Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Filomat **25:4** (2011), 99–108 DOI: 10.2298/FIL1104099E

ON *I*-ALEXANDROFF AND *I*_g-ALEXANDROFF IDEAL TOPOLOGICAL SPACES

Erdal Ekici

Abstract

In this paper, the notions of I-Alexandroff and I_g -Alexandroff ideal topological spaces are introduced and studied. Also, characterizations and properties of I-Alexandroff and I_g -Alexandroff ideal topological spaces are investigated.

1 Introduction and preliminaries

Alexandroff spaces were first studied by Alexandroff [2]. It is a topological space in which arbitrary intersection of open sets is open. Equivalently, each singleton has a minimal neighborhood base. Alexandroff spaces have important attentions because of their use in digital topology [10], [14]. In 1998, Arenas et al. [3] introduced and studied generalized Alexandroff topological spaces. Moreover, in 2000, Arenas et al. [4] studied some weak separation axioms related with Alexandroff topological spaces. It is known that any intersection of open sets is g-open in a generalized Alexandroff topological spaces [3]. It is shown in [3] that any $T_{\frac{1}{2}}$ g-Alexandroff space is locally path-connected, first countable, orthocompact and that in any $T_{\frac{1}{2}}$ g-Alexandroff space, the notions of path-connectedness, connectedness and chain-connectedness coincide. Furthermore, Arenas et al. [3] introduced that in digital topology, Khalimsky line [9, 11], various problems are related with generalized Alexandroff spaces. In this paper, the notions of *I*-Alexandroff and I_g -Alexandroff ideal topological spaces are discussed.

In this paper, (X, τ) or (Y, σ) denote a topological space with no separation properties assumed. Cl(S) and Int(S) denote the closure and interior of S in (X, τ) , respectively for a subset S of a topological space (X, τ) . An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies

(1) $S \in I$ and $K \subset S$ implies $K \in I$,

(2) $S \in I$ and $K \in I$ implies $S \cup K \in I$ [12].

²⁰¹⁰ Mathematics Subject Classifications. 54A05, 54C08, 54D15, 54A10.

Key words and Phrases. I-Alexandroff ideal space, I_g -Alexandroff ideal space, I_g^* -closed set. Received: December 12, 2010; Revised April 4, 2011

Communicated by Ljubiša D.R. Kočinac

For a topological space (X, τ) with an ideal I on X, if P(X) is the set of all subsets of X, a set operator $(.)^* : P(X) \to P(X)$, said to be a local function [12] of $S \subset X$ with respect to τ and I is defined as follows:

 $S^*(I,\tau) = \{x \in X : N \cap S \notin I \text{ for every } N \in \tau(x)\} \text{ where } \tau(x) = \{N \in \tau : x \in N\}.$

A Kuratowski closure operator $Cl^*(.)$ for a topology $\tau^*(I,\tau)$, said to be the *-topology and finer than τ , is defined by $Cl^*(S) = S \cup S^*(I,\tau)$ [8]. We will briefly write S^* for $S^*(I,\tau)$ and τ^* or $\tau^*(I)$ for $\tau^*(I,\tau)$. For an ideal I on X, (X,τ,I) is said to be an ideal topological space or briefly an ideal space. For an ideal topological space (X,τ,I) , the collection $\{S \setminus N : S \in \tau \text{ and } N \in I\}$ is a basis for τ^* [8].

A subset S of a topological space (X, τ) is said to be g-closed in (X, τ) [13] if $Cl(S) \subset V$ whenever $S \subset V$ and V is open in (X, τ) . A subset S of a topological space (X, τ) is called g-open in (X, τ) [13] if $X \setminus S$ is g-closed. A subset S of an ideal topological space (X, τ, I) is said to be *-dense in itself [7] if $S \subset S^*$.

Definition 1. A subset S of an ideal topological space (X, τ, I) is said to be (1) I_g -closed [6] in (X, τ, I) if $S^* \subset N$ whenever $S \subset N$ and N is open in (X, τ, I) .

(2) I_g -open [6] in (X, τ, I) if $X \setminus S$ is I_g -closed.

Theorem 1. [15] For a subset S of an ideal topological space (X, τ, I) , S is I_g -open if and only if $N \subset Int^*(S)$ whenever $N \subset S$ and N is closed in X.

Theorem 2. [15] For an ideal topological space (X, τ, I) and $S \subset X$, the following properties are equivalent:

(1) S is I_q -closed,

(2) $Cl^*(S) \subset N$ whenever $S \subset N$ and N is open in X.

Definition 2. A topological space (X, τ) is said to be

(1) Alexandroff [2] if any intersection of open sets is open.

(2) generalized Alexandroff [3] if any intersection of open sets is g-open.

2 *I*-Alexandroff and I_q -Alexandroff ideal spaces

Definition 3. An ideal topological space (X, τ, I) is said to be *I*-Alexandroff if any intersection of open sets is \star -open.

Theorem 3. Let (X, τ, I) be an ideal topological space. The following properties are equivalent:

(1) (X, τ, I) is I-Alexandroff,

(2) any union of closed sets in (X, τ, I) is \star -closed.

Proof. It follows from the fact that the complement of a \star -open set is \star -closed. \Box

Definition 4. An ideal topological space (X, τ, I) is called I_g -Alexandroff if any intersection of open sets in (X, τ, I) is I_q -open.

Theorem 4. Let (X, τ, I) be an ideal topological space. If there exists a point $x \in X$ such that x has only \star -neighborhood which is X itself, then (X, τ, I) is an I_g -Alexandroff ideal space.

Proof. Suppose that there exists a point $x \in X$ such that x has only \star -neighborhood which is X itself.

Let $\{K_i : i \in I\}$ is a family of open sets in (X, τ, I) for each $i \in I$. We take $K = \bigcap_{i \in I} K_i$. Let $M \subset K$ and M be a closed set.

Suppose that $M = \emptyset$. Then we have $M \subset Int^*(K)$.

Suppose that $M \neq \emptyset$. If M = X, then $M \subset K = X$. Hence, $M \subset Int^*(K)$. If $M \neq X$, then $X \setminus M$ is an open set. It follows that $x \notin X \setminus M$ and then $x \in M$. Since $M \subset K$, then $x \in K_i$ for each $i \in I$. Since x has only \star -neighborhood which is X itself, then $K_i = X$ for each $i \in I$. Moreover, we have K = X and then $M \subset Int^*(K)$. Hence, K is I_q -open.

Thus, (X, τ, I) is an I_q -Alexandroff ideal space.

Theorem 5. Let (X, τ, I) be an ideal topological space. If (X, τ, I) is an I-Alexandroff ideal space, then (X, τ, I) is I_g -Alexandroff.

Proof. The proof follows from the fact that any \star -open set is I_q -open.

Remark 1. The reverse implication of Theorem 5 is not true in general as shown in the following example:

Example 1. Suppose that R is the set of real numbers and $\tau = \{(-\frac{1}{n}, \frac{1}{n}) : n \in N \setminus \{0\}\} \cup \{R, \emptyset\}$ where N is the set of naturel numbers. Let $I = \{\emptyset, \{3\}\}$. Then the ideal topological space (R, τ, I) is I_g -Alexandroff by Theorem 4 but (R, τ, I) is not I-Alexandroff. Furthermore, suppose that $J = \{\emptyset\}$. Arenas et al. [3] show that the topological space (R, τ) is g-Alexandroff but (R, τ) is not Alexandroff. Therefore, the ideal topological space (R, τ, J) is I_g -Alexandroff but (R, τ, J) is not I-Alexandroff.

Definition 5. A subset S of an ideal topological space (X, τ, I) is called

(1) I_g^* -closed in (X, τ, I) if $Cl(S) \subset N$ whenever $S \subset N$ and N is \star -open in (X, τ, I) .

(2) I_q^* -open in (X, τ, I) if $X \setminus S$ is I_q^* -closed.

Remark 2. Let (X, τ, I) be an ideal topological space. The following diagram holds for a subset S of X:

$$I_g^*$$
-open \longrightarrow g-open \longrightarrow I_g -open
 \uparrow \swarrow
open \longrightarrow \star -open

None of these implications is reversible as shown in the following examples and in [8].

Example 2. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. Then the set $\{c\}$ is I_g^* -open but it is nether open nor \star -open. The set $\{b, c, d\}$ is \star -open but it is not g-open. The set $\{a, c\}$ is I_g -open but it is not \star -open.

Example 3. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}\}$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. Then the set $\{a, b, d\}$ is g-open but it is not I_g^* -open.

Theorem 6. For a subset S of an ideal topological space (X, τ, I) , S is I_g^* -open if and only if $N \subset Int(S)$ whenever $N \subset S$ and N is \star -closed in (X, τ, I) .

Proof. Let S be an I_g^* -open set in (X, τ, I) . Suppose that $N \subset S$ and N is \star -closed in (X, τ, I) . It follows that $X \setminus S \subset X \setminus N$ and $X \setminus N$ is \star -open in (X, τ, I) . Since $X \setminus S$ is I_g^* -closed, then $Cl(X \setminus S) \subset X \setminus N$. We have $Cl(X \setminus S) = X \setminus Int(S) \subset X \setminus N$. Thus, $N \subset Int(S)$. The converse is similar.

Theorem 7. Let (X, τ, I) be an ideal topological space. The following properties are equivalent:

(1) (X, τ, I) is an I_g -Alexandroff ideal space,

(2) Any intersection of I_g^* -open sets in (X, τ, I) is I_g -open.

Proof. (1) \Rightarrow (2) : Let (X, τ, I) be an I_g -Alexandroff ideal space. Suppose that $\{S_i : i \in I\}$ is a family of I_g^* -open sets. We take $S = \bigcap_{i \in I} S_i$. Let $K \subset X$ be a closed set and $K \subset S$. We have $K \subset S_i$ for each $i \in I$. Since S_i is I_g^* -open set for every $i \in I$, then $K \subset Int(S_i)$ for each $i \in I$. We take $M = \bigcap_{i \in I} Int(S_i)$. Since (X, τ, I) is an I_g -Alexandroff ideal space, then $M = \bigcap_{i \in I} Int(S_i)$ is I_g -open. Since $M = \bigcap_{i \in I} Int(S_i)$ is I_g -open and $K \subset M$, then $K \subset Int^*(M)$. Hence, $Int^*(M) \subset Int^*(S)$ and thus, $K \subset Int^*(S)$. It follows that S is I_g -open.

 $(2) \Rightarrow (1)$: Suppose that any intersection of I_g^* -open sets in (X, τ, I) is I_g -open. Since every open set is I_g^* -open by Remark 2, it follows from (2) that any intersection of open sets in (X, τ, I) is I_g -open. Thus, (X, τ, I) is an I_g -Alexandroff ideal space.

Theorem 8. Let (X, τ, I) be an ideal topological space. The following properties are equivalent:

(1) (X, τ, I) is an I_g -Alexandroff ideal space,

(2) any union of I_q^* -closed sets in (X, τ, I) is I_q -closed.

Proof. It follows from Theorem 7.

Theorem 9. Let (X, τ, I) be an ideal topological space. The following properties are equivalent:

- (1) (X, τ, I) is an I_g -Alexandroff ideal space,
- (2) any union of closed sets in (X, τ, I) is I_g -closed.

Proof. It follows from the fact that the complement of an I_g -open set is I_g -closed.

Theorem 10. Let (X, τ, I) be an ideal topological space and $S \subset X$. If (X, τ, I) is an *I*-Alexandroff ideal space, then S is an *I*-Alexandroff ideal space.

Proof. Let (X, τ, I) be an *I*-Alexandroff ideal space. Suppose that $\{K_i : i \in I\}$ is a family of open sets in (S, τ_S) . We take $K = \bigcap_{i \in I} K_i$. It follows that $K_i = S \cap N_i$ where N_i is open in (X, τ, I) for each $i \in I$. Therefore, we have

$$K = \underset{i \in I}{\cap} K_i = \underset{i \in I}{\cap} (S \cap N_i) = S \cap (\underset{i \in I}{\cap} N_i).$$

Since (X, τ, I) is an *I*-Alexandroff ideal space, then $\bigcap_{i \in I} N_i$ is \star -open in (X, τ, I) . It follows that $K = S \cap (\bigcap_{i \in I} N_i)$ is \star -open in *S*. Thus, *S* is an *I*-Alexandroff ideal space.

Theorem 11. Let (X, τ, I) be an ideal topological space. If (X, τ, I) is T_1 and an I_g -Alexandroff ideal space, then (X, τ, I) is a discrete ideal space with respect to τ^* .

Proof. Let (X, τ, I) be T_1 and an I_g -Alexandroff ideal space. Suppose that $x \in X$. Since (X, τ, I) is a T_1 space, then for each $y \neq x$, there exists an open set S_y containing x such that $y \notin S_y$. It follows that $\{x\} = \bigcap_{\substack{y \neq x}} S_y$. Since (X, τ, I) is a

 T_1 -space, then $\{x\}$ is a closed set. Since (X, τ, I) is an I_g -Alexandroff ideal space, then $\{x\}$ is an I_g -open set. Since $\{x\} \subset \{x\}$, then we have $\{x\} \subset Int^*(\{x\})$. It follows that $\{x\}$ is \star -open in (X, τ, I) . Thus, (X, τ, I) is a discrete ideal space with respect to τ^* .

Theorem 12. Let (X, τ, I) be an ideal topological space. If (X, τ, I) is a discrete ideal space with respect to τ^* , then (X, τ, I) is an I_q -Alexandroff ideal space.

Proof. Let (X, τ, I) be a discrete ideal space with respect to τ^* . Suppose that $\{K_i : i \in I\}$ is a family of open sets in (X, τ, I) . It follows that $\bigcap_{i \in I} K_i$ is \star -open in (X, τ, I) . By Remark 2, $\bigcap_{i \in I} K_i$ is I_g -open. Hence, (X, τ, I) is an I_g -Alexandroff ideal space.

Remark 3. The following example shows that the reverse of Theorem 11 is not true in general:

Example 4. Suppose that R is the set of real numbers and $\tau = \{(-\frac{1}{n}, \frac{1}{n}) : n \in N \setminus \{0\}\} \cup \{R, \emptyset\}$ where N is the set of naturel numbers. Let I = P(X) which is the power set of X. Then (X, τ, I) is a discrete ideal space with respect to τ^* but (X, τ, I) is not a T_1 -space.

Definition 6. [1] Let (X, τ, I) be an ideal topological space. (X, τ, I) is said to be an F^* -space if every open subset of (X, τ, I) is \star -closed.

Theorem 13. Let (X, τ, I) be an ideal topological space. If (X, τ, I) is a T_1 and F^* -space, then (X, τ, I) is a discrete ideal space with respect to τ^* .

Proof. Suppose that (X, τ, I) is a T_1 and F^* -space. Since (X, τ, I) is a T_1 space, then $\{x\}$ is a closed set for every $x \in X$. Since (X, τ, I) is an F^* -space, then $\{x\}$ is a \star -open set for every $x \in X$. It follows that (X, τ, I) is a discrete ideal space with respect to τ^* .

Theorem 14. [15] For an ideal topological space (X, τ, I) , every subset of X is I_q -closed if and only if every open set is \star -closed.

Theorem 15. Let (X, τ, I) be an ideal topological space. The following properties are equivalent:

- (1) (X, τ, I) is an F^* -space,
- (2) every subset of (X, τ, I) is an I_q -closed set.

Proof. It follows by Theorem 14.

Theorem 16. Let (X, τ, I) be an ideal topological space. If (X, τ, I) is an F^* -space, then (X, τ, I) is an I_q -Alexandroff ideal space.

Proof. Suppose that (X, τ, I) is an F^* -space. By Theorem 15, every subset of (X, τ, I) is an I_g -closed set. It follows that (X, τ, I) is an I_g -Alexandroff space. \Box

Definition 7. [5] A topological space (X, τ) is said to be an R_0 -space if $Cl(\{x\}) \subset U$ for each $x \in X$ and each open set U with $x \in U$.

Theorem 17. Let (X, τ, I) be an ideal topological space. If (X, τ, I) is an R_0 and I_g -Alexandroff ideal space, then (X, τ, I) is an F^* -space.

Proof. Let (X, τ, I) be an R_0 and I_g -Alexandroff ideal space. Suppose that $S \subset X$ is an open set. Since (X, τ, I) is an R_0 space, then we have $Cl(\{x\}) \subset S$ for every $x \in S$. It follows that

$$S = \underset{x \in S}{\cup} Cl(\{x\}).$$

Since (X, τ, I) is an I_g -Alexandroff ideal space, then S is an I_g -closed set. Since $S \subset S$ and S is I_g -closed, then we have $Cl^*(S) \subset S$. It follows that S is \star -closed. Thus, (X, τ, I) is an F^* -space.

Theorem 18. Let (X, τ, I) be an ideal topological space and $M \subset X$. If (X, τ, I) is an I_g -Alexandroff ideal space and M is closed, then M is an I_g -Alexandroff ideal space.

Proof. Let (X, τ, I) be an I_g -Alexandroff space and $M \subset X$ be a closed set. Suppose that $\{S_i : i \in I\}$ is a family of open sets in (M, τ_M) . We take $S = \bigcap_{i \in I} S_i$. It follows that $S_i = M \cap K_i$ where K_i is an open set (X, τ, I) for each $i \in I$. Let $N \subset M$ be a closed set in (M, τ_M) and $N \subset S$. It follows that N is a closed set in (X, τ, I) and $N \subset \bigcap_{i \in I} K_i$. Since (X, τ, I) is an I_g -Alexandroff ideal space, then we have $N \subset Int^*(\bigcap_{i \in I} K_i)$. Also, we have

$$M \cap Int^*(\underset{i \in I}{\cap} K_i) \subset S.$$

Since $M \cap Int^*(\cap_{i \in I} K_i)$ is a \star -open set in M, then $N \subset Int^*_M(S)$. It follows that S is I_g -open in M. Hence, M is an I_g -Alexandroff ideal space. \Box

Remark 4. Arenas et al. [3] show that any subset of a generalized Alexandroff space (X, τ) need not be a generalized Alexandroff space. So, for the ideal $J = \{\emptyset\}$ and hence for any ideal I on X, any subset of an I_g -Alexandroff ideal space (X, τ, I) need not be an I_g -Alexandroff ideal space.

3 The relationships

Definition 8. A function $f : (X, \tau, I) \to (Y, \sigma, J)$ is said to be \star -closed if f(A) is \star -closed in (Y, σ, J) for every \star -closed subset A of (X, τ, I) .

Theorem 19. Let $f : (X, \tau, I) \to (Y, \sigma, J)$ be a continuous and \star -closed surjective function. If (X, τ, I) is an I-Alexandroff ideal space, then (Y, σ, J) is an I-Alexandroff ideal space.

Proof. Suppose that $f: (X, \tau, I) \to (Y, \sigma, J)$ is a continuous and *-closed function. Let (X, τ, I) be an *I*-Alexandroff ideal space. Suppose that $\{M_i: i \in I\}$ is a family of closed sets in (Y, σ, J) . Since $f: (X, \tau, I) \to (Y, \sigma, J)$ is continuous, then $N = \bigcup_{i \in I} f^{-1}(M_i)$ is a *-closed set in (X, τ, I) . We take $M = \bigcup_{i \in I} M_i$. Since $f: (X, \tau, I) \to (Y, \sigma, J)$ is a *-closed function, then

$$f(N) = f(\bigcup_{i \in I} f^{-1}(M_i)) = M$$

is \star -closed. It follows that (Y, σ, J) is an *I*-Alexandroff ideal space.

Theorem 20. Let (X, τ, I) be an ideal topological space and $S \subset X$ be I_g -closed. If $f : (X, \tau, I) \to (Y, \sigma, J)$ is a continuous and \star -closed function, then f(S) is an I_g -closed set in Y

Proof. Suppose that $S \subset X$ is a I_g -closed set and $f : (X, \tau, I) \to (Y, \sigma, J)$ is a continuous and \star -closed function. Let $f(S) \subset K$ where K is open in (Y, σ, J) . It follows that $S \subset f^{-1}(K)$. Since $f : (X, \tau, I) \to (Y, \sigma, J)$ is a continuous function and S is an I_g -closed set, then we have $Cl^*(S) \subset f^{-1}(K)$. Moreover, we have $f(Cl^*(S)) \subset f(f^{-1}(K)) \subset K$. Since f is a \star -closed function, then

$$Cl^*(f(S)) \subset Cl^*(f(Cl^*(S))) = f(Cl^*(S)) \subset K.$$

It follows that $Cl^*(f(S)) \subset K$ and hence f(S) is an I_q -closed set in (Y, σ, J) . \Box

Theorem 21. Let $f : (X, \tau, I) \to (Y, \sigma, J)$ be a continuous and \star -closed surjective function. If (X, τ, I) is an I_g -Alexandroff ideal space, then (Y, σ, J) is an I_g -Alexandroff ideal space.

Proof. Suppose that $f: (X, \tau, I) \to (Y, \sigma, J)$ is a continuous and *-closed surjective function. Let (X, τ, I) be an I_g -Alexandroff ideal space and $\{M_i: i \in I\}$ be a family of closed sets in (Y, σ, J) . Since $f: (X, \tau, I) \to (Y, \sigma, J)$ is a continuous function, then $K = \underset{i \in I}{\cup} f^{-1}(M_i)$ is an I_g -closed set in (X, τ, I) . We take $M = \underset{i \in I}{\cup} M_i$. It follows from Theorem 20 that, $f(K) = f(\underset{i \in I}{\cup} f^{-1}(M_i)) = M$ is an I_g -closed set. Thus, (Y, σ, J) is an I_g -Alexandroff ideal space.

Theorem 22. [15] Let (X, τ, I) be a T_1 ideal topological space and $A \subset X$. If A is an I_q -closed set in (X, τ, I) , then A is \star -closed.

Theorem 23. For a T_1 ideal topological space (X, τ, I) , the following properties are equivalent:

- (1) (X, τ, I) is an I-Alexandroff ideal space,
- (2) (X, τ, I) is an I_g -Alexandroff ideal space.

Proof. Since any I_g -closed set is \star -closed in a T_1 ideal topological space (X, τ, I) , then by Remark 2 and Theorem 22, (X, τ, I) is an *I*-Alexandroff ideal space if and only if (X, τ, I) is an I_g -Alexandroff ideal space.

Theorem 24. [15] Let (X, τ, I) be an ideal topological space and $A \subset X$. If A is \star -dense in itself and I_g -closed in (X, τ, I) , then A is g-closed.

Theorem 25. Let (X, τ, I) be an ideal topological space. Suppose that every subset of (X, τ, I) is \star -dense in itself. Then the following properties are equivalent:

(1) (X, τ, I) is an I_q -Alexandroff ideal space,

(2) (X, τ, I) is a generalized Alexandroff space.

Proof. Since every subset is *-dense in itself, then by Remark 2 and Theorem 24, (X, τ, I) is an I_g -Alexandroff ideal space if and only if (X, τ, I) is a generalized Alexandroff space.

Theorem 26. [6] Let (X, τ, I) be an ideal topological space where $I = \{ \oslash \}$ and $A \subset X$. Then A is I_g -closed if and only if A is g-closed.

Theorem 27. For an ideal topological space (X, τ, I) where $I = \{\emptyset\}$, the following properties are equivalent:

- (1) (X, τ, I) is an I_g -Alexandroff ideal space,
- (2) (X, τ, I) is a generalized Alexandroff space.

Proof. Let (X, τ, I) be an ideal topological space where $I = \{ \oslash \}$ and $S \subset X$. Since S is an I_g -closed set if and only if S is a g-closed set by Theorem 26, then (X, τ, I) is an I_g -Alexandroff ideal space if and only if (X, τ, I) is a generalized Alexandroff space.

Theorem 28. Let (X, τ, I) be an ideal topological space and $I = \{ \oslash \}$. Then the following properties are equivalent:

- (1) (X, τ, I) is an Alexandroff space,
- (2) (X, τ, I) is an I-Alexandroff ideal space.

Proof. Since $I = \{ \oslash \}$, then we have $\tau = \tau^*$. It follows that (X, τ, I) is an Alexandroff space if and only if (X, τ, I) is an *I*-Alexandroff ideal space.

Acknowledgement. I would like to express my sincere gratitude to the referees.

References

- A. Acikgoz, S. Yuksel, I.L. Reilly, A decomposition of continuity on F^{*}-spaces and mappings on SA^{*}-spaces, SDU Fen Edb. Fak. Fen Der. 3 (2008), 51–59.
- [2] P. Alexandroff, *Diskrete Räume*, Mat. Sb. 2 (1937), 501–518.
- [3] F.G. Arenas, J. Dontchev, M. Ganster, On some weaker forms of Alexandroff spaces, Arabian J. Sci. Eng. 23 (1A) (1998), 79–89.
- [4] F.G. Arenas, J. Dontchev, M.L. Puertas, *Idealization of some weak separation axioms*, Acta Math. Hungar. 89 (2000), 47–53.
- [5] A. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly 68 (1961), 886–893.
- [6] J. Dontchev, M. Ganster, T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica 49 (1999), 395–401.
- [7] E. Hayashi, Topologies defined by local properties, Math. Ann. 156 (1964), 205– 215.
- [8] D. Janković, T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990), 295–310.
- [9] E.D. Khalimsky, R. Kopperman, P.R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl. 36 (1990), 1–17.
- [10] R. Kopperman, The Khalimsky line in digital topology. In: O, Y.-L., et al.(eds.) Shape in Picture: Mathematical Description of Shape in Grey-Level Images. NATO ASI Series. Computer and Systems Sciences, vol. 126, pp.3-20. Springer, Berlin Heidelberg NewYork (1994)
- [11] V. Kovalevsky, R. Kopperman, Some topology-based image processing algorithms, Annals of the New York Academy of Sciences 728 (1994), 174–182.
- [12] K. Kuratowski, Topology, Vol. I, Academic Press, NewYork, 1966.
- [13] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19 (1970), 89–96.
- [14] E. Melin, Digital surfaces and boundaries in Khalimsky spaces, J. Math. Imaging Vision 28 (2007), 169–177.

[15] M. Navaneethakrishnan, J.P. Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar. 119 (2008), 365–371.

Erdal Ekici

Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale, Turkey *E-mail*: eekici@comu.edu.tr

108