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A New Version of Zagreb Indices

Modjtaba Ghorbani ∗ and Mohammad A. Hosseinzadeh

Abstract

The Zagreb indices have been introduced by Gutman and Trinajstić as

M1(G) =
∑

v∈V (G)

(dG(v))2 and M2(G) =
∑

uv∈E(G)

dG(u)dG(v), where dG(u) de-

notes the degree of vertex u. We now define a new version of Zagreb indices

as M∗
1 (G) =

∑

uv∈E(G)

[εG(u)+ εG(v)] and M∗
2 (G) =

∑

uv∈E(G)

εG(u)εG(v), where

εG(u) is the largest distance between u and any other vertex v of G. The goal
of this paper is to further the study of these new topological index.

1 Introduction

A graph is a collection of points and lines connecting a subset of them. The points
and lines of a graph are also called vertices and edges of the graph, respectively.
The vertex and edge sets of a graph G are denoted by V (G) and E(G), respectively.
A molecular graph is a simple graph such that its vertices correspond to the
atoms and the edges to the bonds. Note that hydrogen atoms are often omitted.
Chemical graph theory is a branch of mathematical chemistry which has an
important effect on the development of the chemical sciences.

By IUPAC terminology, a topological index is a numerical value associated
with chemical constitution purporting for correlation of chemical structure with
various physical properties, chemical reactivity or biological activity. In an exact
phrase, if Graph denotes the class of all finite graphs then a topological index is
a function Top from Graph into real numbers with this property that Top(G) =
Top(H), if G and H are isomorphic. Obviously, the number of vertices and the
number of edges are topological index. The Wiener index [14] is the first reported
distance based topological index defined as half sum of the distances between all
the pairs of vertices in a molecular graph.

If x, y ∈ V (G) then the distance dG(x, y) between x and y is defined as the
length of any shortest path in G connecting x and y. For a vertex u of V (G) its
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eccentricity εG(u) is the largest distance between u and any other vertex v of G,
εG(u) = maxv∈V (G) dG(u, v). The maximum eccentricity over all vertices of G is
called the diameter of G and denoted by D(G). The eccentric connectivity
index ξ(G) of a graph G is defined as

ξ(G) =
∑

u∈V (G)

dG(u)εG(u),

where dG(u) denotes the degree of vertex u in G, i. e., the number of its neighbors
in G. When the vertex degrees are not taken into account, we obtain the total
eccentricity of the graph G, ζ(G) =

∑
u∈V (G) εG(u). For k-regular graphs those

two quantities are related as ξ(G) = kζ(G). We refer the reader to [2, 5, 7, 8, 15] for
explicit formulas for the eccentric connectivity index of various families of graphs.
A vertex u ∈ V (G) is well-connected if εG(u) = 1, i.e., if it is adjacent to all other
vertices in G.

The Zagreb indices have been introduced more than thirty years ago by Gutman
and Trinajstić [3, 10]. They are defined as:

M1(G) =
∑

v∈V (G)(dG(v))2 and M2(G) =
∑

uv∈E(G) dG(u)dG(u).

Now we define a new version of Zagreb indices as follows:

M∗
1 (G) =

∑

uv∈E(G)

[εG(u) + εG(v)],

M∗∗
1 (G) =

∑

v∈V (G)

(εG(v))2,

M∗
2 (G) =

∑

uv∈E(G)

εG(u)εG(v).

Here, our notation is standard and mainly taken from standard books of graph
theory such as, e.g., [13]. All graphs considered in this paper are simple and con-
nected. The aim of this paper is to compute these new topological indices for some
graph operations. To do this, we first consider the following examples:

Example 1. Let Kn be the complete graph on n vertices. Then for every
v ∈ V (Kn), εG(v) = 1. This implies that ζ(Kn) = n, M∗

1 (Kn) = n(n − 1),
M∗

2 (Kn) = n(n− 1)/2 and M∗∗
1 (Kn) = n.

Example 2. Let Cn denote the cycle of length n. It is easy to see that for
every v ∈ V (Cn), εG(v) = bn/2c. Hence, ζ(Cn) = nbn

2 c, M∗
1 (Cn) = 2nbn/2c and

M∗∗
1 (Cn) = M∗

2 (Cn) = nbn/2c2.

Example 3. Let Sn = K1,n be the star graph with n + 1 vertices. The central
vertex has degree n and eccentricity 1, while the remaining n vertices have degree
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1 and eccentricity 2. Hence, ζ(Sn) = 2n + 1, M∗
1 (Sn) = 3n, M∗

2 (Sn) = 2n and
M∗∗

1 (Sn) = 4n + 1.

Example 4. A wheel Wn is a graph of order n + 1 which contains a cycle on
n vertices and a central vertex connected to each vertex of the cycle. Again, the
central vertex has degree n and eccentricity 1, while the peripheral vertices have
degree 3 and eccentricity 2. So, ζ(Wn) = 2n+1, M∗

1 (Wn) = 7n, M∗
2 (Wn) = 6n and

M∗∗
1 (Wn) = 4n + 1.

Example 5. Let Pn be the path on n ≥ 3 vertices. Then

ζ(Pn) =
{

n(3n− 2)/4 2|n
(n− 1)(3n + 1)/4 2 6 |n ,

M∗
1 (Pn) =

{
(3n2 − 6n + 4)/2 2|n

3(n− 1)2/2 2 6 |n ,

M∗
2 (Pn) =

{
n(n− 2)(7n− 10)/12 + n2/4 2|n

(n− 1)(7n2 − 14n + 3)/12 2 6 |n ,

M∗∗
1 (Pn) =

{
n(n− 1)(7n− 2)/12 2|n

(n− 1)(7n2 − 2n− 3)/12 2 6 |n .

2 Main Results

In this section we define some graph operations [9] and then we compute the Zagreb
indices for them.

Cartesian product

The Cartesian product of two graphs G1 and G2 is denoted by G1¤G2 has
the vertex set V (G1) × V (G2) and, two vertices u = (u1, u2) and v = (v1, v2)
are connected by an edge if and only if either ([u1 = v1 and u2v2 ∈ E(G2)]) or
([u2 = v2 and u1v1 ∈ E(G1)]). In other word, |E(G1¤G2)| = |E(G1)||V (G2)| +
|E(G2)||V (G1)|. The degree of a vertex (u1, u2) of G1¤G2 is as follows:

dG1¤G2(u1, u2) = dG1(u1) + dG2(u2).

Lemma 6. εG1¤G2(u1, u2) = εG1(u1) + εG2(u2).
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Proof. It is clear that the eccentricity of a vertex (u1, u2) ∈ V (G1¤G2) cannot
exceed the sum of the eccentricities of its projections u1 and u2. On the other hand,
this upper bound is attained for (w1, w2), where wi is the vertex on which ε(ui) is
attained, for i = 1, 2. This proves the claim.

The Cartesian product of more than two graphs is denoted by
∏s

i=1 Gi, in which∏s
i=1 Gi = G1¤ . . . ¤Gs = (G1¤ . . . ¤Gs−1)¤Gs. If G1 = G2 = ... = Gs = G, we

have the s-th Cartesian power of G and denote it by Gs.

Lemma 7.ε¤k
i=1Gi

((u1, · · · , uk)) =
k∑

i=1

εGi(ui).

Theorem 8.

M∗
2 (¤n

k=1Gi) =
n∑

k=1

M∗
1 (Gk)

n∑

i=1,i 6=k

n∏

j=1,j 6=i,k

|V (Gj)|ζ(Gi)

+
n∑

k=1

|E(Gk)|
n∑

i=1,i6=k

n∏

j=1,j 6=i,k

|V (Gj)|M∗∗
1 (Gi)

+
n∑

k=1

M∗
2 (Gk)

n∏

i=1,i 6=k

|V (Gi)|

+ 2
n∑

k=1

|E(Gk)|
i,j 6=k∑

1≤i<j≤n

n∏

r=1,r 6=i,j,k

|V (Gr)|ζ(Gi)ζ(Gj).

Proof. Let a = (a1, · · · , ak) and b = (b1, · · · , bk). Then we have

M∗
2 (¤n

k=1Gi) =
∑

ab∈E(¤n
k=1Gi)

ε¤n
k=1Gi

(a)ε¤n
k=1Gi

(b)

=
n∑

k=1

( ∑

a1∈V (G1)

· · ·
∑

akbk∈E(Gk)

· · ·
∑

an∈V (Gn)

((
εGk

(ak)

+ εGk
(bk)

) n∑

i=1,i6=k

(
εGi(ai)

)
+

n∑

i=1,i6=k

(εGi(ai))2
))

+
n∑

k=1

( ∑

a1∈V (G1)

· · ·
∑

akbk∈E(Gk)

· · ·
∑

an∈V (Gn)

((
εGk

(ak)εGk
(bk)

+ 2
i,j 6=k∑

1≤i<j≤n

εGi(ai)εGj (bj)
)))

. ¤
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Corollary 9. Let G and H be graphs. Then

M∗
2 (G¤H) = M∗

1 (G)ζ(H) + M∗
1 (H)ζ(G) + |V (H)|M∗∗

1 (G) + |V (G)|M∗∗
1 (H)

+ |V (H)|M∗
2 (G) + |V (G)|M∗∗

1 (H).

Example 10. A Hamming graph Hn1,n2,··· ,ns
is defined as Hn1,n2,··· ,ns

=

¤s
i=1Kni

. So, M∗
2 (Hn1,n2,··· ,ns

) =
s∑

k=1

s2

(
nk

2

) s∏

i=1,i 6=k

ni. For n1 = n2 · · · = ns = 2,

we achieve the s-dimensional hypercubes Qs and so, M∗
2 (Qs) = s32s−1.

Example 11. Nanotubes and nanotori covered by C4 are arisen as Cartesian
product of a path and a cycle, two cycles, respectively. By Combining examples 2
and 5 with Corollary 9 we obtain the following explicit formulas for nanotubes and
nanotori. We denote R = Pn¤Cm and S = Ck¤Cm and assume n ≥ 3. Then

M∗
2 (R) =





(2n− 1)mbm/2c2 + (3n2 − 4n + 2)mbm/2c
+nm(7n2 − 15n + 11)/6 2|n
(2n− 1)mbm/2c2 + (n− 1)(3n− 1)mbm/2c
+nm(n− 1)(7n− 8)/6 2 6 |n

,

M∗
2 (S) = 2km

(
bm/2c2 + bk/2c2 + 2bm/2cbk/2c

)
.

Disjunction and Symmetric Difference

The disjunction G1 ∨G2 of two graphs G1 and G2 is the graph with vertex set
V (G1)× V (G2) in which (u1, u2) is adjacent to (v1, v2) whenever u1 is adjacent to
v1 in G1 or u2 is adjacent to v2 in G2. So,

|E(G ∨H)| = |E(G)||V (H)|2 + |E(H)||V (G)|2 − 2|E(G)||E(H)|.
The symmetric difference G1⊕G2 of two graphs G1 and G2 is the graph with vertex
set V (G1)× V (G2) in which (u1, u2) is adjacent to (v1, v2) whenever u1 is adjacent
to v1 in G1 or u2 is adjacent to v2 in G2, but not both. From definition one can see
that

|E(G1 ⊕G2)| = |E(G1)||V (G2)|2 + |E(G2)||V (G1)|2 − 4|E(G1)||E(G2)|.
The distance between any two vertices of a disjunction or a symmetric difference
cannot exceed 2. If none of the components contains well-connected vertices, the
eccentricity of all vertices is constant and equal to 2.

Lemma 12. Let G1 and G2 be two graphs without well-connected vertices.
Then εG1⊕G2((u1, u2)) = εG1∨G2((u1, u2)) = 2.

Theorem 13. Let G and H be two graphs without well-connected vertices.
Then

M∗
2 (G ∨H) = 4

(
|E(G)||V (H)|2 + |E(H)||V (G)|2 − 2|E(G)||E(H)|

)
,
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M∗
2 (G⊕H) = 4

(
|E(G)||V (H)|2 + |E(H)||V (G)|2 − 4|E(G)||E(H)|

)
.

Proof.

M∗
2 (G ∨H) =

∑

(u1,u2)(v1,v2)∈E(G∨H)

εG∨H((u1, u2))εG∨H((v1, v2))

= 4
(
|E(G)||V (H)|2 + |E(H)||V (G)|2 − 2|E(G)||E(H)|

)
,

M∗
2 (G⊕H) =

∑

(u1,u2)(v1,v2)∈E(G⊕H)

εG⊕H((u1, u2))εG⊕H((v1, v2))

= 4
(
|E(G)||V (H)|2 + |E(H)||V (G)|2 − 4|E(G)||E(H)|

)
.

Join

The join G = G1 + G2 of graphs G1 and G2 with disjoint vertex sets V1 and
V2 and edge sets E1 and E2 is the graph union G1 ∪ G2 together with all the
edges joining V1 and V2. The definition generalizes to the case of s ≥ 3 graphs
in a straightforward manner. The following result is a direct consequence of the
definition of join.

Lemma 14. If none of Gi, i = 1, 2, · · · , s contains well-connected vertices, then
for every u ∈ V (G1 + · · ·+ Gs) we have εG1+···+Gs(u) = 2.

The following formula for the number of edges is verified by induction on s.
Lemma 15.

|E(G1 + · · ·+ Gs)| =
s∑

i=1

|E(Gi)|+ 1
2

s∑

i=1

|V (Gi)|
s∑

j=1,j 6=i

|V (Gj)|.

Theorem 16. Let Gi(i = 1, · · · , s) be graphs without well - connected vertices,
then

M∗
2 (G1 + · · ·+ Gs) = 4|E(G1 + · · ·+ Gs)|.

Proof. By using Lemma 15 the proof is clear.

Composition

The composition G = G1[G2] of graphs G1 and G2 with disjoint vertex sets V1

and V2 and edge sets E1 and E2 is the graph with vertex set V (G1) × V (G2) and
u = (u1, v1) is adjacent to v = (u2, v2) whenever u1 is adjacent to u2 or u1 = u2 and
v1 is adjacent to v2. So, |E(G1[G2])| = |E(G1)||V (G2)|2 + |E(G2)||V (G1)|. The
asymmetric nature of composition is reflected in the fact that the eccentricity of a
vertex of G1[G2] is mostly inherited from the ”scaffold” graph G1. The situation is
particularly simple when G1 does not contain any well-connected vertices.
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Lemma 17. If G1 does not contain well-connected vertices, then

εG1[G2]((u, v)) = εG1(u).

Proof. Let us consider two vertices, (u1, u2) and (v1, v2) of G1[G2]. Consider
first the case u1 6= u2. Since dG1[G2]((u1, u2), (v1, v2)) = 1 whenever u1 is adjacent
to v1 in G1, it is clear that the distance between any two vertices in G1[G2] is the
same as the distance between their projections to G1. Moreover, their distances is
at least 2. It remains to consider the case u1 = u2. If u2 is not well-connected in
G2, then any other vertex in the same copy of G2 can still be reached in at most 2
steps.

Theorem 18. Let G1 does not contain well-connected vertices, then

M∗
2 (G1[G2]) = |V (G2)|2M∗

2 (G1) + |E(G2)|M∗∗
1 (G1).

Proof.

M∗
2 (G1[G2]) =

∑

(u1,u2)(v1,v2)∈E(G1[G2])

εG1[G2]((u1, u2))εG1[G2]((v1, v2))

=
∑

u2,v2∈V (G2)

∑

u1v1∈E(G1)

εG1(u1)εG1(v1)

+
∑

u1∈V (G1)

∑

u2v2∈E(G2)

(
εG1(u1)

)2

= |V (G2)|2M∗
2 (G1) + |E(G2)|M∗∗

1 (G1).
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[8] A. Ilić and I. Gutman, Eccentric connectivity index of chemical trees, MATCH
Commun. Math. Comput. Chem., to appear.
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