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Abstract. Weakly linear systems of fuzzy relation inequalities and equations have recently emerged from
research in the theory of fuzzy automata. From the general aspect of the theory of fuzzy relation equations
and inequalities homogeneous and heterogeneous weakly linear systems have been discussed in two recent
papers. Here we give a brief overview of the main results from these two papers, as well as from a series
of papers on applications of weakly linear systems in the state reduction of fuzzy automata, the study of
simulation, bisimulation and equivalence of fuzzy automata, and in the social network analysis. Especially,
we present algorithms for computing the greatest solutions to weakly linear systems.

1. Introduction

Systems of fuzzy relation equations and inequalities were first studied by Sanchez, who used them in
medical research (cf. [122–125]). Later they found a much wider field of application, and nowadays they are
used in fuzzy control, discrete dynamic systems, knowledge engineering, identification of fuzzy systems,
prediction of fuzzy systems, decision-making, fuzzy information retrieval, fuzzy pattern recognition, image
compression and reconstruction, and in many other areas (cf., e.g., [46, 49, 55, 56, 88, 110, 112]).

Most frequently studied systems were the ones that consist of equations and inequalities with one side
containing the composition of an unknown fuzzy relation and a given fuzzy relation or fuzzy set, while
the other side contains only another or the same given fuzzy relation or fuzzy set. Such systems are called
linear systems. Solvability and methods for computing the greatest solutions to linear systems of fuzzy rela-
tion equations and inequalities were first studied in the above mentioned papers by Sanchez, who discussed
linear systems over the Gödel structure. Later, linear systems over more general structures of truth values
were investigated, including those over complete residuated lattices (cf., e.g., [37, 46, 87, 113, 115–117]).

More complex non-linear systems of fuzzy relation inequalities and equations, called weakly linear, have
been recently introduced and studied in [76, 78]. Basically, weakly linear systems discussed in [76] consist
of inequalities and equations of the form Ai ◦X ⊲⊳ X ◦Ai and X 6M, where Ai (i ∈ I) and M are given fuzzy
relations on a set U, X is an unknown fuzzy relation on U, ◦ denotes the composition of fuzzy relations, and
⊲⊳ is one of 6, > and =. Besides, these systems can also include additional inequalities and equations of the
form Ai ◦ X−1 ⊲⊳ X−1 ◦ Ai and X−1

6 M, where X−1 denotes the converse (inverse, transpose) relation of X.
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Such weakly linear systems, which include only fuzzy relations on a single set, are called homogeneous. On
the other hand, heterogeneous weakly linear systems, studied in [78], include fuzzy relations on two possible
different sets and an unknown is a fuzzy relation between these two sets. Two basic types of heterogeneous
weakly linear systems are systems of the form X−1 ◦ Ai 6 Bi ◦ X−1 (i ∈ I), X 6 N, or Ai ◦ X 6 X ◦ Bi (i ∈ I),
X 6 N, where Ai and Bi (i ∈ I) are respectively given fuzzy relations on non-empty sets U and V, N is a given
fuzzy relation between U and V, and X is an unknown fuzzy relation between U and V. The remaining
four types of heterogeneous weakly linear systems are obtained by combining the previous two types of
systems (for X and X−1).

Both homogeneous and heterogeneous weakly linear systems have their origins in the theory of fuzzy
automata. Homogeneous weakly linear systems emerged from the research aimed at the reduction of the
number of states of fuzzy finite automata, carried out in [40, 41, 129], whereas heterogeneous weakly linear
systems turned up from the study of simulation, bisimulation and equivalence of fuzzy automata, conducted
in [38, 39]. In addition, weakly linear systems play an important role in the social network analysis, as will
be shown in Section 7.

From a general viewpoint, weakly linear systems have been discussed in [76, 78]. There has been proved
that every weakly linear system (either homogeneous or heterogeneous), with a complete residuated lattice
as the underlying structure of truth values, has the greatest solution, and an algorithm has been provided
for computing this greatest solution. Incidentally, the greatest solution may be the empty relation, and
the algorithm detects this situation outputting the empty relation. The mentioned algorithm is based on
the computing of the greatest post-fixed point, contained in a given fuzzy relation, of an isotone function
on the lattice of fuzzy relations. The algorithm represents an iterative procedure whose each single step
can be viewed as solving a particular linear system, and for this reason these systems were called weakly
linear. This iterative procedure terminates in a finite number of steps whenever the underlying complete
residuated lattice is locally finite, for example, when dealing with Boolean or Gödel structure. Otherwise,
some sufficient conditions under which the procedure ends in a finite number of steps have been deter-
mined. If the underlying complete residuated lattice satisfies infinite distributive laws for the supremum and
multiplication over infimum, for example, when dealing with a structure defined by a continuous t-norm
on the real unit interval [0, 1] (an BL-algebra on [0, 1]), the greatest solution can be obtained as the infimum
of fuzzy relations outputted after each single step of the iterative procedure.

In cases when the mentioned procedure fails to terminate in a finite number of steps, it is reasonable
to search for the greatest crisp solutions to the system. By modifying the original algorithm, one obtains
an algorithm for computing the greatest crisp solution to the system, which terminates in a finite number
of steps independently on the properties of the underlying complete residuated lattice, and works even
for more general structures of truth values. However, there are examples of weakly linear systems having
non-trivial fuzzy solutions, but having no non-trivial crisp solutions.

It is worth noting that there is a very nice relationship between heterogeneous and homogeneous weakly
linear systems (cf. [78]). Namely, if a fuzzy relation R is a solution to a heterogeneous weakly linear system,
then R ◦ R−1 and R−1 ◦ R are solutions to two related homogeneous weakly linear systems. In addition, a
uniform fuzzy relation R is a solution to a heterogeneous weakly linear system if and only if its kernel and
co-kernel are solutions to related homogeneous weakly linear systems and there is a special isomorphism
(induced by R) between the corresponding quotient fuzzy relational systems.

The structure of the paper is as follows. In Section 2 we introduce basic notions and notation concerning
fuzzy sets, fuzzy relations, uniform fuzzy relations, residuated functions, and residuated semigroups and
semimodules. In Section 3 we present the main results on linear systems of fuzzy relational inequalities
and equations. Section 4 contains definitions of homogeneous and heterogeneous weakly linear systems
and results describing their basic properties. Especially, theorems on the existence of the greatest solutions
and equivalent forms of representation of these systems are shown. Section 5 presents algorithms for com-
puting the greatest solutions to weakly linear systems. In Section 6 we deal with quotient fuzzy relational
systems and establish relationships between solutions to heterogeneous and homogeneous weakly linear
systems. Finally, in Section 7 we show applications of weakly linear systems in the theory of fuzzy au-
tomata, especially in the state reduction and the study of simulation, bisimulation and equivalence of fuzzy
automata, as well as in the social network analysis.
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2. Preliminaries

In this section we introduce notions and notation needed in the future work. We introduce basic con-
cepts concerning fuzzy sets, fuzzy relations, uniform fuzzy relations, residuated functions, and residuated
semigroups and semimodules.

2.1. Fuzzy sets

The terminology and basic notions in this section are according to [9, 10, 56, 88].
A residuated lattice is an algebraL = (L,∧,∨,⊗,→, 0, 1) such that

(L1) (L,∧,∨, 0, 1) is a lattice with the least element 0 and the greatest element 1,

(L2) (L,⊗, 1) is a commutative monoid with the unit 1,

(L3) ⊗ and→ form an adjoint pair, i.e., they satisfy the adjunction property: for all x, y, z ∈ L,

x ⊗ y 6 z ⇔ x 6 y→ z. (1)

Moreover,L is called a complete residuated lattice if it satisfies (L1), (L3), and

(L2’) (L,∧,∨, 0, 1) is a complete lattice with the least element 0 and the greatest element 1.

The operations ⊗ (called multiplication) and→ (called residuum) are intended for modeling the conjunction
and implication of the corresponding logical calculus, and supremum (

∨
) and infimum (

∧
) are intended

for modeling of the existential and general quantifier, respectively. An operation↔ defined by

x↔ y = (x→ y) ∧ (y→ x), (2)

called biresiduum (or biimplication), is used for modeling the equivalence of truth values. Emphasizing
their monoidal structure, in some sources residuated lattices are called integral, commutative, residuated
ℓ-monoids [71].

If L is a complete residuated lattice, then for all x, y, z ∈ L the following holds:

x 6 y implies x ⊗ z 6 y ⊗ z, (3)

For other properties of complete residuated lattices we refer to [9, 10].
The most studied and applied structures of truth values, defined on the real unit interval [0, 1] with

x ∧ y = min(x, y) and x ∨ y = max(x, y), are the Łukasiewicz structure (where x ⊗ y = max(x + y − 1, 0),
x → y = min(1 − x + y, 1)), the Goguen (product) structure (x ⊗ y = x · y, x → y = 1 if x 6 y, and = y/x
otherwise), and the Gödel structure (x⊗ y = min(x, y), x→ y = 1 if x 6 y, and = y otherwise). More generally,
an algebra ([0, 1],∧,∨,⊗,→, 0, 1) is a complete residuated lattice if and only if ⊗ is a left-continuous t-norm
and the residuum is defined by x → y =

∨
{u ∈ [0, 1] | u ⊗ x 6 y} (cf. [10]). Another important set of truth

values is the set {a0, a1, . . . , an}, 0 = a0 < · · · < an = 1, with ak ⊗ al = amax(k+l−n,0) and ak → al = amin(n−k+l,n).
A special case of the latter algebras is the two-element Boolean algebra of classical logic with the support
{0, 1}. The only adjoint pair on the two-element Boolean algebra consists of the classical conjunction and
implication operations. This structure of truth values we call the Boolean structure. A residuated lattice L
satisfying x ⊗ y = x ∧ y is called a Heyting algebra, whereas a Heyting algebra satisfying the prelinearity
axiom (x → y) ∨ (y → x) = 1 is called a Gödel algebra. If any finitelly generated subalgebra of a residuated
lattice L is finite, then L is called locally finite. For example, every Gödel algebra, and hence, the Gödel
structure, is locally finite, whereas the product structure is not locally finite.

Let (L,∧,∨, 0, 1) be a lattice with the least element 0 and the greatest element 1. AnL-fuzzy subset of a set
U is any function from U into L [63]. If the structure L of membership values is known from the context,
we will say simply fuzzy subset instead of L-fuzzy subset. The set of all L-fuzzy subsets of U is denoted
by F (U). Let f , 1 ∈ F (U). The equality of f and 1 is defined as the usual equality of functions, i.e., f = 1 if
and only if f (u) = 1(u), for every u ∈ U. The inclusion f 6 1 is also defined pointwise: f 6 1 if and only if
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f (u) 6 1(u), for every u ∈ U. Endowed with this order F (U) forms a lattice, in which the meet (intersection)∧
i∈I fi and the join (union)

∨
i∈I fi of a finite family { fi}i∈I of L-fuzzy subsets of A are functions from U into

L defined by



∧

i∈I

fi


 (u) =

∧

i∈I

fi(u),



∨

i∈I

fi


 (u) =

∨

i∈I

fi(u). (4)

If L is a complete lattice, then in (4) we can allow I to be an infinite set, and in this case F (U) forms a
complete lattice. If L is a residuated lattice, then F (U) also forms a residuated lattice in which the product
f ⊗ 1 is an L-fuzzy subset defined by f ⊗ 1(u) = f (u) ⊗ 1(u), for every u ∈ U.

A crisp subset of a set U is an L-fuzzy relation which takes values only in the set {0, 1}. If f is a crisp
subset of A, then expressions “ f (u) = 1” and “u ∈ f ” will have the same meaning, i.e., f is considered as
an ordinary subset of U. The crisp part of an L-fuzzy subset f of U is a crisp subset f c : U → L defined by
f c(u) = 1, if f (u) = 1, and f c(u) = 0, if f (u) < 1, i.e., f c = {u ∈ U | f (u) = 1}. An L-fuzzy subset f of U is
normalized (or modal, in some sources) if f (u) = 1 for at least one u ∈ U, i.e., if its crisp part is non-empty.

2.2. Fuzzy relations

Let U and V be non-empty sets. A fuzzy relation between sets U and V is any function from U × V into L,
that is to say, any fuzzy subset of U × V, and the equality, inclusion (ordering), joins and meets of fuzzy
relations are defined as for fuzzy sets. In particular, a fuzzy relation on a set U is any function from U×U into L,
i.e., any fuzzy subset of U × U. The set of all fuzzy relations from U to V will be denoted by R(U,V), and
the set of all fuzzy relations on a set U will be denoted by R(U). If the structure L of membership values is
known from the context, then we say simply fuzzy relation instead ofL-fuzzy relation. The converse (in some
sources called inverse or transpose) of a fuzzy relation R ∈ R(U,V) is a fuzzy relation R−1 ∈ R(V,U) defined by
R−1(v, u) = R(u, v), for all u ∈ U and v ∈ V. A crisp relation is a fuzzy relation which takes values only in the
set {0, 1}, and if R is a crisp relation of U to V, then expressions “R(u, v) = 1” and “(u, v) ∈ R” will have
the same meaning. By ∇U we denote the universal relation on a set U, which is given by ∇U(u, v) = 1, for
all u, v ∈ U, and by ∆U we denote the equality relation on U, which is given by ∆U(u, v) = 1, if u = v, and
∆U(u, v) = 0, if u , v, for all u, v ∈ U.

In this paper we will consider fuzzy subsets and fuzzy relations of/on arbitrary sets, not necessarily
finite. For that reason the underlying structure L of membership values is required to be a complete
lattice. However, whenever we work with fuzzy subsets and relations of/on a finite set, the assumption that
L is complete become superfluous, and it can be omitted.

In accordance with this remark, in the rest of the section, if not noted otherwise, let U be a non-empty
set, not necessarily finite, and let L be a complete lattice.

For non-empty sets U, V and W, and fuzzy relations R ∈ R(U,V) and S ∈ R(V,W), their composition R ◦ S
is a fuzzy relation from R(U,W) defined by

(R ◦ S)(u,w) =
∨

v∈V

R(u, v) ⊗ S(v,w), (5)

for all u ∈ U and w ∈W. If R and S are crisp relations, then R◦S is an ordinary composition of relations, i.e.,

R ◦ S = {(u,w) ∈ U ×W | (∃v ∈ V) (u, v) ∈ R & (v,w) ∈ S} ,

and if R and S are functions, then R ◦ S is an ordinary composition of functions, i.e., (R ◦ S)(u) = S(R(u)), for
every u ∈ U. Next, if f ∈ F (U), R ∈ R(U,V) and 1 ∈ F (V), the compositions f ◦ R and R ◦ 1 are fuzzy subsets
of V and U, respectively, which are defined by

( f ◦ R)(v) =
∨

u∈U

f (u) ⊗ R(u, v), (R ◦ 1)(u) =
∨

v∈V

R(u, v) ⊗ 1(v), (6)

for every u ∈ U and v ∈ V.
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In particular, for f , 1 ∈ F (U) we write

f ◦ 1 =
∨

u∈U

f (u) ⊗ 1(u). (7)

The value f ◦ 1 can be interpreted as the ”degree of overlapping” of f and 1. In particular, if f and 1 are
crisp sets and R is a crisp relation, then

f ◦ R =
{
v ∈ V | (∃u ∈ f ) (u, v) ∈ R

}
, R ◦ 1 =

{
u ∈ U | (∃v ∈ 1) (u, v) ∈ R

}
.

Let U, V, W and Z be non-empty sets. Then for any R1 ∈ R(U,V), R2 ∈ R(V,W) and R3 ∈ R(W,Z) we have

(R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3), (8)

and for R0 ∈ R(U,V), R1,R2 ∈ R(V,W) and R3 ∈ R(W,Z) we have that

R1 6 R2 implies R−1
1 6 R−1

2 , R0 ◦ R1 6 R0 ◦ R2, and R1 ◦ R3 6 R2 ◦ R3. (9)

Further, for any R ∈ R(U,V), S ∈ R(V,W), f ∈ F (U), 1 ∈ F (V) and h ∈ F (W) we can easily verify that

( f ◦ R) ◦ S = f ◦ (R ◦ S), ( f ◦ R) ◦ 1 = f ◦ (R ◦ 1), (R ◦ S) ◦ h = R ◦ (S ◦ h) (10)

and consequently, the parentheses in (10) can be omitted, as well as the parentheses in (8).
Finally, for all R,Ri ∈ R(U,V) (i ∈ I) and S, Si ∈ R(V,W) (i ∈ I) we have that

(R ◦ S)−1 = S−1 ◦ R−1, (11)

R ◦
(∨

i∈I

Si

)
=
∨

i∈I

(R ◦ Si),
(∨

i∈I

Ri

)
◦ S =

∨

i∈I

(Ri ◦ S), (12)

(∨

i∈I

Ri

)−1
=
∨

i∈I

R−1
i . (13)

We note that if U, V and W are finite sets of cardinality |U| = k, |V| = m and |W| = n, then R ∈ R(U,V) and
S ∈ R(V,W) can be treated as k×m and m×n fuzzy matrices overL, and R ◦S is the matrix product. Analo-
gously, for f ∈ F (U) and 1 ∈ F (V) we can treat f ◦R as the product of a 1× k matrix f and a k×m matrix R
(vector-matrix product), R ◦ 1 as the product of an k×m matrix R and an m× 1 matrix 1t, the transpose of 1
(matrix-vector product), and f ◦ 1 as the scalar product of vectors f and 1.

An L-fuzzy relation R on a set U is said to be

(R) reflexive (or fuzzy reflexive) if ∆U 6 R, i.e., if R(u, u) = 1, for every u ∈ U;

(S) symmetric (or fuzzy symmetric) if R−1
6 R, i.e., if R(u, v) = R(v, u), for all u, v ∈ U;

(T) transitive (or fuzzy transitive) if R ◦ R 6 R, i.e., if for all u, v,w ∈ U we have

R(u, v) ⊗ R(v,w) 6 R(u,w).

For an L-fuzzy relation R on a set U, an L-fuzzy relation R∞ on U defined by R∞ =
∨

n∈N Rn is the least
transitive L-fuzzy relation on U containing R, and it is called the transitive closure of R.

A reflexive and transitiveL-fuzzy relation on U is called anL-fuzzy quasi-order, or just a fuzzy quasi-order,
if L is known from the context, and a reflexive and transitive crisp relation on A is called a quasi-order. In
some sources quasi-orders and fuzzy quasi-orders are called preorders and fuzzy preorders. Note that a
reflexive fuzzy relation R is a fuzzy quasi-order if and only if R2 = R. A reflexive, symmetric and transitive
L-fuzzy relation on U is called anL-fuzzy equivalence (or just a fuzzy equivalence), and a reflexive, symmetric
and transitive crisp relation on U is called an equivalence. AnL-fuzzy equivalence E on U is called anL-fuzzy
equality (or just a fuzzy equality) if for any u, v ∈ U, E(u, v) = 1 implies u = v. If R is an L-fuzzy quasi-order
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on U, then R ∧ R−1 is the greatest L-fuzzy equivalence contained in R, and it is called the natural fuzzy
equivalence of R.

With respect to the ordering of L-fuzzy relations, the set Q(U) of all L-fuzzy quasi-orders on a set U,
and the set E(U) of all L-fuzzy equivalences on U, form complete lattices. The meet both in Q(U) and E(U)
is the ordinary intersection of L-fuzzy relations, but in the general case, the joins in Q(U) and E(U) do not
coincide with the ordinary union ofL-fuzzy relations. Namely, if {Ri}i∈I is a family of L-fuzzy quasi-orders
(resp.L-fuzzy equivalences) on U, then its join in Q(U) (resp. in E(U)) is (

∨
i∈I Ri)

∞, the transitive closure of
the union of this family.

Let Q be an L-fuzzy quasi-order on a set U. For each u ∈ U, the Q-afterset of u is the L-fuzzy subset Qu

of U defined by Qu(x) = Q(u, x), for any x ∈ U, and the Q-foreset of u is the L-fuzzy subset Qu of U defined
by Qu(x) = Q(x, u), for any x ∈ U (cf. [2, 14, 46, 92, 129]). The set of all Q-aftersets will be denoted by U/Q,
and the set of all Q-foresets by U\Q. If E is an L-fuzzy equivalence, then for every u ∈ U we have that
Eu = Eu, and Eu is called the equivalence class of u with respect to E (cf. [36]). The set of all equivalence classes
of E is denoted by U/E and called the factor set of U with respect to E. For any L-fuzzy quasi-order Q on a
set U and its natural L-fuzzy equivalence E we have that the set U/Q of all Q-aftersets, the set U\Q of all
Q-foresets, and the factor set U/E have the same cardinality (cf. [129]). This cardinality will be called the
index of Q, and it will be denoted by ind(Q). If U is a finite set with n elements and an L-fuzzy quasi-order
Q on U is treated as an n × n fuzzy matrix over L, then Q-aftersets are row vectors, whereas Q-foresets are
column vectors of this matrix. For any L-fuzzy subset f of U, let L-fuzzy relations Q f , Q f , and E f on U be
defined by

Q f (u, v) = f (u)→ f (v), Q f (u, v) = f (v)→ f (u), E f (u, v) = f (u)↔ f (v), (14)

for all u, v ∈ U. We have that Q f and Q f are L-fuzzy quasi-orders, and E f is an L-fuzzy equivalence on U.

In particular, if f is a normalized L-fuzzy subset of U, then it is an afterset of Q f , a foreset of Q f , and an
equivalence class of E f .

For more information on lattices and related concepts we refer to books [11, 13, 121], as well as to books
[9, 10, 56, 88, 110], for more information on fuzzy sets and fuzzy relations.

2.3. Uniform fuzzy relations

In this section we recall some notions, notation and results from [37, 38], concerning uniform fuzzy rela-
tions and related concepts.

The original intention of the authors in [37] was to introduce uniform fuzzy relations as a basis for defin-
ing such concept of a fuzzy function which would provide a correspondence between fuzzy functions and
fuzzy equivalence relations, analogous to the correspondence between crisp functions and crisp equivalence
relations. This was done, but also, it turned out that uniform fuzzy relations establish natural relationships
between fuzzy partitions of two sets, some kind of “uniformity” between these fuzzy partitions. Roughly
speaking, uniform fuzzy relations can be conceived as fuzzy equivalence relations which relate elements of
two possibly different sets. In [37], uniform fuzzy relations were employed to solve some systems of fuzzy
relation equations, systems that have important applications in approximate reasoning, especially in fuzzy
control. Afterwards, in [75], they were used to define and study fuzzy homomorphisms and fuzzy relational
morphisms of algebras, and to establish relationships between fuzzy homomorphisms, fuzzy relational
morphisms, and fuzzy congruences, analogous to relationships between homomorphisms, relational mor-
phisms, and congruences in classical algebra. In the same paper, fuzzy relational morphisms were also
applied to deterministic fuzzy automata. It has been shown in [38] that fuzzy relational morphisms are the
same as forward bisimulations (in the terminology used in this paper) when these two concepts are con-
sidered in the context of deterministic fuzzy automata. As we shall see later, in Section 7.3, uniform fuzzy
relations have shown their full strength in the study of equivalence between fuzzy automata, carried out in
[38] (see also [35]).

Let U and V be non-empty sets and let E and F be fuzzy equivalences on U and V, respectively. If a fuzzy
relation R ∈ R(U,V) satisfies
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(EX1) R(u1, v) ⊗ E(u1, u2) 6 R(u2, v), for all u1, u2 ∈ U and v ∈ V,

then it is called extensional with respect to E, and if it satisfies

(EX2) R(u, v1) ⊗ F(v1, v2) 6 R(u, v2), for all u ∈ U and v1, v2 ∈ V,

then it is called extensional with respect to F. If R is extensional with respect to E and F, and it satisfies

(PFF) R(u, v1) ⊗ R(u, v2) 6 F(v1, v2), for all u ∈ U and v1, v2 ∈ V,

then it is called a partial fuzzy function with respect to E and F.
Partial fuzzy functions were introduced by Klawonn [87], and studied also by Demirci [43, 44]. By the

adjunction property and symmetry, conditions (EX1) and (EX2) can be also written as

(EX1’) E(u1, u2) 6 ( R(u1, v)↔ R(u2, v) ), for all u1, u2 ∈ U and v ∈ V;

(EX2’) F(v1, v2) 6 ( R(u, v1)↔ R(u, v2) ), for all u ∈ U and v1, v2 ∈ V.

For any fuzzy relation R ∈ R(U,V) we can define a fuzzy equivalence ER
U

on U by

ER
U(u1, u2) =

∧

v∈V

( R(u1, v)↔ R(u2, v) ), (15)

for all u1, u2 ∈ U, and a fuzzy equivalence ER
V

on V by

ER
V(v1, v2) =

∧

u∈U

( R(u, v1)↔ R(u, v2) ), (16)

for all v1, v2 ∈ V. They will be called fuzzy equivalences on U and V induced by R, and in particular, ER
U

will be

called the kernel of R, and ER
V

the co-kernel of R. According to (EX1’) and (EX2’), ER
U

and ER
V

are the greatest
fuzzy equivalences on U and V, respectively, such that R is extensional with respect to them. Also, the fuzzy
relation R ◦ R−1 ∈ R(U) will be called the projection of R on U, and R−1 ◦ R ∈ R(V) the projection of R on V.

A fuzzy relation R ∈ R(U,V) is called just a partial fuzzy function if it is a partial fuzzy function with
respect to ER

U and ER
V [37]. Partial fuzzy functions were characterized in [37, 38] as follows:

Theorem 2.1. Let U and V be non-empty sets and let R ∈ R(U,V) be a fuzzy relation. Then the following conditions
are equivalent:

(i) R is a partial fuzzy function;

(ii) R−1 is a partial fuzzy function;

(iii) R−1 ◦ R 6 ER
V

;

(iv) R ◦ R−1
6 ER

U;

(v) R ◦ R−1 ◦ R 6 R.

The name partial fuzzy function was introduced in [87], but it should be noted that the notion of a
partial fuzzy function can not be considered as a natural analog of a notion of a partial function, because for
a partial function relation R, its reverse R−1 is not necessarily a partial function. For the crisp counterpart
of partial fuzzy functions has been called in [35] a partial uniform relation.

A fuzzy relation R ∈ R(U,V) is called anL-function if for any u ∈ U there exists v ∈ V such that R(u, v) = 1
[45], and it is called surjective if for any v ∈ V there exists u ∈ U such that R(u, v) = 1, i.e., if R is anL-function.
For a surjective fuzzy relation R ∈ R(U,V) we also say that it is a fuzzy relation of U onto V. If R is both an
L-function and surjective, i.e., if both R and R−1 are L-functions, then R is called a surjective L-function. If
for any u ∈ U there exists a unique v ∈ V such that R(u, v) = 1, then R is called an F-function [105].
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Let us note that a fuzzy relation R ∈ R(U,V) is an L-function if and only if there is a function ψ : U→ V
such that R(u, ψ(u)) = 1, for all u ∈ U (cf. [44, 45]). A function ψwith this property is called a crisp description
of R, and we denote by CR(R) the set of all such functions.

An L-function which is a partial fuzzy function with respect to E and F is called a perfect fuzzy function
with respect to E and F. Perfect fuzzy functions were introduced and studied by Demirci [43, 44]. A fuzzy
relation R ∈ R(U,V) which is a perfect fuzzy function with respect to ER

U
and ER

V
will be called just a perfect

fuzzy function.
Let U and V be non-empty sets and let E be a fuzzy equivalence on V. An ordinary functionψ : U→ V is

called E-surjective if for any v ∈ V there exists u ∈ U such that E(ψ(u), v) = 1. In other words,ψ is E-surjective

if and only if ψ ◦E♯ is an ordinary surjective function of U onto V/E, where E♯ : V → V/E is a function given

by E♯(v) = Ev, for each v ∈ V. It is clear that ψ is an E-surjective function if and only if its image Imψ has a
non-empty intersection with every equivalence class of the crisp equivalence ker(E).

Let U and V be non-empty sets and let R ∈ R(U,V) be a partial fuzzy function. If, in addition, R is a
surjective L-function, then it will be called a uniform fuzzy relation [37]. In other words, a uniform fuzzy
relation is a perfect fuzzy function having the additional property that it is surjective. A uniform fuzzy
relation that is also a crisp relation is called a uniform relation. The following characterizations of uniform
fuzzy relations provided in [37, 38] will be used in the further text.

Theorem 2.2. Let U and V be non-empty sets and let R ∈ R(U,V) be a fuzzy relation. Then the following conditions
are equivalent:

(i) R is a uniform fuzzy relation;

(ii) R−1 is a uniform fuzzy relation;

(iii) R is a surjective L-function and

R ◦ R−1 ◦ R = R; (17)

(iv) R is a surjective L-function and

ER
U = R ◦ R−1; (18)

(v) R is a surjective L-function and

ER
V = R−1 ◦ R; (19)

(vi) R is an L-function, and for all ψ ∈ CR(R), u ∈ U and v ∈ V we have that ψ is ER
V

-surjective and

R(u, v) = ER
V(ψ(u), v); (20)

(vii) R is an L-function, and for all ψ ∈ CR(R) and u1, u2 ∈ U we have that ψ is ER
V

-surjective and

R(u1, ψ(u2)) = ER
U(u1, u2). (21)

Corollary 2.3. [37] Let U and V be non-empty sets, and let ϕ ∈ F (U ×V) be a uniform fuzzy relation. Then for all
ψ ∈ CR(ϕ) and u1, u2 ∈ A we have that

E
ϕ
U

(u1, u2) = E
ϕ
V

(ψ(u1), ψ(u2)). (22)

A fuzzy relation R ∈ R(U,V) is called an uniform FL-function if it is both a uniform fuzzy relation and an
F-function, i.e., if it is a uniform fuzzy relation and ER

V is a fuzzy equality (cf. [37]).
Let U and V be non-empty sets. According to Theorem 2.2, a fuzzy relation R ∈ R(U,V) is a uniform

fuzzy relation if and only if its inverse relation R−1 is a uniform fuzzy relation. Moreover, by (iv) and (v) of
Theorem 2.2, we have that the kernel of R−1 is the co-kernel of R, and conversely, the co-kernel of R−1 is the
kernel of R, that is

ER−1

V = ER
V and ER−1

U = ER
U.

The next theorem proved in [37, 38] will be very useful in our further work.
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Theorem 2.4. Let U and V be non-empty sets, let R ∈ R(U,V) be a uniform fuzzy relation, let E = ER
U

and F = ER
V

,

and let a function R̃ : U/E→ V/F be defined by

R̃(Eu) = Fψ(u), for any u ∈ U and ψ ∈ CR(R). (23)

Then R̃ is a well-defined function (it does not depend on the choice of ψ ∈ CR(R) and u ∈ U), it is a bijective function

of U/E onto V/F, and (R̃)−1 = R̃−1.

The bijective function R̃ establishes some kind of “uniformity” between fuzzy partitions on U and V
which correspond to fuzzy equivalences ER

U and ER
V, and for that reason these fuzzy relations are called

uniform.

2.4. Residuated functions. Residuated semigroups and semimodules

In order to define the concept of a residuated function, we need the next fundamental theorem. First we
note that the notations IP and IQ in the next theorem are used for the identity functions on P and Q.

Theorem 2.5 (cf. [13]). Let P and Q be ordered sets. The following conditions for a function f : P → Q are
equivalent:

(i) f is isotone and there exists an isotone function 1 : Q→ P such that

IP 6 f ◦ 1, 1 ◦ f 6 IQ; (24)

(ii) there exists a function 1 : Q→ P such that

f (x) 6 y ⇔ x 6 1(y), (25)

for all x ∈ P and y ∈ Q;

(iii) the inverse image under f of every principal down-set of Q is a principal down-set of P;

(iv) f is isotone and the set {x ∈ P | f (x) 6 y} has the greatest element, for every y ∈ Q.

Furthermore, if there is a function 1 which satisfies (24) or (25), then it is unique.

A function f that satisfies either of the equivalent conditions of Theorem 2.5 is called a residuated function,

and the unique function 1 that satisfies (24) or (25) is called the residual of f (cf. [13]) and denoted by f ♯. For
a residuated function f : P→ Q and y ∈ Q we have that

f ♯(y) = ⊤{x ∈ P | f (x) 6 y}, (26)

where ⊤H denotes the greatest element of a subset H of an ordered set, if it exists. It should be noted that

f ◦ f ♯ ◦ f = f and f ♯ ◦ f ◦ f ♯ = f ♯, for any residuated function f , and for ordered sets P, Q and R and

residuated functions f : P→ Q and 1 : Q→ R we have that f ◦ 1 is also residuated and ( f ◦ 1)♯ = 1♯ ◦ f ♯.
An ordered semigroup is a triple (S,⊗,6) such that (S,⊗) is a semigroup (not necessarily commutative),

(S,6) is an ordered set, and the order 6 is compatible with respect to the multiplication ⊗, i.e., for all
a, b, x, y ∈ S, by a 6 b it follows x⊗ a 6 x⊗ b and a ⊗ y 6 b⊗ y. In addition, if (S,⊗) is a monoid, then (S,⊗,6)
is called an ordered monoid.

Let (S,⊗) be a semigroup. For any a ∈ S, we define functions λa and ̺a of S into itself by λa(x) = a⊗ x and
̺a(x) = x⊗ a, for each x ∈ S. The function λa is called the left translation on S determined by a, and ̺a is called
the right translation on S determined by a. An ordered semigroup (S,⊗,6) is called right residuated if each left
translation on S is a residuated function. In this case, for arbitrary a, b ∈ S, the element

a\b = λ♯a(b) = ⊤{x ∈ S | a ⊗ x 6 b} (27)
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is called the right residual of b by a, thinking of it as what remains of b on the right after “dividing” b on the left
by a. Analogously, (S,⊗,6) is called left residuated if each right translation on S is a residuated function, and
in this case, for arbitrary a, b ∈ S, the element

b/a = ̺♯a(b) = ⊤{x ∈ S | x ⊗ a 6 b} (28)

is called the left residual of b by a. An ordered semigroup that is both right and left residuated is called a
residuated semigroup, or a residuated monoid, if it has an identity. Clearly, in a commutative semigroup the con-
cepts of a right residual and a left residual coincide. It should be noted that for arbitrary elements a, b and c
of a residuated semigroup the following is true:

a ⊗ b 6 c ⇔ a 6 c/b ⇔ b 6 a\c. (29)

Further, letS = (S,⊕,⊗, 0, 1) be a semiring with the zero 0 and the identity 1. A leftS-semimodule is a com-
mutative monoid (A,+, 0) for which an external multiplication S×A→ A, denoted by (λ, x) 7→ λx and called
the left scalar multiplication, is defined and which for all λ, λ1, λ2 ∈ S and x, x1, x2 ∈ A satisfies the following
equalities:

(λ1 ⊗ λ2)x = λ1(λ2x), (30)

λ(x1 + x2) = λx1 + λx2, (31)

(λ1 ⊕ λ2)x = λ1x + λ2x, (32)

1x = x, (33)

λ0 = 0x = 0. (34)

The definition of a rightS-semimodule is analogous, where the external multiplication is defined as a function
A × S → A, denoted by (x, λ) 7→ xλ and called the right scalar multiplication, and conditions dual to (30)–
(34) are satisfied. For two semirings T = (T,⊕,⊗, 0, 1) and S = (S,⊕,⊗, 0, 1), an S-T -bisemimodule is a
commutative monoid (A,+, 0) which is both a left S-semimodule and a right T -semimodule, and for all
λ ∈ S, x ∈ A and µ ∈ T the following is true:

(λx)µ = λ(xµ). (35)

If S = T , we say simply an S-bisemimodule.
In addition, if (A,+, 0,6) is a commutative ordered monoid, then we can talk about residuated semi-

modules. A left S-semimodule is residuated if for each scalar λ ∈ S the function x 7→ λx is residuated, and
in this case, for arbitrary λ ∈ S and a ∈ A the element

λ\a = ⊤{x ∈ A | λx 6 a} (36)

is called the right residual of a by λ. Analogously, a right S-semimodule is called residuated if for each scalar
λ ∈ S the function x 7→ xλ is residuated, and in this case, for arbitrary λ ∈ S and a ∈ A the element

a/λ = ⊤{x ∈ A | xλ 6 a} (37)

is called the left residual of a by λ. Finally, an S-T -bisemimodule is called residuated if it is both a residuated
left S-semimodule and a residuated right T -semimodule, and in this case we define the concepts of a right
and a left residual as in (36) and (37).

3. Linear systems and residuals of fuzzy relations

In this section we recall some fundamental results concerning systems of linear fuzzy relation inequalities
and equations, which will be briefly called linear systems. One can distinguish two basic types of linear sys-
tems. The first type, which we call homogeneous linear systems, are systems composed of fuzzy relations on
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a single set, and the second type, which we call heterogeneous linear systems, are systems composed of fuzzy
relations on two possible different sets, where an unknown is a fuzzy relation between these two sets. We
will give more precise definitions.

Let U and V be non-empty sets (not necessarily finite), let {Ai}i∈I be a given family of fuzzy relations on
U and {Bi}i∈I a given family of fuzzy relations on V (where I is also not necessarily finite), and let X be an
unknown fuzzy relation between U and V. Consider the following six types of fuzzy relation equations:

Ai ◦ X 6 Bi (i ∈ I), (l1)

Bi 6 Ai ◦X (i ∈ I), (l2)

Ai ◦ X = Bi (i ∈ I), (l3)

X ◦Ai 6 Bi (i ∈ I), (l4)

Bi 6 X ◦ Ai (i ∈ I), (l5)

X ◦Ai = Bi (i ∈ I), (l6)

Inequalities and equations that form these systems will be called linear, and the systems will be called
linear systems. If U = V, then they are called homogeneous linear systems, and if U , V, then they are called
heterogeneous linear systems.

Linear systems emerged from Sanchez’s research aimed at medical applications (cf. [122–125]). He
proved that system (l1), as well as the reverse system (l4), are solvable and have the greatest solutions. We
will describe these greatest solutions later. Other systems are not necessary solvable, but if (l3) is solvable,
then it has the same greatest solution as (l1), and also, if (l6) is solvable, then it has the same greatest
solution as (l4) (cf. [122–124]). In particular, if U = V and Ai = Bi, for each i ∈ I, then all systems are solvable.
In fact, Sanchez’s results were proved for fuzzy relations over the Gödel structure, but we will see in the
sequel that they also hold for fuzzy relations over an arbitrary complete residuated lattice.

We will interpret Sanchez’s results in terms of residuated semigroups and residuated semimodules. First
we note that for an arbitrary non-empty set U, the quintuple (R(U),∨, ◦, ∅,∆) forms a semiring, where ∆
denotes the equality relation on U. Also, for non-empty sets U and V, (R(U,V),∨, ∅,6) is an ordered monoid,
and if we consider composition of a fuzzy relation from R(U) and a fuzzy relation from R(U,V) as a left
scalar multiplication, and composition of a fuzzy relation from R(U,V) and a fuzzy relation from R(V) as a
right scalar multiplication, then R(U,V) can be also viewed as an R(U)-R(V)-bisemimodule. In the sequel,
R(U), R(V) and R(U,V) will be treated exactly in this way.

Theorem 3.1. Let U and V be arbitrary non-empty sets. Then R(U,V) is a residuated R(U)-R(V)-bisemimodule.
For arbitrary A ∈ R(U), B ∈ R(V) and R ∈ R(U,V), the right residual of R by A is a fuzzy relation A\R ∈ R(U,V)

defined by

(A\R)(x, y) =
∧

x′∈U

( A(x′, x)→ R(x′, y) ), (38)

for all x ∈ U and y ∈ V, and the left residual of R by B is a fuzzy relation R/B ∈ R(U,V) defined by

(R/B)(x, y) =
∧

y′∈V

( B(y, y′)→ R(x, y′) ), (39)

for all x ∈ U and y ∈ V.
In particular, if U = V, then (R(U), ◦,6) is a residuated semigroup with residuals defined as in (38) and (39).

The previous theorem is valid if the underlying structure L of membership values is a complete resid-
uated lattice. Note that existence of an operation forming an adjoint par with the multiplication is not only
sufficient, but also a necessary condition for the existence of residuals of L-fuzzy relations. Namely, the
following is true.
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Theorem 3.2 ([76]). LetL = (L,∧,∨,⊗, 0, 1) be an algebra satisfying the conditions (L1’) and (L2) of the definition
of a complete residuated lattice and (3). Then the following conditions are equivalent:

(i) L is a residuated lattice;

(ii) every left semimodule of L-fuzzy relations is residuated;

(iii) every right semimodule of L-fuzzy relations is residuated;

(iv) every bi-semimodule of L-fuzzy relations is residuated.

Note that the previous theorem remains valid if the terms “left semimodule”, “right semimodule” and
“bi-semimodule” in (ii), (iii) and (iv) are replaced by “semigroup”, and the term “residuated” in (ii) and (iii)
is replaced by “right residuated” and “left residuated”.

Corollary 3.3 ([76]). LetL = ([0, 1],∧,∨,⊗, 0, 1),where⊗ is a t-norm. Then the following conditions are equivalent:

(i) ⊗ is a left-continuous t-norm;

(ii) every left semimodule of L-fuzzy relations is residuated;

(iii) every right semimodule of L-fuzzy relations is residuated;

(iv) every bi-semimodule of L-fuzzy relations is residuated.

According to Theorems 2.5 and 3.1, the set of all solutions to the fuzzy relation inequality A ◦ X 6 R is
the principal down-set of (R(U,V),6) generated by the right residual A\R of R by A, and hence, A\R is the
greatest solution to A ◦ X 6 R. Consequently, the greatest solution to system (l1) is simply the intersection
of the greatest solutions to individual inequalities in (l1), i.e., the greatest solution to (l1) is

∧

i∈I

Ai\Bi, (40)

and the set of all solutions to (l1) is the principal down-set of (R(U,V),6) generated by the fuzzy relation (40).
Analogously, the set of all solutions to X ◦ B 6 R is the principal down-set of (R(U,V),6) generated by

the left residual R/B of R by B, so R/B is the greatest solution to this inequality. The greatest solution to (l4) is

∧

i∈I

Bi/Ai, (41)

i.e., the intersection of the greatest solutions to individual inequalities in (l4), and the set of all solutions to
(l4) is the principal down-set of (R(U,V),6) generated by the fuzzy relation (41).

If system (l2) has at least one solution, then the set of all its solutions is an up-set of (R(U,V),6), and
hence, the set of all solutions to (l3) is the intersection of this up-set and the principal down-set generated
by the fuzzy relation (40). Therefore, in this case we have that the fuzzy relation (40) is also the greatest
solution to (l3). Similar conclusions can be drawn for systems (l5) and (l6).

If U = V and Ai = Bi, for each i ∈ I, then the equality relation is a solution to each of the systems (l1)–(l6),
and the greatest solution both to (l1) and (l3) is given as in (40), and the greatest solution both to (l4) and
(l6) is given as in (41).

4. Weakly linear systems

Now we move to consideration of systems of weakly linear fuzzy relation inequalities and equations,
that will be called simply weakly linear systems. As for linear systems, we can distinguish two basic types of
weakly linear systems: homogeneous and heterogeneous weakly linear systems.
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Let U be a non-empty set (not necessarily finite), let {Ai}i∈I be a given family of fuzzy relations on U
(where I is also not necessarily finite), let M be a given fuzzy relation on U, and let X be an unknown fuzzy
relation on U. Two basic types of homogeneous weakly linear systems are systems of the form

X ◦Ai 6 Ai ◦ X (i ∈ I), X 6M , (wl1.1)

Ai ◦ X 6 X ◦ Ai (i ∈ I), X 6M , (wl1.2)

and the third one is the conjunction of the first two:

X ◦Ai = Ai ◦ X (i ∈ I), X 6M . (wl1.3)

Besides, in many situations we need that both a fuzzy relation R and its inverse R−1 are solutions to the above
mentioned systems, and then we consider the following three systems:

X ◦Ai 6 Ai ◦ X, X−1 ◦ Ai 6 Ai ◦ X−1, (i ∈ I), X 6M ∧M−1 , (wl1.4)

Ai ◦ X 6 X ◦ Ai, Ai ◦ X−1
6 X−1 ◦ Ai, (i ∈ I), X 6M ∧M−1 , (wl1.5)

X ◦Ai = Ai ◦ X, X−1 ◦ Ai = Ai ◦ X−1 (i ∈ I), X 6M ∧M−1 , (wl1.6)

Clearly, a symmetric fuzzy relation is a solution to (wl1.4) (resp. (wl1.5), (wl1.6)) if and only if it is solution
to (wl1.1) (resp. (wl1.2), (wl1.3)). If M(a1, a2) = 1, for all a1, a2 ∈ U, then the inequality X 6M becomes trivial,
and it can be omitted. Systems (wl1.1)–(wl1.6) are called homogeneous weakly linear systems [76, 78]. For the
sake of convenience, for each t ∈ {1, . . . , 6}, system (wl1.t) will be denoted by WL1.t(U, I,Ai,M). If M(a1, a2) = 1,
for all a1, a2 ∈ U, then system (wl1.t) is denoted simply by WL1.t(U, I,Ai). Note that the condition X 6M∧M−1

appearing in (wl1.4)–(wl1.6) is equivalent to X 6M and X−1
6M.

Another situation is when we work with two possibly different non-empty sets U and V (which are not
necessarily finite). Let {Ai}i∈I be a given family of fuzzy relations on U and {Bi}i∈I a given family of fuzzy
relations on V (where I is also not necessarily finite), let N be a given fuzzy relation between U and V, and
let X be an unknown fuzzy relation between U and V. Two basic types of heterogeneous weakly linear
systems are systems of the form

X−1 ◦Ai 6 Bi ◦ X−1 (i ∈ I), X 6 N , (wl2.1)

Ai ◦ X 6 X ◦ Bi (i ∈ I), X 6 N . (wl2.2)

Besides, there are four systems obtained by combinations of the previous two systems (for X and X−1)

X−1 ◦Ai 6 Bi ◦ X−1 X ◦ Bi 6 Ai ◦ X (i ∈ I), X 6 N, (wl2.3)

Ai ◦ X 6 X ◦ Bi Bi ◦ X−1
6 X−1 ◦Ai (i ∈ I), X 6 N, (wl2.4)

Ai ◦ X = X ◦ Bi (i ∈ I), X 6 N, (wl2.5)

X−1 ◦Ai = Bi ◦ X−1 (i ∈ I), X 6 N. (wl2.6)

Systems (wl2.1)–(wl2.6) are be called heterogeneous weakly linear systems. For the sake of convenience, for
each t ∈ {1, . . . , 6}, system (wl2.t) is denoted by WL2.t(U,V, I,Ai,Bi,N). If N(a, b) = 1, for all a ∈ U and b ∈ V,
then system (wl2.t) is denoted simply by WL2.t(U,V, I,Ai,Bi).

Note first that some of the above introduced systems are mutually dual. For instance, (wl1.1) and (wl1.2)
are dual, in the sense that a fuzzy relation R is a solution to WL1.1(U, I,Ai,M) if and only if its inverse R−1 is
a solution to WL1.2(U, I,A−1

i
,M−1). Similarly, dual pairs are systems (wl1.4) and (wl1.5), (wl2.1) and (wl2.2),

(wl2.3) and (wl2.4), as well as (wl2.5) and (wl2.6). The duality means that for any universally valid statement
concerning one of the systems in a dual pair there is the corresponding universally valid statement concern-
ing another system in this dual pair, and vice versa. For this reason, we deal mainly with one of the systems
which form a dual pair.

It is easy to see that every weakly linear system, either homogeneous or heterogeneous, has at least one
solution, the empty relation on U, or the empty relation between U and V. These solutions will be called
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trivial solutions. Moreover, if the relation M is reflexive, then the equality relation on U is also a solution
to any homogeneous weakly linear system.

An important feature of weakly linear systems is that the sets of their solutions are closed under compo-
sition and arbitrary joins. More formally, the following is true.

Proposition 4.1 ([76]). For arbitrary fuzzy relations R1,R2,Rα ∈ R(U) (α ∈ Y) and t ∈ {1, . . . , 6} we have

(a) If R1 and R2 are respectively solutions to systems WL1.t(U, I,Ai,M1) and WL1.t(U, I,Ai,M2), then R1 ◦R2 is a
solution to the system WL1.t(U, I,Ai,M1 ◦M2).

(b) If Rα is a solution to the system WL1.t(U, I,Ai,M), for each α ∈ Y, then
∨
α∈Y Rα is also a solution to the system

WL1.t(U, I,Ai,M).

Proposition 4.2 ([78]). For arbitrary fuzzy relations R1,Rα ∈ R(U,V) (α ∈ Y) and R2 ∈ R(V,W), and an arbitrary
t ∈ {1, . . . , 6}, we have

(a) If R1 and R2 are respectively solutions to systems WL1.t(U,V, I,Ai,Bi,N1) and WL1.t(V.W, , I,Bi,Ci,N2), then
R1 ◦ R2 is a solution to the system WL1.t(U,W, I,Ai,Ci,N1 ◦N2).

(b) If Rα is a solution to the system WL1.t(U,V, I,Ai,Bi,M), for each α ∈ Y, then
∨
α∈Y Rα is also a solution to the

system WL1.t(U,V, I,Ai,Bi,M).

According to the second statements in Propositions 4.1 and 4.2, every weakly linear system has the great-
est solution, the join of all its solutions. Evidently, the greatest solution to a weakly linear system may be
the empty relation, but if the given fuzzy relation M in a homogeneous weakly linear system is reflex-
ive, then the greatest solution to this system must contain the equality relation, and hence, it must be
reflexive. Besides, by the first statements in Propositions 4.1 and 4.2 we obtain the following.

Theorem 4.3 ([76]). All homogeneous weakly linear systems (wl1.1)–(wl1.6) have the greatest solutions. In addition,
the following is true:

(a) If M is a reflexive fuzzy relation, then the greatest solutions to (wl1.1)–(wl1.6) are also reflexive fuzzy relations.

(b) If M is a fuzzy quasi-order, then the greatest solutions to (wl1.1)–(wl1.3) are also fuzzy quasi-orders.

(c) If M is a fuzzy equivalence, then the greatest solutions to (wl1.4)–(wl1.6) are also fuzzy equivalences.

Theorem 4.4 ([78]). All heterogeneous weakly linear systems (wl2.1)–(wl2.6) have the greatest solutions.
In addition, if N is a partial fuzzy function, then the greatest solutions to systems (wl2.3) and (wl2.4) are also

partial fuzzy functions.

As we have proved that weakly linear systems have the greatest solutions, we naturally come to the ques-
tion how to compute these greatest solutions. For this purpose, it is convenient to represent these systems
in another equivalent form, which will be done in the sequel.

We start with the homogeneous case. Let U be a non-empty set, let {Ai}i∈I be a family of fuzzy relations
on U, and let M be a fuzzy relation on U. Define functions φ(1.t) : R(U)→ R(U), for 1 6 t 6 6, as follows:

φ(1.1)(R) =
∧

i∈I

(Ai ◦ R)/Ai (42)

φ(1.2)(R) =
∧

i∈I

Ai\(R ◦ Ai) (43)

φ(1.3)(R) =
∧

i∈I

[(Ai ◦ R)/Ai] ∧ [Ai\(R ◦Ai)] = φ
(1.1)(R) ∧ φ(1.2)(R) (44)

φ(1.4)(R) =
∧

i∈I

[(Ai ◦ R)/Ai] ∧ [(Ai ◦ R−1)/Ai]
−1 = φ(1.1)(R) ∧ [φ(1.1)(R−1)]−1 (45)

φ(1.5)(R) =
∧

i∈I

[Ai\(R ◦ Ai)] ∧ [Ai\(R
−1 ◦ Ai)]

−1 = φ(1.2)(R) ∧ [φ(1.2)(R−1)]−1 (46)
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φ(1.6)(R) =
∧

i∈I

[(Ai ◦ R)/Ai] ∧ [(Ai ◦ R−1)/Ai]
−1 ∧ [Ai\(R ◦Ai)] ∧ [Ai\(R

−1 ◦ Ai)]
−1 (47)

= φ(1.4)(R) ∧ [φ(1.5)(R)] = φ(1.1)(R) ∧ [φ(1.1)(R−1)]−1 ∧ φ(1.2)(R) ∧ [φ(1.2)(R−1)]−1

for each R ∈ R(U).
Using these functions we can represent systems (w1.1)–(w1.6) in the following way.

Theorem 4.5 ([76]). For every t ∈ {1, . . . , 6}, system (w1.t) is equivalent to system

X 6 φ(1.t)(X), X 6M(t), (48)

where M(t) =M, for t ∈ {1, 2, 3}, and M(t) =M ∧M−1, for t ∈ {4, 5, 6}.

In the heterogeneous case we consider two possible different non-empty sets U and V, a family {Ai}i∈I of
fuzzy relations on U, a family {Bi}i∈I of fuzzy relations on V, and a fuzzy relation N between U and V. Define
functions φ(2.t) : R(U,V)→ R(U,V), for 1 6 t 6 6, as follows:

φ(2.1)(R) =
∧

i∈I

[(Bi ◦ R−1)/Ai]
−1 (49)

φ(2.2)(R) =
∧

i∈I

Ai\(R ◦ Bi) (50)

φ(2.3)(R) =
∧

i∈I

[(Bi ◦ R−1)/Ai]
−1 ∧ [(Ai ◦ R)/Bi] = φ

(2.1)(R) ∧ [φ(2.1)(R−1)]−1 (51)

φ(2.4)(R) =
∧

i∈I

[Ai\(R ◦ Bi)] ∧ [Bi\(R
−1 ◦ Ai)]

−1 = φ(2.2)(R) ∧ [φ(2.2)(R−1)]−1 (52)

φ(2.5)(R) =
∧

i∈I

[Ai\(R ◦ Bi)] ∧ [(Ai ◦ R)/Bi] = φ
(2.2)(R) ∧ [φ(2.1)(R−1)]−1 (53)

φ(2.6)(R) =
∧

i∈I

[(Bi ◦ R−1)/Ai]
−1 ∧ [Bi\(R

−1 ◦ Ai)]
−1 = φ(2.1)(R) ∧ [φ(2.2)(R−1)]−1 (54)

for each R ∈ R(U,V). Notice that in the expression “φ(2.t)(R−1)” (t ∈ {1, 2}) we denote by φ(2.t) a function from
R(V,U) into itself.

Now we represent systems (w2.1)–(w2.6) in the following equivalent form.

Theorem 4.6 ([78]). For every t ∈ {1, . . . , 6}, system (w.t) is equivalent to system

X 6 φ(2.t)(X), X 6 N. (55)

5. Computation of the greatest solutions

Equivalent forms of weakly linear systems provided in Theorems 4.5 and 4.6 suggest to reduce the prob-
lem of computing the greatest solutions to weakly linear systems to the problem of computing the greatest
post-fixed points of the functions φ(s.t) contained in given fuzzy relations. Readers should be warned that
“computation” means that we already know how to compute the composition of two relations and count
this as a single step. However, this may be quite expensive, e.g., in continuous case.

Let R denote either the lattice R(U,V) of fuzzy relations between non-empty sets U and V, or the lattice
R(U) of fuzzy relations on a non-empty set U, and letφ : R → Rbe an isotone function. A fuzzy relation R ∈ R
is called a post-fixed point of φ if R 6 φ(R). The well-known Knaster-Tarski fixed point theorem (stated and
proved in a more general context, for complete lattices) asserts that the set of all post-fixed points of φ form
a complete lattice (cf. [121]). Moreover, for any fuzzy relation H ∈ R we have that the set of all post-fixed
points of φ contained in H is non-empty, because it always contains the least element of R (the empty
relation), and it is also a complete lattice. According to Theorems 4.5 and 4.6, our main task is to find
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an effective procedure for computing the greatest post-fixed point of the function φ(s.t) contained in the
corresponding fuzzy relation, for all s ∈ {1, 2} and t ∈ {1, . . . , 6}.

Let φ : R → R be an isotone function and H ∈ R. Define a sequence {Rk}k∈N of fuzzy relations fromR by:

R1 = H, Rk+1 = Rk ∧ φ(Rk), for each k ∈N. (56)

The sequence {Rk}k∈N is obviously descending. If we denote by R̂ the greatest post-fixed point ofφ contained
in H, we can easily verify that

R̂ 6
∧

k∈N

Rk. (57)

Now two very important questions arise. First, under what conditions the equality holds in (57)? Even
more important question is: under what conditions the sequence {Rk}k∈N is finite? If this sequence is finite,
then it is not hard to show that there exists k ∈N such that Rk = Rm, for every m > k, i.e., there exists k ∈N
such that the sequence stabilizes on Rk. We can recognize that the sequence has stabilized when we find the
smallest k ∈ N such that Rk = Rk+1. In this case R̂ = Rk, and we have an algorithm which computes R̂ in a
finite number of steps.

Some conditions under which equality holds in (57) or the sequence is finite were found in [76], in the
case which considers fuzzy relations on a single set, and in [78] it was noted that the same results are also
valid when fuzzy relations between two sets are considered.

A sequence {Rk}k∈N of fuzzy relations from R is called image-finite if the set
⋃

k∈N Im(Rk) is finite, and it
can be easily shown that this sequence is image-finite if and only if it is finite. Furthermore, the function
φ : R → R is called image-localized if there exists a finite subset K ⊆ L such that for any fuzzy relation R ∈ R
we have

Im(φ(R)) ⊆ 〈K ∪ Im(R)〉, (58)

where 〈K ∪ Im(R)〉 denotes the subalgebra of L generated by the set K ∪ Im(R). Such K will be called a
localization set of the function φ.

Theorem 5.1 ([76]). Let the function φ be image-localized, let K be its localization set, let H ∈ R, and let {Rk}k∈N be
a sequence of fuzzy relations in R defined by (56). Then

⋃

k∈N

Im(Rk) ⊆ 〈K ∪ Im(H)〉. (59)

If, moreover, 〈K ∪ Im(H)〉 is a finite subalgebra of L, then the sequence {Rk}k∈N is finite.

Further we consider φ(s.t), for s ∈ {1, 2} and t ∈ {1, . . . , 6}, defined in (42)–(47) and (49)–(54). We have the
following.

Theorem 5.2 ([76, 78]). All functions φ(s.t), for s ∈ {1, 2} and t ∈ {1, . . . , 6}, are isotone.

If U and I, resp. U, V and I, are finite sets, then all functions φ(1.t), resp. φ(2.t), are image-localized.

Theorem 5.3 ([76, 78]). Let U and I, resp. U, V and I, be finite sets, let φ = φ(1.t), resp. φ = φ(2.t), for some
t ∈ {1, . . . , 6}, and let {Rk}k∈N be the sequence of fuzzy relations from R defined by (56).

If 〈Im(H) ∪
⋃

i∈I Im(Ai)〉, resp. 〈Im(H) ∪
⋃

i∈I( Im(Ai) ∪ Im(Bi) )〉, is a finite subalgebra of L, then

(a) the sequence {Rk}k∈N is finite and descending, and there is the least natural number k such that Rk = Rk+1;

(b) Rk is the greatest solution to system (wl1.t), resp. (wl2.t).
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Next, let L = (L,∧,∨,⊗,→, 0, 1) be a complete residuated lattice satisfying the following conditions:

x ∨
(∧

i∈I

yi

)
=
∧

i∈I

(x ∨ yi), (60)

x ⊗
(∧

i∈I

yi

)
=
∧

i∈I

(x ⊗ yi), (61)

for all x ∈ L and {yi}i∈I ⊆ L. Let us note that if L = ([0, 1],∧,∨,⊗,→, 0, 1), where [0, 1] is the real unit interval
and⊗ is a left-continuous t-norm on [0, 1], then (60) follows immediately by linearity ofL, andL satisfies (61)
if and only if ⊗ is a continuous t-norm, i.e., if and only ifL is a BL-algebra (cf. [9, 10]). Therefore, conditions
(60) and (61) hold for every BL-algebra on the real unit interval. In particular, the Łukasiewicz, Goguen
(product) and Gödel structures fulfill (60) and (61).

Under these conditions we have the following.

Theorem 5.4 ([76, 78]). Let φ = φ(s.t), for some s ∈ {1, 2} and t ∈ {1, . . . , 6}, let {Rk}k∈N be the sequence of fuzzy
relations from R defined by (56), and let L be a complete residuated lattice satisfying (60) and (61).

Then the fuzzy relation

R =
∧

k∈N

Rk,

is the greatest solution to system (wls.t).

It should be noted that the previous theorem gives a characterization of the greatest solution to system
(wls.t), but does not provide an algorithm for computing this greatest solution because it is represented as an
intersection of infinitely many fuzzy relations. Since the sequence {Rk}k∈N is descending, computing finitely
many members of this sequence and their intersection we can get a fuzzy relation that is close enough to the
greatest solution to system (wls.t), but this fuzzy relation is not a solution to (wls.t) if the sequence {Rk}k∈N
is infinite.

In some situations we do not need solutions to systems of fuzzy relation equations and inequalities that
are fuzzy relations, but those that are ordinary crisp relations. On the other hand, in cases when our algo-
rithms for computing the greatest solutions to weakly linear systems fail to terminate in a finite number of
steps, it is reasonable to search for the greatest crisp solutions to these systems. They can be understood as
some kind of “approximations” of the greatest fuzzy solutions. It has been shown in [76, 78] that algorithms
for computing the greatest fuzzy solutions to weakly linear systems can be modified to compute the greatest
crisp solutions to these systems. This method will be presented in the sequel.

Let Rc denote the set of all crisp relations fromR. It is easy to verify that Rc is a complete sublattice of R,
i.e., the meet and the join inR of an arbitrary family of crisp relations fromRc are also crisp relations (in fact,
they coincide with the ordinary intersection and union of crisp relations). Moreover, for any fuzzy relation
R ∈ Rwe have that Rc ∈ Rc, where Rc denotes the crisp part of a fuzzy relation R (in some sources called the
kernel of R), i.e., a function Rc : U×U→ {0, 1} (resp. Rc : U×V→ {0, 1}) defined by Rc(a, b) = 1, if R(a, b) = 1,
and Rc(a, b) = 0, if R(a, b) < 1, for all a, b ∈ U (resp. a ∈ U and b ∈ V). Equivalently, Rc is considered as an
ordinary crisp relation given by Rc = {(a, b) | R(a, b) = 1}.

For each function φ : R → R we define a function φc : Rc → Rc by

φc(R) = (φ(R))c, for any R ∈ Rc.

If φ is isotone, then it can be easily shown that φc is also an isotone function.
We have that the following is true.

Theorem 5.5 ([76, 78]). Let φ : R → R be an isotone function and let H ∈ R be a given fuzzy relation. A crisp
relation ̺ ∈ Rc is the greatest crisp solution in R to the system

X 6 φ(X), X 6 H, (62)
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if and only if it is the greatest solution in Rc to the system

ξ 6 φc(ξ), ξ 6 Hc, (63)

where X is an unknown fuzzy relation and ξ is an unknown crisp relation.
Furthermore, a sequence {̺k}k∈N ⊆ R defined by

̺1 = Hc, ̺k+1 = ̺k ∧ φ
c(̺k), for every k ∈N, (64)

is a finite descending sequence of crisp relations, and the least member of this sequence is the greatest solution to the
system (63) in Rc.

Taking φ to be any of the functions φ(s.t), for s ∈ {1, 2} and t ∈ {1, . . . , 6}, Theorem 5.5 gives algorithms for
computing the greatest crisp solutions to weakly linear systems. As we have seen in Theorem 5.5, these algo-
rithms always terminate in a finite number of steps, independently on the properties of the underlying struc-
ture of truth values, and they could be used in cases when algorithms for computing the greatest fuzzy
solutions do not terminate in a finite number of steps. However, examples provided in [76, 78]) show that
there are cases when homogeneous weakly linear systems have non-trivial fuzzy solutions (different than the
equality relation), but they do not have non-trivial crisp solutions, and there are cases when heterogeneous
weakly linear systems have non-empty fuzzy solutions, but they do not have non-empty crisp solutions.

6. Quotient fuzzy relational systems

In this section we talk about fuzzy relational systems and present some results which are analogues of
some well-known theorems of universal algebra (homomorphism, isomorphism, correspondence theorems,
etc.). Then we establish relationships between solutions to heterogeneous and homogeneous weakly linear
systems.

Loosely speaking, a relational system is a pair (U,R) consisting of a non-empty set A and a non-empty
familyR of finitary relations on U which may have different arities. Two relational systems (U,R1) and (V,R2)
are considered to be of the same type if a bijective function between R1 and R2 is given that preserves arity.
When we deal only with binary relations, then relational systems (U,R1) and (V,R2) are of the same type if
R1 and R2 can be written as R1 = {Ai}i∈I and R2 = {Bi}i∈I, for some non-empty index set I. In this case, the
bijective function that we have mentioned above is just the function that maps Ai to Bi, for each i ∈ I.

Here we consider relational systems in the fuzzy context, and we work only with binary fuzzy relations.
We define a fuzzy relational system as a pairU = (U, {Ai}i∈I), where U is a non-empty set and {Ai}i∈I is a non-
empty family of fuzzy relations on A, and by fuzzy relational systems of the same type we will mean systems
of the formU = (U, {Ai}i∈I) andV = (V, {Bi}i∈I). To avoid writing multiple indices, the fuzzy relational system
U = (U, {Ai}i∈I) will be sometimes denoted by U = (U, I,Ai). All fuzzy relational systems discussed in the
sequel will be of the same type.

LetU = (U, I,Ai) andV = (V, I,Bi) be two fuzzy relational systems. A function φ : U → V is called an
isomorphism if it is bijective and Ai(a1, a2) = Bi(φ(a1), φ(a2)), for all a1, a2 ∈ U and i ∈ I.

Let U = (U, I,Ai) be a fuzzy relational system and let E be a fuzzy equivalence on U. For each i ∈ I,

define a fuzzy relation AU/E
i

on the quotient (factor) set U/E as follows:

AU/E
i

(Ea1
,Ea2

) = (E ◦ Ai ◦ E)(a1, a2), (65)

for all a1, a2 ∈ U. The right side of (65) can be equivalently written as

(E ◦ Ai ◦ E)(a1, a2) =
∨

a′
1
,a′

2
∈A

E(a1, a
′
1) ⊗ Ai(a

′
1, a
′
2) ⊗ E(a′2, a2) = Ea1

◦ Ai ◦ Ea2
,

and for all a1, a2, a′1, a
′
2
∈ U such that Ea1

= Ea′
1

and Ea2
= Ea′

2
we have that (E◦Ai◦E)(a1, a2) = (E◦Ai◦E)(a′

1
, a′

2
).

Therefore, the fuzzy relation AU/E
i

is well-defined, and U/E = (U/E, I,AU/E
i

) is a fuzzy relational system
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of the same type asU, which is called the quotient (or factor) fuzzy relational system ofU, with respect to the
fuzzy equivalence E.

Note that this concept of quotient fuzzy relational system emerges from the theory of fuzzy automata,
namely, it originates from the concept of a factor (quotient) fuzzy automaton. Factor fuzzy automata were
introduced in [40, 41], where they were used to reduce the number of states of fuzzy automata. We will see in
Section 7 that quotient (fuzzy) relational systems can be also used to reduce the number of nodes of a
(fuzzy) network, while keeping the basic structure of the network. It is also worth noting that quotient crisp
relational systems have been recently defined in the same way in [27].

The following theorem can be conceived as an analogue of the well-known theorems of universal algebra
which establish correspondences between functions and equivalence relations, as well as between homo-
morphisms and congruences (cf. [24, § 2.6]).

Theorem 6.1 ([78]). Let U = (U, I,Ai) be a fuzzy relational system, let E be a fuzzy equivalence on U, and let

U/E = (U/E, I,AU/E
i

) the quotient fuzzy relational system ofU with respect to E.

Then a fuzzy relation E♮ ∈ R(U,U/E) defined by

E♮(a1,Ea2
) = E(a1, a2), for all a1, a2 ∈ U, (66)

is a uniform F-function whose kernel is E.

Moreover, E♮ is a solution both to WL2.1(U,U/E, I,Ai,A
U/E
i

) and WL2.2(U,U/E, I,Ai,A
U/E
i

).

We also have the following.

Theorem 6.2 ([78]). Let U = (U, I,Ai) be a fuzzy relational system, let E be a fuzzy equivalence on U, and let

U = (U/E, I,AU/E
i

) the quotient fuzzy relational system of U with respect to E. Then the following conditions are
equivalent:

(i) E is a solution to WL1.4(U, I,Ai);

(ii) E♮ is a solution to WL2.3(U,U/E, I,Ai,A
U/E
i

);

(iii) E♮ is a solution to WL2.5(U,U/E, I,Ai,A
U/E
i

).

The next theorem can be conceived as an analogue of the well-known Second Isomorphism Theorem
from universal algebra (cf. [24, § 2.6]).

Theorem 6.3 ([78]). Let U = (U, I,Ai) be a fuzzy relational system, let E and F be fuzzy equivalences on U such

that E 6 F, and letU/E = (U/E, I,AU/E
i

) be the quotient fuzzy relational system ofU with respect to E. Then a fuzzy
relation F/E on U/E defined by

F/E(Ea1
,Ea2

) = F(a1, a2), for all a1, a2 ∈ U, (67)

is a fuzzy equivalence on U/E, and the quotient fuzzy relational systems (U/E)/(F/E) andU/F are isomorphic.

We also have an analogue of the Correspondence Theorem from universal algebra (cf. [24, § 2.6]).

Theorem 6.4 ([78]). LetU = (U, I,Ai) be a fuzzy relational system and let E be fuzzy equivalence on U.
The function Φ : EE(U)→ E(U/E), where EE(U) = {F ∈ E(U) | E ⊆ F}, defined by

Φ(F) = F/E, for all F ∈ EE(U), (68)

is an order embedding of EE(U) into E(U/E), i.e.,

F 6 G ⇔ Φ(F) 6 Φ(G), for all F,G ∈ EE(U). (69)
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It is worth noting that in the case of Boolean (crisp) relational systems Φ is also surjective, which means
that it is an order isomorphism, and equivalently, a lattice isomorphism of EE(U) onto E(U/E). In the case of
fuzzy relational systems we are not able to prove that fact, but this is not so important because in practice
we usually use just the fact that Φ is an order embedding.

Theorem 6.5 ([78]). Let U = (U, I,Ai) be a fuzzy relational system, let E and F be fuzzy equivalences on U such

that E 6 F, and letU/E = (U/E, I,AU/E
i

) be the quotient fuzzy relational system ofU with respect to E.
A fuzzy relation FE ∈ R(U,U/E) defined by

FE(a1,Ea2
) = F(a1, a2), for all a1, a2 ∈ U, (70)

is a uniform fuzzy relation with the kernel F and the co-kernel F/E.
In addition, if E is a solution to WL1.4(U, I,Ai,M), for some M ∈ R(U), then the following is true:

(a) F is a solution to WL1.4(U, I,Ai,M) if and only if F/E is a solution to WL1.4(U/E, I,AU/E
i
,M/E).

(b) F is the greatest solution to system WL1.4(U, I,Ai,M) if and only if F/E is the greatest solution to system

WL1.4(U/E, I,AU/E
i
,M/E).

(c) F is a solution to WL1.4(U, I,Ai,M) if and only if FE is a solution to WL2.3(U,U/E, I,Ai,A
U/E
i
,ME).

Using the above presented results on quotient fuzzy relational systems interesting relationships between
solutions to heterogeneous and homogeneous weakly linear systems can be determined.

First, we have that the following is true.

Theorem 6.6 ([78]). Let a fuzzy relation R ∈ R(U,V) be a solution to system WL2.3(U,V, I,Ai,Bi,N). Then

(a) R ◦ R−1 is a solution to system WL1.4(U, I,Ai,N ◦N−1);

(b) R−1 ◦ R is a solution to system WL1.4(V, I,Bi,N−1 ◦N).

In the previous theorem we have considered the solution to system (wl2.3) which is an arbitrary fuzzy
relation. In the next two theorems we deal with solutions to this system which are uniform fuzzy rela-
tions. We will see that the kernel and the co-kernel of a uniform solution to a heterogeneous weakly linear
system are solutions to related homogeneous systems, and that such a connection also exists between the
greatest solutions to a heterogeneous system and the related homogeneous systems.

Theorem 6.7 ([78]). Let R ∈ R(U,V) be a uniform fuzzy relation and N ∈ R(U,V) a fuzzy relation such that R 6 N.
Then R is a solution to system WL2.3(U,V, I,Ai,Bi,N) if and only if the following is true:

(i) ER
U

is a solution to system WL1.4(U, I,Ai,N ◦N−1);

(ii) ER
V

is a solution to system WL1.4(V, I,Bi,N−1 ◦N);

(iii) R̃ is an isomorphism of quotient fuzzy relational systemsU/ER
U

andV/ER
V

;

whereU = (U, I,Ai) andV = (V, I,Bi).

A natural question which arises here is the relationship between the greatest solution to a heterogeneous
weakly linear system and the greatest solutions to the corresponding homogeneous weakly linear systems.
The following theorem gives an answer to this question.

Theorem 6.8 ([78]). Let N ∈ R(U,V) be a uniform fuzzy relation and let system WL2.3(U,V, I,Ai,Bi,N) have a
uniform solution.

Then the greatest solution R to WL2.3(U,V, I,Ai,Bi,N) is a uniform fuzzy relation such that ER
U

is the greatest

solution to WL1.4(U, I,Ai,N ◦N−1) and ER
V

is the greatest solution to WL1.4(V, I,Bi,N−1 ◦N).

A result similar to Theorem 6.7 can be also obtained for system (wl2.5).
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Theorem 6.9 ([78]). Let R ∈ R(U,V) be a uniform fuzzy relation and N ∈ R(U,V) a fuzzy relation such that R 6 N.
Then R is a solution to system WL2.5(U,V, I,Ai,Bi,N) if and only if the following is true:

(i) ER
U

is a solution to system WL1.4(U, I,Ai,N ◦N−1);

(ii) ER
V

is a solution to system WL1.5(V, I,Bi,N−1 ◦N);

(iii) R̃ is an isomorphism of quotient fuzzy relational systemsU/ER
U

andV/ER
V

;

whereU = (U, I,Ai) andV = (V, I,Bi).

It is an open question whether the analogue of Theorem 6.8 is valid for the system (wl2.5). The method-
ology used in Theorem 6.8 does not give results when it works with this system.

7. Some applications

7.1. Fuzzy automata

In this section, if not noted otherwise, letL be a complete residuated lattice. A fuzzy automaton overL, or
simply a fuzzy automaton, is a quintuple A = (A,X, δA, σA, τA), where A and X are non-empty sets, called
respectively the set of states and the input alphabet, δA : A×X×A→ L is a fuzzy subset of A×X×A, called the
fuzzy transition function, and σA : A→ L and τA : A→ L are fuzzy subsets of A, called the fuzzy set of initial
states and the fuzzy set of terminal (final) states, respectively. We can interpret δA(a, x, b) as the degree to which
an input letter x ∈ X causes a transition from a state a ∈ A into a state b ∈ A, whereas we can interpret
σA(a) and τA(a) as the degrees to which a is respectively an input state and a terminal state. Sometimes we
disregard fuzzy sets of initial and terminal states and deal only with a tripleT = (A,X, δA), consisting of a set
of states A, input alphabet X, and a transition function δA, which is called a fuzzy transition system.

The set of states and the input alphabet of a fuzzy automaton or a fuzzy transition system are usually
assumed to be finite sets, but for methodological reasons we sometimes allow the set of states A to be infinite.
A fuzzy automaton, resp. fuzzy transition system, whose set of states is finite is called a fuzzy finite automaton,
resp. fuzzy finite transition system. Here, there is no reason to consider fuzzy automata and fuzzy transition
systems with infinite sets of states, and when we say fuzzy automaton or fuzzy transition system we will
mean that its set of states is finite.

Let X∗ denote the free monoid over the alphabet X, let ε ∈ X∗ denote the empty word, and X+ = X∗ \ {ε}.
The function δA can be extended up to a function δA

∗ : A × X∗ × A→ L as follows: If a, b ∈ A, then

δA
∗ (a, ε, b) =


1, if a = b,

0, otherwise,
(71)

and if a, b ∈ A, u ∈ X∗ and x ∈ X, then

δA
∗ (a, ux, b) =

∨

c∈A

δA
∗ (a, u, c)⊗ δA(c, x, b). (72)

Due to distributivity of the multiplication in L over joins, we have that

δA
∗ (a, uv, b) =

∨

c∈A

δA
∗ (a, u, c)⊗ δA

∗ (c, v, b), (73)

for all a, b ∈ A and u, v ∈ X∗, i.e., if w = x1 · · ·xn, for x1, . . . , xn ∈ X, then

δA
∗ (a,w, b) =

∨

(c1,...,cn−1)∈An−1

δA(a, x1, c1) ⊗ δA(c1, x2, c2) ⊗ · · · ⊗ δA(cn−1, xn, b). (74)

Intuitively, the product δA(a, x1, c1) ⊗ δA(c1, x2, c2) ⊗ · · · ⊗ δA(cn−1, xn, b) represents the degree to which the
input word w causes a transition from a state a into a state b through the sequence of intermediate states
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c1, . . . , cn−1 ∈ A, and δA
∗ (a,w, b) represents the supremum of degrees of all possible transitions from a into

b caused by w. Also, we can visualize a fuzzy finite automaton A representing it as a labelled directed
graph whose nodes are states ofA, and an edge from a node a into a node b is labelled by pairs of the form
x/δA(a, x, b), for any x ∈ X.

If δA is a crisp subset of A × X × A, that is, δA : A × X × A→ {0, 1}, and σA and τA are crisp subsets of A,
then A is an ordinary nondeterministic automaton. In other words, nondeterministic automata are fuzzy
automata over the Boolean structure. If δA is a function of A × X into A, σA is a one-element crisp subset
of A, that is, σA = {a0}, for some a0 ∈ A, and τA is a fuzzy subset of A, thenA is called a deterministic fuzzy
automaton, and it is denoted by A = (A,X, δA, a0, τA). In [34, 54] the name crisp-deterministic was used. For
more information on deterministic fuzzy automata we refer to [8, 73–75, 77, 85, 93]. Evidently, if δA is a
crisp subset of A × X × A, or a function of A × X into A, then δA

∗ is also a crisp subset of A × X∗ × A, or a
function of A × X∗ into A, respectively. A deterministic fuzzy automatonA = (A,X, δA, a0, τA), where τA is
a crisp subset of A, is an ordinary deterministic automaton.

If for any u ∈ X∗ we define a fuzzy relation δA
u on A by

δA
u (a, b) = δA

∗ (a, u, b), (75)

for all a, b ∈ A, called the fuzzy transition relation determined by u, then (73) can be written as

δA
uv = δ

A
u ◦ δ

A
v , (76)

for all u, v ∈ X∗.
A fuzzy language in X∗ over L, or briefly a fuzzy language, is any fuzzy subset of X∗, i.e., any function

from X∗ to L. A fuzzy language recognized by a fuzzy automaton A = (A,X, δA, σA, τA), denoted as L(A), is a
fuzzy language in X∗ defined by

L(A)(u) =
∨

a,b∈A

σA(a) ⊗ δA
∗ (a, u, b) ⊗ τA(b), (77)

or equivalently,

L(A)(ε) = σA ◦ τA,

L(A)(u) = σA ◦ δA
x1
◦ δA

x2
◦ · · · ◦ δA

xn
◦ τA,

(78)

for any u = x1x2 . . . xn ∈ X+, where x1, x2, . . . , xn ∈ X. In other words, the equality (77) means that the mem-
bership degree of the word u to the fuzzy language L(A) is equal to the degree to which A recognizes or
accepts the word u. Using notation from (6), and the second equality in (8), we can state (77) as

L(A)(u) = σA ◦ δA
u ◦ τ

A. (79)

Fuzzy automataA and B are called language-equivalent, or just equivalent, if L(A) = L(B).
As we said before, the concept of quotient fuzzy relational system discussed in Section 6 comes from the

concept of quotient fuzzy automaton. In fact, fuzzy relational systems are essentially the same as the fuzzy
transition systems, so the concept of a quotient fuzzy relational system is identical to the concept of a
quotient fuzzy transition system. This concept is the basis of the concept of a quotient fuzzy automaton,
where additionally we have to define fuzzy sets of initial and terminal states on the factor set. In the sequel
we give a complete definition of a quotient fuzzy automaton.

Let A = (A, δA, σA, τA) be a fuzzy automaton and let E a fuzzy equivalence relation on A. Without any
restriction on E, we can define a fuzzy transition function δA/E : (A/E) × X × (A/E)→ L by

δA/E(Ea, x,Eb) =
∨

a′,b′∈A

E(a, a′) ⊗ δA(a′, x, b′) ⊗ E(b′, b) = (E ◦ δA
x ◦ E)(a, b) = Ea ◦ δ

A
x ◦ Eb, (80)



J. Ignjatović, M. Ćirić / Filomat 26:2 (2012), 1–35 23

for all a, b ∈ A, x ∈ X, and fuzzy sets σA/E : A/E→ L of initial states and τA/E : A/E→ L of terminal states by

σA/E(Ea) =
∨

a′∈A

σA(a′) ⊗ E(a′, a) = (σA ◦ E)(a) = σA ◦ Ea, (81)

τA/E(Ea) =
∨

a′∈A

E(a, a′) ⊗ τA(a′) = (E ◦ τA)(a) = Ea ◦ τ
A, (82)

for any a ∈ A. Evidently, δA/E, σA/E and τA/E are well-defined andA/E = (A/E,X, δA/E, σA/E, τA/E) is a fuzzy
automaton, called the quotient or factor fuzzy automaton ofA with respect to E. It was shown in [38, 41, 129]
that theorems analogous to those presented in Section 6 are also valid for fuzzy automata.

The concept of a quotient fuzzy automaton can be generalized by taking a fuzzy quasi-order instead of a
fuzzy equivalence. Namely, ifA = (A,X, δA, σA, τA) is a fuzzy automaton and Q is a fuzzy quasi-order on A,
then we define the fuzzy transition function δA/Q : A/Q × X × A/Q→ L by

δA/Q(aQ, x, bQ) =
∨

a′,b′∈A

Q(a, a′) ⊗ δA(a′, x, b′) ⊗Q(b′, b) = (Q ◦ δA
x ◦Q)(a, b) = aQ ◦ δA

x ◦Qb, (83)

for all a, b ∈ A and x ∈ X, and we define fuzzy sets σA/Q : A/Q → L of initial states and τA/Q : A/Q → L of
terminal states by

σA/Q(aQ) =
∨

a′∈A

σA(a′) ⊗Q(a′, a) = (σA ◦Q)(a) = σA ◦Qa, (84)

τA/Q(aQ) =
∨

a′∈A

Q(a, a′) ⊗ τA(a′) = (Q ◦ τA)(a) = aQ ◦ τA, (85)

for any a ∈ A. Remind that aQ and Qa denote respectively the Q-afterset and Q-foreset determined by a, and
A/Q = {aQ | a ∈ A} is the set of all Q-aftersets. It is easy to verify that δA/Q, σA/Q and τA/Q are well-defined
and A/Q = (A/Q,X, δA/Q, σA/Q, τA/Q) is a fuzzy automaton, called the afterset fuzzy automaton of A with
respect to Q.

7.2. State reduction

From the very beginning of the theory of fuzzy sets, fuzzy automata and languages are studied as a means
for bridging the gap between the precision of computer languages and vagueness and imprecision, which
are frequently encountered in the study of natural languages. During the decades, fuzzy automata and lan-
guages have gained wide field of application, and nowadays they are used in lexical analysis, description
of natural and programming languages, learning systems, control systems, neural networks, clinical moni-
toring, pattern recognition, error correction, databases, discrete event systems, and many other areas.

In real-life applications we typically start from an ordinary or fuzzy regular expression, which is then
converted to a nondeterministic or fuzzy finite automaton (cf. [93, 128]). However, the practical implemen-
tation usually requires a deterministic finite automaton or a deterministic fuzzy finite automaton, and the
obtained nondeterministic or fuzzy automaton has to be determinized. On the other hand, determinization
can cause an exponential blow up in the number of states, and in the case of fuzzy finite automata over
certain structures of membership values (such as the product structure), determinization can even result in
an infinite automaton (cf. [34, 74, 77, 85, 93]). That is why the number of states of a fuzzy finite automaton
has to be reduced prior to determinization.

Another important example that illustrates the significance of the state reduction is modeling of discrete
event systems. A discrete event system (DES) is a dynamical system whose state space is described by a
discrete set, and states evolve as a result of asynchronously occurring discrete events over time [26, 72].
Such systems have significant applications in many fields of computer science and engineering, such as
concurrent and distributed software systems, computer and communication networks, manufacturing,
transportation and traffic control systems, etc. Recently, fuzzy discrete event systems have been successfully
applied to biomedical control for HIV/AIDS treatment planning, robotic control, intelligent vehicle control,
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waste-water treatment, examination of chemical reactions, and in other fields. Usually, a discrete event
system is modeled by a deterministic or nondeterministic finite automaton, and recently by a fuzzy finite
automaton, with events modeled by input letters, and the behavior of a discrete event system is described by
the language or fuzzy language generated by the automaton. Discrete event models of complex dynamical
systems are built rarely in a monolithic manner. Instead, a modular approach is used where models of
individual components are built first, followed by the composition of these models to obtain the model of the
overall system. In the automaton modeling formalism the composition of individual automata (that model
interacting system components) is typically formalized by the parallel composition of automata. Once
a complete system model has been obtained by parallel composition of a set of automata, the resulting
monolithic model can be used to analyze the properties of the system, such as safety properties, blocking
properties, observability, diagnosability, controllability, etc. (cf. [26, 72]). The main problem that may arise
here is that the size of the state set of the parallel composition may in the worst case grow exponentially
in the number of automata that are composed. This process is known as the curse of dimensionality in the
study of complex systems composed of many interacting components. The mentioned problem may be
mitigated if we adopt modular reasoning, which can make it possible to replace components in the parallel
composition by smaller equivalent automata that are obtained by the state reduction of the components,
and then to analyze a simpler system.

In contrast to deterministic finite automata, for which there are many fast minimization algorithms, the
state minimization problem for nondeterministic and fuzzy finite automata is computationally hard. For
these automata a more practical problem is the state reduction problem, where a nondeterministic or fuzzy fi-
nite automaton should be replaced with an equivalent automaton with as small as possible number of states,
which need not be minimal but must be effectively computable.

From different aspects, state reduction of fuzzy automata was studied in [3, 33, 90, 96, 111, 114, 118,
134, 135], as well as in the books [102, 112]. The basic idea exploited in these sources was to reduce the
number of states of a fuzzy automaton by computing and merging indistinguishable states, modeled on
the well-known method widely used in the minimization of deterministic finite automata. However, in the
deterministic case we can effectively detect and merge indistinguishable states, but in the nondeterministic
and fuzzy case we work with sets and fuzzy sets of states, and it is seemingly very difficult to decide
whether two states are distinguishable or not. What we shall do is to find a superset such that one is certain
not to merge state that should not be merged. There can always be states which could be merged but
detecting those is too computationally expensive. Besides, detecting and merging indistinguishable states
gives a crisp equivalence relation between states, but we will see later that the use of fuzzy relations (fuzzy
equivalences and fuzzy quasi-orders) in general gives better reductions.

Two new ideas have been launched in [40, 41]. The first one is the use of fuzzy equivalences, rather than
ordinary crisp equivalences, in reducing the number of states of fuzzy automata, and the other is the con-
struction of such fuzzy equivalences by solving certain systems of fuzzy relation equations and inequalities.
In other words, the idea is to form as small as possible quotient fuzzy automaton which would be equivalent
to the original fuzzy finite automaton. However, although the quotient fuzzy automaton can be constructed
without any restriction on a fuzzy equivalence, this fuzzy equivalence must fulfill certain requirements to
ensure that the corresponding quotient fuzzy automaton is equivalent to the original one.

LetA = (A,X, δA, σA, τA) be a fuzzy automaton and let E be a fuzzy equivalence on A. The fuzzy language
L(A/E) recognized by the quotient fuzzy automatonA/E is given by

L(A/E)(ε) = σA ◦ E ◦ τA, (86)

L(A/E)(u) = σA ◦ E ◦ δA
x1
◦ E ◦ δA

x2
◦ E ◦ · · · ◦ E ◦ δA

xn
◦ E ◦ τA, (87)

whereas the fuzzy language L(A) recognized by the fuzzy automatonA is given by

L(A)(ε) = σA ◦ τA, (88)

L(A)(u) = σA ◦ δA
x1
◦ δA

x2
◦ · · · ◦ δA

xn
◦ τA, (89)

for any u = x1x2 . . .xn ∈ X+, with x1, x2, . . . , xn ∈ X. Therefore, fuzzy automataA andA/E recognize the same



J. Ignjatović, M. Ćirić / Filomat 26:2 (2012), 1–35 25

fuzzy language if and only if the fuzzy equivalence E is a solution to a system of fuzzy relation equations

σA ◦ τA = σA ◦ R ◦ τA,

σA ◦ δA
x1
◦ δA

x2
◦ · · · ◦ δA

xn
◦ τA = σA ◦ R ◦ δA

x1
◦ R ◦ δA

x2
◦ R ◦ · · · ◦ R ◦ δA

xn
◦ R ◦ τA,

(90)

for all n ∈N and x1, x2, . . . , xn ∈ X, where R is an unknown fuzzy relation on A. We call (90) the general system.
In this case, solutions are sought in the setE(A) of all fuzzy equivalences on A, but it has been shown in [129]
that solutions can also be sought in the set Q(A) of all fuzzy quasi-orders on A. Namely, for a fuzzy quasi-
order Q on A, the afterset fuzzy automatonA/Q is equivalent toA if and only if Q is a solution to the general
system.

The general system has at least one solution, the equality relation on A. It has been proved in [129] that
solutions to the general system inQ(A) andE(A) form ideals of these lattices, but the general system does not
have the greatest solution neither in Q(A) nor in E(A). Besides, the general system may consist of infinitely
many equations, and finding its nontrivial solutions may be a very difficult task. For that reason it is more
convenient to consider some instances of the general system, by which we mean systems, built from the same
fuzzy relations, whose sets of solutions are contained in the set of all solutions to the general system. These
instances have to be as general as possible, to obtain as large as possible solution, but they have to consist
of finitely many equations and to be “easier” to solve.

The first equation in (90) has an important instance, the system consisting of the equations σA◦R = σA and
R◦τA = τA. Both equations are linear and their greatest solutions can be easily computed. Namely, the great-
est solution to the first equation is the fuzzy quasi-order Qσ, the greatest solution to the second one is the
fuzzy quasi-order Qτ, and the greatest solution to the system is their intersection Qσ ∧ Qτ. If solutions are
sought in the lattice E(A) of fuzzy equivalences, then the greatest solution to the first equation is Eσ, the
greatest solution to the second one is Eτ, and the greatest solution to the system is Eσ ∧Eτ. Remind that Qσ,
Qτ, Eσ and Eτ are defined in Section 2.

The system in the second row of (90) has two exceptionally important instances. The first one is the system

R ◦ δA
x 6 δ

A
x ◦ R (x ∈ X), (91)

which is actually the weakly linear system WL1.1(A,X, δA
x ), and as an instance of the whole system (90) we

obtain

R ◦ δA
x 6 δ

A
x ◦ R (x ∈ X), R 6 Qσ ∧Qτ, (92)

which is nothing else than the weakly linear system WL1.1(A,X, δA
x ,Qσ∧Qτ). Another instance is the system

δA
x ◦ R 6 R ◦ δA

x (x ∈ X), (93)

i.e., the weakly linear system WL1.2(A,X, δA
x ), and as an instance of the whole system (90) we obtain

δA
x ◦ R 6 R ◦ δA

x (x ∈ X), R 6 Qσ ∧Qτ, (94)

which is actually the weakly linear system WL1.2(A,X, δA
x ,Qσ∧Qτ). Solutions to system (92) inQ(A) are called

right invariant fuzzy quasi-orders, and solutions to (94) inQ(A) are called left invariant fuzzy quasi-orders. In the
case when solutions are sought in E(A), we talk about right and left invariant fuzzy equivalences. It is worth
noting that right and left invariant equivalences are also solutions to systems WL1.4(A,X, δA

x ,Eσ ∧ Eτ) and
WL1.5(A,X, δA

x ,Eσ∧Eτ), respectively. Right and left fuzzy equivalences have been introduced in [40, 41], and
right and left invariant fuzzy quasi-orders in [129]. Their crisp analogues are right and left invariant equiva-
lences and quasi-orders, used in [28, 29, 80–84] in the state reduction of nondeterministic finite automata. We
will also see that right and left invariant fuzzy equivalences are actually forward and backward bisimulation
fuzzy equivalences, which will be discussed in the next subsection.

Right and left invariant fuzzy equivalences are completely equal in the state reduction of fuzzy automata,
which means that generally none of them can be considered better than the other. There are cases where one
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of them better reduces the number of states, as well as other cases where the another one gives a better reduc-
tion. Besides, it has been proved that even better results in the state reduction are obtained by applying alter-
nately reductions by means of the greatest right and left invariant fuzzy equivalences (cf. [41, 129]). There
are also cases where each of them individually causes a polynomial reduction of the number of states, but
alternately applying both types of fuzzy equivalences the number of states can be reduced exponentially
(cf. [81, Section 11]). Everything that has been noted above for right and left invariant fuzzy equivalences is
also valid for right and left invariant fuzzy quasi-orders. In addition, it has been proved in [129] that right
and left invariant fuzzy quasi-orders generally give better reductions than right and left invariant fuzzy
equivalences. It should be noted that there are some applications where only one of the right and left invari-
ant fuzzy quasi-orders and fuzzy equivalences can be used. For example, left invariant fuzzy quasi-orders
and fuzzy equivalences can be successfully applied in the conflict analysis of fuzzy discrete event systems
(as shown in [129]), where the right invariant ones do not play any role. On the other hand, right invariant
equivalences play an important role in the state reduction of nondeterministic automata constructed from
regular expressions. In particular, it has been proved in [30–32, 79–82] that the well-known partial derivative
automaton and the follow automaton can be obtained as factor automata of the position automaton with
respect to certain right invariant equivalences. Related results for fuzzy automata have been recently given
in [128].

The greatest right and left invariant fuzzy equivalences and fuzzy quasi-orders can be computed using
the iterative procedure presented in Section 5. The question that naturally arises is what to do in cases where
this iterative procedure fails to terminate in a finite number of steps. One answer to this question has already
been proposed in Section 5. By means of the procedure provided in Section 5, we can compute the greatest
right or left invariant crisp equivalence or quasi-order, and using it, we can reduce the given fuzzy finite
automaton. The advantage of this approach is that the greatest right and left invariant crisp equivalences and
quasi-orders can always be effectively computed, independently on the underlying structure of membership
values, but the disadvantage is that in general we obtain worse reductions. Another answer to the above
question is to consider some less general instances of system (90) whose greatest solution can be more easily
computed. In particular, linear systems

R ◦ δA
x 6 δ

A
x (x ∈ X), R 6 Qσ ∧Qτ, (95)

and

δA
x ◦ R 6 δA

x (x ∈ X), R 6 Qσ ∧Qτ, (96)

have been investigated in [41, 129], and their solutions in Q(A) and E(A) have been called strongly right and
left invariant fuzzy quasi-orders and fuzzy equivalences. The greatest solutions to these systems can be easily
computed as shown in Section 3, without any iterative procedure and for every complete residuated lattice
as the underlying structure of membership values. However, it has been proved in [76] that they give even
worse reductions than right and left invariant crisp equivalences and quasi-orders.

Different instances of the general system have been studied in [129]. These are linear systems

R ◦ τA
u 6 τ

A
u , (u ∈ X∗), (97)

and

σA
u ◦ R 6 σA

u , (u ∈ X∗), (98)

where τA
u and σA

u are fuzzy subsets of A defined by τA
u = δ

A
u ◦τ

A and σA
u = σ

A◦δA
u , for each u ∈ X∗. Solutions to

(97) in Q(A) and E(A) are called weakly right invariant fuzzy quasi-orders and fuzzy equivalences, and solutions
to (98) in Q(A) and E(A) are called weakly left invariant fuzzy quasi-orders and fuzzy equivalences. It has been
shown in [129] that the greatest weakly right and left invariant fuzzy quasi-orders and fuzzy equivalences
generally give better reductions than the greatest right and left invariant fuzzy quasi-orders and fuzzy equi-
valences. However, although it may seem that the greatest solutions to (97) and (98) can be easily computed,
because the systems are linear, it is not so simple. The problem may be to compute the fuzzy sets τA

u in (97)
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or σA
u in (98), for each u ∈ X∗. Fuzzy sets σA

u , for u ∈ X∗, are states of the Nerode automaton of A, which
is obtained by determinization of the fuzzy automaton A using a method developed in [74] (see also
[34, 77, 85]), whereas fuzzy sets τA

u , for u ∈ X∗, are states of the Nerode automaton of the reverse fuzzy
automaton ofA. Therefore, before solving the system (97) or (98), we first have to compute all fuzzy sets τA

u

or σA
u , for u ∈ X∗, and the number of these fuzzy sets may be inifinite, and even if it is finite, this number can

be exponential in the number of states ofA. In other words, the number of inequalities in (97) or (98) may
be infinite, or exponential in the number of states of A. However, although theoretically determinization
algorithms are computationally hard, they have surprisingly good performance in practice, so formation
of systems (97) and (98) usually should not be a problem.

7.3. Simulation and bisimulation

Bisimulations have been introduced by Milner [99] and Park [107] in computer science, more precisely
in concurrency theory, where they have been used to model equivalence between various systems, as well
as to reduce the number of states of these systems. Roughly at the same time they have been also discovered
in some areas of mathematics, e.g., in modal logic and set theory. They are employed today in a many areas
of computer science, such as functional languages, object-oriented languages, types, data types, domains,
databases, compiler optimizations, program analysis, verification tools, etc. For more information about
bisimulations we refer to [1, 26, 53, 62, 95, 100, 101, 120, 126].

The most common structures on which bisimulations have been studied are labelled transition systems,
but they have also been investigated in the context of deterministic, nondeterministic, weighted, probabil-
istic, timed and hybrid automata. Recently, bisimulations have been discussed in the context of fuzzy auto-
mata in [25, 38, 40, 41, 75, 118, 129, 131]. One can distinguish two general approaches to the concept
of bisimulation for fuzzy automata. The first approach, which we encounter in [25, 118, 131], uses ordi-
nary crisp relations and functions. Another approach, proposed in [38, 40, 41, 75, 129], is based on the use
of fuzzy relations, which have been shown to provide better results both in the state reduction (as shown
in the previous subsection) and the modeling of equivalence of fuzzy automata.

Two types of simulations and four types of bisimulations between fuzzy automata have recently been
introduced in [38]. LetA = (A, δA, σA, τA) and B = (B, δB, σB, τB) be fuzzy automata, and let ϕ ∈ R(A,B) be a
non-empty fuzzy relation. The fuzzy relation ϕ is called a forward simulation if it satisfies

σA
6 σB ◦ ϕ−1, ( f s.1)

ϕ−1 ◦ δA
x 6 δ

B
x ◦ ϕ

−1, for every x ∈ X, ( f s.2)

ϕ−1 ◦ τA
6 τB, ( f s.3)

and a backward simulation if

τA
6 ϕ ◦ τB, (bs.1)

δA
x ◦ ϕ 6 ϕ ◦ δ

B
x , for every x ∈ X, (bs.2)

σA ◦ ϕ 6 σB. (bs.3)

Furthermore, ϕ is called a forward bisimulation if both ϕ and ϕ−1 are forward simulations, i.e., if ϕ satisfies

σA
6 σB ◦ ϕ−1, σB

6 σA ◦ ϕ, ( f b.1)

ϕ−1 ◦ δA
x 6 δ

B
x ◦ ϕ

−1, ϕ ◦ δB
x 6 δ

A
x ◦ ϕ, for every x ∈ X, ( f b.2)

ϕ−1 ◦ τA
6 τB, ϕ ◦ τB

6 τA, ( f b.3)

and a backward bisimulation, if both ϕ and ϕ−1 are backward simulations, i.e., if ϕ satisfies

τA
6 ϕ ◦ τB, τB

6 ϕ−1 ◦ τA, (bb.1)

δA
x ◦ ϕ 6 ϕ ◦ δ

B
x , δB

x ◦ ϕ
−1
6 ϕ−1 ◦ δA

x , for every x ∈ X, (bb.2)

σA ◦ ϕ 6 σB, σB ◦ ϕ−1
6 σA. (bb.3)
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Figure 1: Forward and backward simulation

Also, if ϕ is a forward simulation and ϕ−1 is a backward simulation, i.e., if ϕ satisfies

σA
6 σB ◦ ϕ−1, τB

6 ϕ−1 ◦ τA, ( f bb.1)

ϕ−1 ◦ δA
x = δ

B
x ◦ ϕ

−1, for every x ∈ X, ( f bb.2)

σB ◦ ϕ−1
6 σA, ϕ−1 ◦ τA

6 τB, ( f bb.3)

then ϕ is called a forward-backward bisimulation, and if ϕ is a backward and ϕ−1 a forward simulation, i.e.,

σB
6 σA ◦ ϕ, τA

6 ϕ ◦ τB, (b f b.1)

δA
x ◦ ϕ = ϕ ◦ δ

B
x , for every x ∈ X, (b f b.2)

σA ◦ ϕ 6 σB ϕ ◦ τB
6 τA. (b f b.3)

thenϕ is called a backward-forward bisimulation. For the sake of simplicity, we will callϕ just a simulation ifϕ is
either a forward or a backward simulation, and just a bisimulation ifϕ is any of the four types of bisimulations
defined above. Moreover, forward and backward bisimulations are called homotypic, whereas backward-
forward and forward-backward bisimulations are called heterotypic.

The meaning of forward and backward simulations can be best explained in the case whenA andB are
nondeterministic (Boolean) automata. For this purpose we will use the diagram shown in Figure 1. Letϕbe a
forward simulation betweenA andB and let a0, a1, . . . , an be an arbitrary successful run of the automatonA
on a word u = x1x2 · · · xn (x1, x2, . . . , xn ∈ X), i.e., a sequence of states ofA such that a0 ∈ σA, (ak, ak+1) ∈ δA

xk+1
,

for 0 6 k 6 n−1, and an ∈ τA. According to ( f s.1), there is an initial state b0 ∈ σB such that (a0, b0) ∈ ϕ. Suppose
that for some k, 0 6 k 6 n − 1, we have built a sequence of states b0, b1, . . . , bk such that (bi−1, bi) ∈ δB

xi
and

(ai, bi) ∈ ϕ, for each i, 1 6 i 6 k. Then (bk, ak+1) ∈ ϕ−1 ◦ δA
xk+1

, and by ( f s.2) we obtain that (bk, ak+1) ∈ δB
xk+1
◦ϕ−1,

so there exists bk+1 ∈ B such that (bk, bk+1) ∈ δB
xk+1

and (ak+1, bk+1) ∈ ϕ. Therefore, we have successively built a

sequence b0, b1, . . . , bn of states ofB such that b0 ∈ σB, (bk, bk+1) ∈ δB
xk+1

, for every k, 0 6 k 6 n−1, and (ak, bk) ∈ ϕ,

for each k, 0 6 k 6 n. Moreover, by ( f s.3) we obtain that bn ∈ τB. Thus, the sequence b0, b1, . . . , bn is a successful
run of the automaton B on the word u which simulates the original run a0, a1, . . . , an of A on u. In contrast
to forward simulations, where we build the sequence b0, b1, . . . , bn moving forward, starting with b0 and
ending with bn, in the case of backward simulations we build this sequence moving backward, starting with
bn and ending with b0. Similarly we can understand forward and backward simulations between arbitrary
fuzzy automata, taking into account degrees of possibility of transitions and degrees of relationship.

In numerous papers dealing with simulations and bisimulations mostly forward simulations and for-
ward bisimulations have been studied. They have been usually called just simulations and bisimulations, or
strong simulations and strong bisimulations (cf. [100, 101, 120]), and the greatest bisimulation equivalence has
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been usually called a bisimilarity. Distinction between forward and backward simulations, and forward and
backward bisimulations, has been made, for instance, in [23, 68, 95] (for various kinds of automata), but less
or more these concepts differ from the concepts having the same name which are considered here. More sim-
ilar to our concepts of forward and backward simulations and bisimulations are those studied in [22], and in
[69, 70] (for tree automata). Moreover, backward-forward bisimulations have been discussed in the context
of weighted automata in [5–7, 12, 23, 57, 58].

It is easy to verify that condition ( f s.3) can be written as ϕ 6 τA → τB, where τA → τB is a fuzzy relation
between A and B defined by (τA → τB)(a, b) = τA(a)→ τB(b), for all a ∈ A and b ∈ B, and correspondingly for
conditions (bs.3), ( f b.3), (bb.3), ( f bb.3) and (b f b.3). Therefore, the second and third conditions in the defini-
tions of simulations and bisimulations form six heterogeneous weakly linear systems, precisely all those six
weakly linear systems that were discussed in Section 4. The first conditions in these definitions determine
whether there is any simulation or bisimulation of a given type between two fuzzy automata. On this
basis, effective algorithms provided in [39] decide whether there is a simulation or bisimulation of a given
type between two fuzzy finite automata, and whenever it exists, the same algorithm computes the greatest
one. Namely, each of these algorithms first computes the greatest solution to the corresponding weakly
linear system, and then check whether this solution satisfies the first condition in the definition of the con-
sidered type of simulations or bisimulations. If this condition is satisfied, then the computed solution is the
greatest bisimulation or simulation of the considered type, and if the condition is not satisfied, then one
concludes that there is no simulation or bisimulation of this type. Note that many algorithms have been
proposed to compute the greatest (forward) bisimulation equivalence on a given labelled graph or a labeled
transition system, and the faster ones are based on the crucial equivalence between the greatest bisimulation
equivalence and the relational coarsest partition problem (cf. [53, 62, 86, 106, 119]). An algorithm that com-
putes the greatest forward bisimulation between two nondetermistic finite automata is given in [89].

One of the most important problems of automata theory is to determine whether two given automata are
equivalent, what usually means to determine whether their behaviour is identical. In the context of determi-
nistic, nondeterministic and fuzzy automata the behaviour of an automaton is understood to be the language
that is recognized by it, and two automata are considered equivalent, or more precisely language-equivalent, if
they recognize the same language. Like the minimization problem, the equivalence problem is solvable in
polynomial time for deterministic finite automata, but it is computationally hard for nondeterministic and
fuzzy finite automata. Another important issue is to express the language-equivalence of two automata as a
relation between their states, if such relationship exists, or find some kind of relations between states which
would imply the language-equivalence. The language-equivalence of two deterministic automata can be
expressed in terms of relationships between their states, but in the case of nondeterministic and fuzzy auto-
mata the problem is more complicated.

The most widely-used notion of “equivalence” between states of different nondeterministic automata is
exactly the concept of bisimulation. However, bisimulations provide compatibility with the transitions, ini-
tial and terminal states of automata, but they are not sufficient to model equivalence, because in general they
do not behave like equivalence relations. As we have already said in Section 2, a kind of relations that can
be conceived as equivalences which relate elements of two possibly different sets, in the fuzzy setting, are
uniform fuzzy relations. By merging these two concepts into one, which was done in [38] (see also [35]), a
very powerful tool in the study of equivalence between fuzzy automata has been provided. In particular,
analogues of Theorems 6.7, 6.8 and 6.9 have been proved in [38], which implies that two fuzzy automata
A and B are FB-equivalent, i.e., there exists a uniform forward bisimulation between them, if and only if
there is an isomorphism with certain special properties between the factor fuzzy automata A/E and B/F,
where E and F are respectively the greatest right invariant fuzzy equivalences (or forward bisimulation
fuzzy equivalences) onA and B. It is interesting to note that this result relates the problem of determining
whether two fuzzy automata are FB-equivalent with the famous graph isomorphism problem, the computa-
tional problem of determining whether two finite graphs are isomorphic. Besides its practical importance,
the graph isomorphism problem is a curiosity in computational complexity theory, as it is one of a very
small number of problems belonging to NP that is neither known to be computable in polynomial time nor
NP-complete. Along with integer factorization, it is one of the few important algorithmic problems whose
rough computational complexity is still not known, and it is generally accepted that graph isomorphism is a
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problem that lies between P and NP-complete if P,NP (cf. [127]). Although no worst-case polynomial-time
algorithm is known, testing graph isomorphism is usually not very hard in practice. The basic algorithm
examines all n! possible bijections between the nodes of two graphs (with n nodes), and tests whether
they preserve adjacency of the nodes. Clearly, the major problem is the rapid growth in the number of
bijections when the number of nodes is growing, which is also the crucial problem in testing isomorphism
between fuzzy automata, but the algorithm can be made more efficient by suitable partitioning of the sets
of nodes as described in [127]. However, a more effective way to decide whether two fuzzy automata are
FB-equivalent is the above discussed algorithm from [39], which determines whether there is a forward
bisimulation between these automata, and if it exists, the algorithm computes the greatest one. After that, it
simply checks if the greatest forward bisimulation is a surjectiveL-function (according to Theorem 4.4, the
greatest forward bisimulation is always a partial fuzzy function).

Finally, note that the last section of the paper [38] gives a comprehensive overview of various concepts on
deterministic, nondeterministic, fuzzy, and weighted automata, which are related to the algebraic concepts
of a homomorphism, congruence and relational morphism. In particular, relationships between these con-
cepts and the concepts of bisimulations have been discussed.

7.4. Social network analysis

Social network analysis has originated as a branch of sociology and mathematics which provides formal
models and methods for the systematic study of social structures. Social networks share many common
properties with other types of networks, and methods of social network analysis are nowadays applied
to the analysis of networks in general, including many kinds of networks that arise in computer science,
physics, biology, etc., such as the hyperlink structure on the Web, the electric grid, computer networks,
information networks or various large-scale networks appearing in nature.

The key difference between network analysis and other approaches is the focus on relationships among
actors rather than the attributes of individual actors. Network analysis takes a global view on network struc-
tures, based on the belief that types and patterns of relationships emerge from individual connectivity and
that the presence (or absence) of such types and patterns have substantial effects on the network and its con-
stituents. In particular, the network structure provides opportunities and imposes constraints on the indivi-
dual actors by determining the transfer or flow of resources (material or immaterial) across the network. Such
an approach requires a set of methods and analytic concepts that are distinct from the methods of tradi-
tional statistics and data analysis. The natural means to model networks mathematically is provided by the
notions of graphs, relations and matrices, and methods of network analysis primarily originate from graph
theory, semigroup theory, linear algebra, and recently, of automata theory. This formality served network
analysis to reduce the vagueness in formulating and testing its theories, and contributed to more coherence
in the field by allowing researchers to carry out more precise discussions in the literature and to compare
results across studies. More information on various aspects of the network analysis and its applications can
be found in [19, 21, 47, 52, 67, 98, 109, 132].

However, the above mentioned vagueness in social networks (as well as in many other networks) can
not be completely avoided, since relations between individuals are in essence vague. This vagueness can be
overcame only applying the fuzzy approach to the network analysis, but still, just few authors dealt with
this topic (cf. [42, 60, 61, 103, 104]). The study of social networks from the aspect of fuzzy set theory will be
one of the main challenges in our future research.

A fuzzy social network (or just a fuzzy network) one can define as a fuzzy relational systemU = (U, I,Ai),
where A is a non-empty (usually finite) set of individuals (called also nodes or actors), and {Ai}i∈I is a family of
fuzzy relations on U. Ordinary social networks are typically visualized as directed multigraphs or directed
labelled graphs (with labels taken from the index set I), so fuzzy social networks can be treated as directed
fuzzy multigraphs, directed labelled fuzzy graphs, or as fuzzy automata (with I as its input alphabet).

In large and complex systems it is impossible to understand the relationship between each pair of indi-
viduals, but to a certain extent, it may be possible to understand the system, by classifying individuals and
describing relationships on the class level. In networks, for instance, nodes in the same class can be con-
sidered to occupy the same position, or play the same role in the network. The main aim of the positional
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analysis of networks is to find similarities between nodes which have to reflect their position in a network.
These similarities have been formalized first by Lorrain and White [94] by the concept of a structural equiv-
alence. Informally speaking, two nodes are considered to be structurally equivalent if they have identical
neighborhoods. However, in many situations this concept has shown oneself to be too strong, and weak-
ening it sufficiently to make it more appropriate for modeling social positions, White and Reitz [133] have
introduced the concept of a regular equivalence. Here, two nodes are considered to be regularly equivalent if
they are equally related to equivalent others. Afterwards, regular equivalences have been studied in nu-
merous papers, e.g., in [16–20, 59, 108, 109]. The main technique used in positional analysis of networks is
the blockmodeling, where large and complex social networks are mapped into simpler structures, called
blockmodel images. Blockmodel images are viewed as structural summaries of these large and complex
networks. The structure depicted in a blockmodel image can be understood as the fundamental structure
of the network and the considered network is an instantiation of the fundamental structure. The key role
in blockmodeling play various types of equivalences, like structural and regular equivalences, which in a
certain sense simultaneously partition nodes and edges of the network (cf. [4, 15, 50–52]).

The notion of a regular equivalence has been extended to the fuzzy framework by Fan et al. [60, 61]. They
have defined a regular fuzzy equivalence on a fuzzy network U as any fuzzy equivalence E on U which
satisfies E ◦ Ai = Ai ◦ E, for each i ∈ I. In our terminology, these are just fuzzy equivalences which are
solutions to the weakly linear system WL1.3(U, I,Ai), or equivalently, to the system WL1.6(U, I,Ai). On the
other hand, structural fuzzy equivalences, defined in the same manner as in the crisp case (cf., e.g., [91]), are
just fuzzy equivalences that are solutions to the linear system Ai ◦X = Ai, X ◦Ai = Ai (i ∈ I). In terms used
in Subsection 7.2 in the theory of fuzzy automata, regular fuzzy equivalences are the ones that are both
right and left invariant, while structural fuzzy equivalences are the ones that are both strongly right and
left invariant. Fan et al. [60, 61] have also provided procedures for computing the greatest regular fuzzy
equivalence and the greatest regular crisp equivalence contained in a given fuzzy (resp. crisp) equivalence,
but they have considered only fuzzy relations over the Gödel structure which is locally finite, so the problems
appearing in Section 5 do not appear in this case. In contrast to that, the methods presented in Section 5 can
be applied to fuzzy networks over more general structures of truth values. It is worth noting that similarity
between regular and bisimulation equivalences has been pointed out in [97], and the results presented here
make this similarity even more clear.

A different procedure for computing the greatest regular fuzzy equivalence on a fuzzy social network
U = (U, I,Ai), contained in a given fuzzy equivalence M, has been provided in [76]. As we have already
pointed out, this is precisely the computing of the greatest solution to weakly linear system WL1.6(U, I,Ai,M).
The paper [76] also considers more general types of fuzzy equivalences, called right regular and left regular
fuzzy equivalences, and provides procedures for computing the greatest right and left regular fuzzy equi-
valences on U contained in a given fuzzy equivalence M, i.e., the greatest solutions to weakly linear sys-
tems WL1.4(U, I,Ai,M) and WL1.5(U, I,Ai,M), respectively. In addition, the paper [76] provides procedures
for computing the greatest solutions to systems WL1.1(U, I,Ai,M), WL1.2(U, I,Ai,M) and WL1.3(U, I,Ai,M),
where M is a given fuzzy quasi-order, i.e., the greatest right regular, left regular and regular fuzzy quasi orders
contained in M (cf. Section 5). However, in [76] we have not discussed blockmodeling by means of right
regular, left regular and regular fuzzy equivalences and fuzzy quasi-orders, and this issue is one of the
subjects of our current research. Besides, we are currently dealing with the issue of recognizing structural
similarities between two different fuzzy social networksU = (U, I,Ai) andV = (V, I,Bi), for which purpose
we use solutions to heterogeneous weakly linear systems WL2.t(U,V, I,Ai,Bi,N), where t ∈ {1, . . . , 6} and N is
a particular fuzzy relation between U and V. In other words, we are studying simulation, bisimulation and
equivalence between two fuzzy social networks. Currently we are also discussing related issues concerning
two-mode (bipartite) fuzzy social networks (cf. [130]).
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[36] M. Ćirić, J. Ignjatović, S. Bogdanović, Fuzzy equivalence relations and their equivalence classes, Fuzzy Sets and Systems 158
(2007) 1295–1313.
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Fuzzy Logic, Physica-Verlag, Heidelberg, 2000, pp. 431–453.

[88] G. J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic, Theory and Application, Prentice-Hall, Englevood Cliffs, NJ, 1995.
[89] D. C. Kozen, Automata and Computability, Springer, 1997.
[90] H. Lei, Y. M. Li, Minimization of states in automata theory based on finite lattice-ordered monoids, Information Sciences 177

(2007) 1413–1421.
[91] J. Lerner, Role assignments, in: U. Brandes, T. Erlebach (eds.), Network Analysis: Methodological Foundations, Lecture Notes

in Computer Science, vol. 3418, Springer, 2005, pp. 216–252.
[92] T.-J. Li, Y. Leung, W.-X. Zhang, Generalized fuzzy rough approximation operators based on fuzzy coverings, International

Journal of Approximate Reasoning 48 (2008) 836–856.
[93] Y. M. Li, W. Pedrycz, Fuzzy finite automata and fuzzy regular expressions with membership values in lattice ordered monoids,

Fuzzy Sets and Systems 156 (2005) 68–92.
[94] F. Lorrain, H. C. White, Structural equivalence of individuals in social networks, Journal of Mathematical Sociology 1 (1971)

49–80.
[95] N. Lynch, F. Vaandrager, Forward and backward simulations: Part I. Untimed systems, Information and Computation 121

(1995), 214–233.
[96] D. S. Malik, J. N. Mordeson, M. K. Sen, Minimization of fuzzy finite automata, Information Sciences 113 (1999) 323–330.
[97] M. Marx, M. Masuch, Regular equivalence and dynamic logic, Social Networks 25 (2003) 51–65.
[98] P. Mika, Social Networks and the Semantic Web, Springer, 2007.
[99] R. Milner, A calculus of communicating systems, in G. Goos and J. Hartmanis (eds.), Lecture Notes in Computer Science, vol.

92, Springer, 1980.
[100] R. Milner, Communication and Concurrency, Prentice-Hall International, 1989.
[101] R. Milner, Communicating and Mobile Systems: the π-Calculus, Cambridge University Press, Cambridge, 1999.
[102] J. N. Mordeson, D. S. Malik, Fuzzy Automata and Languages: Theory and Applications, Chapman & Hall/CRC, Boca Raton,

London, 2002.
[103] P. S. Nair, S. Sarasamma, Data mining through fuzzy social network analysis, in: Proceedings of the 26th Annual Meeting of the

North American Fuzzy Information Processing Society, 2007, pp. 251–255.
[104] M. E. J. Newman, Analysis of weighted networks, Physical Review E 70 (2004), 056131:1–9.
[105] V. Novák, Fuzzy Sets and Their Applications, Adam Hilger, Bristol, 1989.
[106] R. Paige, R. E. Tarjan, Three partition refinement algorithms, SIAM Journal of Computing 16 (1987) 973–989.
[107] D. Park, Concurrency and automata on infinite sequences, in: P. Deussen (ed.), Proc. 5th GI Conf., Karlsruhe, Germany, Lecture

Notes in Computer Science 104 (1981), Springer-Verlag, pp. 167–183.
[108] P. Pattison, The analysis of semigroups of multirelational systems, Journal of Mathematical Psychology 25 (1982) 87–117.
[109] P. E. Pattison, Algebraic Models for Social Networks, Cambridge University Press, Cambridge, 1993.
[110] W. Pedrycz, F. Gomide, Fuzzy Systems Engineering: Toward Human-Centric Computing, Wiley-IEEE Press, 2007.
[111] K. Peeva, Finite L-fuzzy machines, Fuzzy Sets and Systems 141 (2004) 415–437.
[112] K. Peeva, Y. Kyosev, Fuzzy Relational Calculus: Theory, Applications, and Software (with CD-ROM), in Series “Advances in

Fuzzy Systems – Applications and Theory”, Vol 22, World Scientific, 2004.
[113] K. Peeva, Y. Kyosev, Algorithm for solving max-product fuzzy relational equations, Soft Computing 11 (2007) 593–605.
[114] K. Peeva, Z. Zahariev, Computing behavior of finite fuzzy machines – Algorithm and its application to reduction and mini-

mization, Information Sciences 178 (2008) 4152–4165.
[115] I. Perfilieva, Fuzzy function as an approximate solution to a system of fuzzy relation equations, Fuzzy Sets and Systems 147

(2004) 363–383.
[116] I. Perfilieva, S. Gottwald, Fuzzy function as a solution to a system of fuzzy relation equations, International Journal of General

Systems 32 (2003) 361–372.
[117] I. Perfilieva, V. Novák, System of fuzzy relation equations as a continuous model of IF-THEN rules, Information Sciences 177

(2007) 3218–3227.
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