0
∃(p, Φ, B,X). Thereat, h̃∞,p and h̃∞ are norms if X is normed.

Proposition 8 generalizes the results about the topologies in various Orlicz
sequence spaces given in [16], [17], [26], [40], [41] and [42]. A space of type
µ∃(A,φ, B, X) with the m-normal matrix B = ∆m is studied in [38]. Corol-
lary 4 determines alternative topologies in a generalized difference space of type
c0
∃(p, Φ, B,X) with B = ∆m

r from [36].

Remark 2. If both A and B are non-negative matrices, then we may define the
generalized Orlicz sequence space of absolute type

λ∃[A, ΨΦ, B, X] = {x ∈ s(X) : (∃ρ > 0) A(ΨΦ(ρ−1B|x|)) ∈ λ}
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and its special variant µ∃[A,p, Φ, B, X]. For B = I it is possible to define also the
spaces of absolute type λ∃[A,ΨΦ,X] and λ∃[A,p, Φ, X], but they clearly coincide
with the spaces λ∃(A, ΨΦ,X) and µ∃(A,p, Φ,X) considered below. It is not difficult
to see that all our results remain true for these space of absolute type. For example,
if (Xk, ‖ · ‖k) (k ∈ N) are normed spaces, A is column-positive and B is normal,
then the generalized Orlicz sequence space

`∃[A, Φ, B,X]

=

{
x ∈ s(X) : (∃ρ > 0)

∑
n

∑

k

ankφk

(∑

i

bki‖ρ−1xi‖k

)
< ∞

}

is a normed space with the norm

hΦ(x) = inf

{
ρ > 0 :

∑
n

∑

k

ankφk

(∑

i

bki‖ρ−1xi‖k

)
≤ 1

}
.

Kubiak [25] considered the space `∃[I, φ, C1] named as Cesàro–Orlicz sequence space.
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