A comment on some recent results concerning the Drazin inverse of an anti-triangular block matrix

Chun Yuan Deng ${ }^{\text {a }}$
${ }^{a}$ School of Mathematical Sciences, South China Normal University, Guangzhou 510631, P.R. China.

Abstract

In this note we give formulae for the Drazin inverse M^{D} of an anti-triangular special block matrix $M=\left(\begin{array}{cc}A & B \\ C & 0\end{array}\right)$ under some conditions expressed in terms of the individual blocks, which generalize some recent results given by Changjiang Bu [7, 8] and Chongguang Cao [10], etc.

1. Introduction

This research came up when we read some recent papers [7]-[10] which were concerned about calculating the Drazin inverses or group inverses of the anti-triangular special block matrices. The concept of the Drazin inverse plays an important role in various fields like Markov chains, singular differential and difference equations, iterative methods, etc. [1]-[6], [15]. Our purpose is to give representations for the Drazin inverse of the anti-triangular block matrix $M=\left(\begin{array}{cc}A & B \\ C & 0\end{array}\right)$ under some conditions expressed in terms of the individual blocks. Block matrices of this form arise in numerous applications, ranging from constrained optimization problems to the solution of differential equations [1], [2], [3], [13], [16], [17].

Let $P=P^{2}$ be an idempotent matrix. C. Cao in 2006 [10] gave the group inverse of every one of the seven matrices: $\left(\begin{array}{cc}P P^{*} & P \\ P & 0\end{array}\right),\left(\begin{array}{cc}P & P \\ P P^{*} & 0\end{array}\right),\left(\begin{array}{cc}P P^{*} & P P^{*} \\ P & 0\end{array}\right),\left(\begin{array}{cc}P & P \\ P^{*} & 0\end{array}\right),\left(\begin{array}{cc}P & P P^{*} \\ P P^{*} & 0\end{array}\right),\left(\begin{array}{cc}P & P P^{*} \\ P^{*} & 0\end{array}\right)$ and $\left(\begin{array}{cc}P^{*} & P \\ P & 0\end{array}\right)$. Recently, C. Bu, et al. in [7-9] has obtained the new representations for the group inverse of a 2×2 antitriangular matrix $M=\left(\begin{array}{cc}A & A \\ B & 0\end{array}\right)$, where $A^{2}=A$ in terms of the group inverse of $A B$. In the present paper we will find explicit expressions for the Drazin inverse of a 2×2 anti-triangular operator matrix M under other weaker constraints. Our results generalize some recent results given by Changjiang Bu [7, 8] and Chong Guang Cao [10], etc.

In this note, let A be an $n \times n$ complex matrix. We denote by $\mathcal{N}(A), \mathcal{R}(A)$ and $\operatorname{rank}(\mathrm{A})$ the null space, the range and the rank of matrix A, respectively. The Drazin inverse [2] of $A \in \mathrm{C}^{n \times n}$ is the unique complex

[^0]matrix $A^{D} \in \mathrm{C}^{n \times n}$ satisfying the relations
\[

$$
\begin{equation*}
A A^{D}=A^{D} A, A^{D} A A^{D}=A^{D}, A^{k} A A^{D}=A^{k} \quad \text { for all } k \geq r, \tag{1}
\end{equation*}
$$

\]

where $r=\operatorname{ind}(\mathrm{A})$, called the index of A, is the smallest nonnegative integer such that $\operatorname{rank}\left(\mathrm{A}^{\mathrm{r}+1}\right)=\operatorname{rank}\left(\mathrm{A}^{\mathrm{r}}\right)$. We will denote by $A^{\pi}=I-A A^{D}$ the projection on $\mathcal{N}\left(A^{r}\right)$ along $\mathcal{R}\left(A^{r}\right)$. In the case ind $(\mathrm{A})=1, A^{D}$ reduces to the group inverse of A, denoted by $A^{\#}$. In particular, A is nonsingular if and only if ind $(A)=0$.

2. Key lemmas

In this section, we state some lemmas which will be used to prove our main results.
Lemma 2.1. (see [7, Lemma 2.5]) Let $A, B \in C^{n \times n}$ such that $\operatorname{rank}(A)=r$. If $A^{2}=A$ and $\operatorname{rank}(B)=\operatorname{rank}(B A B)$, then A and B can be written as

$$
A=\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
B_{1} & B_{1} X \\
Y B_{1} & Y B_{1} X
\end{array}\right)
$$

with respect to space decomposition $\mathrm{C}^{n}=\mathcal{R}(A) \oplus \mathcal{N}(A)$, where $A B, B A$ and $B_{1} \in \mathrm{C}^{r \times r}$ are group invertible, $\mathrm{X} \in \mathrm{C}^{r \times(n-r)}$ and $Y \in \mathrm{C}^{(n-r) \times r}$.

The following lemma concerns the Drazin inverse of 2×2 block matrix.
Lemma 2.2. (see Lemma 2.2 and Corollary 2.3 in [14]) Let $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ such that D is nilpotent and $\operatorname{ind}(\mathrm{D})=\mathrm{s}$. If $B C=0$ and $B D=0$, then

$$
M^{D}=\left(\begin{array}{cc}
A^{D} & \left(A^{D}\right)^{2} B \\
\sum_{i=0}^{s-1} D^{i} C\left(A^{D}\right)^{i+2} & \sum_{i=0}^{s-1} D^{i} C\left(A^{D}\right)^{i+3} B
\end{array}\right) .
$$

Lemma 2.3. (see [11, Theorem 2.3]) Let $A, B \in \mathrm{C}^{n \times n}$ such that $A B=B A$. Then
(1) $(A B)^{D}=B^{D} A^{D}=A^{D} B^{D}$.
(2) $A B^{D}=B^{D} A$ and $A^{D} B=B A^{D}$.
(3) $(A B)^{\pi}=B^{\pi}$ when A is invertible.

Lemma 2.4. Let $M=\left(\begin{array}{cc}A & A \\ B & 0\end{array}\right)$ such that A is nilpotent and $\operatorname{ind}(\mathrm{A})=\mathrm{s}$. If $B A=0$, then M is nilpotent with $\operatorname{ind}(\mathrm{M}) \leq \mathrm{s}+1$.

Proof. Note that, if $B A=0$, then $M^{s+1}=\left(\begin{array}{cc}A^{s+1}+A^{s} B & A^{s} \\ 0 & 0\end{array}\right)=0$.
Let $M=\left(\begin{array}{cc}A & B \\ C & 0\end{array}\right)$, where $A \in \mathrm{C}^{d \times d}, B \in \mathrm{C}^{d \times(n-d)}$ and $C \in \mathrm{C}^{(n-d) \times d}$. N. Castro-González and E. Dopazo (see [3, Theorem 4.1]) had proved that, if $C A^{D} A=C$ and $A^{D} B C=B C A^{D}$, then (see [3], pp.267)

$$
M^{D}=\left(\begin{array}{cc}
\left(A^{D}\right)^{2}\left[W_{1}+\left(A^{D}\right)^{2} B C W_{2}\right](B C)^{\pi} A & {\left[(B C)^{D}+\left(A^{D}\right)^{2} W_{1}(B C)^{\pi}\right] B} \tag{2}\\
C\left[(B C)^{D}+\left(A^{D}\right)^{2} W_{1}(B C)^{\pi}\right] & C\left[-A\left((B C)^{D}\right)^{2}+\left(A^{D}\right)^{3} W_{2}(B C)^{\pi}\right] B
\end{array}\right),
$$

where

$$
r=\operatorname{ind}\left[\left(\mathrm{A}^{\mathrm{D}}\right)^{2} \mathrm{BC}\right], \quad \mathrm{W}_{1}=\sum_{\mathrm{j}=0}^{\mathrm{r}-1}(-1)^{\mathrm{j}} \mathrm{C}(2 \mathrm{j}+1, \mathrm{j})\left(\mathrm{A}^{\mathrm{D}}\right)^{2 \mathrm{j}}(\mathrm{BC})^{\mathrm{j}}, \quad \mathrm{~W}_{2}=\sum_{\mathrm{j}=0}^{\mathrm{r}-1}(-1)^{\mathrm{j}} \mathrm{C}(2 \mathrm{j}+2, \mathrm{j})\left(\mathrm{A}^{\mathrm{D}}\right)^{2 \mathrm{j}}(\mathrm{BC})^{\mathrm{j}} .
$$

As a directly application of [3, Theorem 4.1]) and Lemma 2.3, we get the following result.
Lemma 2.5. Let $M=\left(\begin{array}{cc}A & A \\ B & 0\end{array}\right)$ such that A is nonsingular and $\operatorname{ind}(B)=r$. If $B A=A B$, then

$$
M^{D}=\left(\begin{array}{cc}
W_{1} B^{\pi}+W_{2} B B^{\pi} & B^{D}+W_{1} B^{\pi} \\
{\left[B B^{D}+W_{1} B B^{\pi}\right] A^{-1}} & -B^{D}+W_{2} B B^{\pi}
\end{array}\right)
$$

where

$$
W_{1}=\sum_{j=0}^{r-1}(-1)^{j} C(2 j+1, j) A^{-j-1} B^{j} \quad \text { and } \quad W_{2}=\sum_{j=0}^{r-1}(-1)^{j} C(2 j+2, j) A^{-j-2} B^{j}
$$

In Lemma 2.5, if $A=I$, then

$$
\left(\begin{array}{cc}
I & I \\
B & 0
\end{array}\right)^{D}=\left(\begin{array}{cc}
Y_{1} B^{\pi} & B^{D}+Y_{2} B^{\pi} \\
B B^{D}+Y_{2} B B^{\pi} & -B^{D}+\left(Y_{1}-Y_{2}\right) B^{\pi}
\end{array}\right)
$$

where $Y_{2}=W_{1}=\sum_{j=0}^{r-1}(-1)^{j} C(2 j+1, j) B^{j} \quad$ and $\quad Y_{1} B^{\pi}=Y_{2} B^{\pi}+W_{2} B B^{\pi}=\sum_{j=0}^{r-1}(-1)^{j} C(2 j, j) B^{j} B^{\pi}$. This result had been given by N. Castro-González and E. Dopazoin in their celebrated paper [3, Theorem 3.3].

3. Main results

Our first purpose is to obtain a representation for M^{D} of the matrix $M=\left(\begin{array}{cc}A & A \\ B & 0\end{array}\right)$ under some conditions, where A, B are $n \times n$ matrices. Throughout our development, we will be concerned with the anti-uppertriangular matrix $M=\left(\begin{array}{cc}A & B \\ C & 0\end{array}\right)$. However, the results we obtain will have an analogue for anti-lowertriangular matrix $M=\left(\begin{array}{cc}0 & A \\ C & B\end{array}\right)$. The following result generalizes the recent result given by Changjiang Bu, et al (see [7, Theorem 3.1]).
Theorem 3.1. Let $M=\left(\begin{array}{cc}A & A \\ B & 0\end{array}\right)$ and $\widetilde{B}=\left(I-A^{\pi}\right) B\left(I-A^{\pi}\right)$ with $\operatorname{ind}(\mathrm{A})=\mathrm{s}$ and $\operatorname{ind}(\widetilde{\mathrm{B}})=\mathrm{r}$. If

$$
B A A^{\pi}=0 \quad \text { and } \quad\left(I-A^{\pi}\right)(B A-A B)\left(I-A^{\pi}\right)=0
$$

then

$$
M^{D}=\left[R+\sum_{i=0}^{s}\left(\begin{array}{cc}
A A^{\pi} & A A^{\pi} \tag{3}\\
A^{\pi} B A^{\pi} & 0
\end{array}\right)^{i}\left(\begin{array}{cc}
0 & 0 \\
A^{\pi} B\left(I-A^{\pi}\right) & 0
\end{array}\right) R^{i+2}\right] \times\left[I+R\left(\begin{array}{cc}
0 & 0 \\
\left(I-A^{\pi}\right) B A^{\pi} & 0
\end{array}\right)\right],
$$

where

$$
\begin{align*}
& R=\left(\begin{array}{cc}
\Gamma_{1} \widetilde{B}^{\pi}+\Gamma_{2} \widetilde{B B^{\pi}} & \widetilde{B}^{D}+\Gamma_{1} \widetilde{B}^{\pi} \\
{\left[\widetilde{B B}^{D}+\Gamma_{1} \widetilde{B B^{r}}\right] A^{D}} & -\widetilde{B}^{D}+\Gamma_{2} \widetilde{B B^{\pi}}
\end{array}\right) \tag{4}\\
& \Gamma_{1}=\sum_{j=0}^{r-1}(-1)^{j} C(2 j+1, j)\left(A^{D}\right)^{j+1} \widetilde{B}^{j}, \quad \Gamma_{2}=\sum_{j=0}^{r-1}(-1)^{j} C(2 j+2, j)\left(A^{D}\right)^{j+2} \widetilde{B}^{j} .
\end{align*}
$$

Proof. Let $X_{1}=\mathcal{N}\left(A^{\pi}\right)$ and $X_{2}=\mathcal{R}\left(A^{\pi}\right)$. Then $X=X_{1} \oplus X_{2}$. Since A is ind $(A)=s, A$ has the form

$$
\begin{equation*}
A=A_{1} \oplus A_{2} \text { with } A_{1} \text { nonsingular, } A_{2}^{s}=0 \quad \text { and } \quad A^{D}=A_{1}^{-1} \oplus 0 \tag{5}
\end{equation*}
$$

Using the decomposition $X \oplus X=X_{1} \oplus X_{2} \oplus X_{1} \oplus X_{2}$, we have

$$
M=\left(\begin{array}{cccc}
A_{1} & 0 & A_{1} & 0 \tag{6}\\
0 & A_{2} & 0 & A_{2} \\
B_{1} & B_{3} & 0 & 0 \\
B_{4} & B_{2} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
X_{1} \\
X_{2} \\
X_{1} \\
X_{2}
\end{array}\right) \rightarrow\left(\begin{array}{l}
X_{1} \\
X_{2} \\
X_{1} \\
X_{2}
\end{array}\right)
$$

Define $I_{0}=I \oplus\left(\begin{array}{cc}0 & I \\ I & 0\end{array}\right) \oplus I$. It is clear that I_{0}, as a matrix from $X_{1} \oplus X_{2} \oplus X_{1} \oplus X_{2}$ onto $X_{1} \oplus X_{1} \oplus X_{2} \oplus X_{2}$, is nonsingular with $I_{0}=I_{0}^{*}=I_{0}^{-1}$. Hence

$$
M^{D}=\left[\left(\begin{array}{cccc}
I & 0 & 0 & 0 \tag{7}\\
0 & 0 & I & 0 \\
0 & I & 0 & 0 \\
0 & 0 & 0 & I
\end{array}\right)\left(\begin{array}{cccc}
A_{1} & A_{1} & 0 & 0 \\
B_{1} & 0 & B_{3} & 0 \\
0 & 0 & A_{2} & A_{2} \\
B_{4} & 0 & B_{2} & 0
\end{array}\right)\left(\begin{array}{cccc}
I & 0 & 0 & 0 \\
0 & 0 & I & 0 \\
0 & I & 0 & 0 \\
0 & 0 & 0 & I
\end{array}\right)\right]^{D}=I_{0}\left(\begin{array}{ll}
A_{0} & B_{0} \\
C_{0} & D_{0}
\end{array}\right)^{D} I_{0}
$$

where

$$
A_{0}=\left(\begin{array}{cc}
A_{1} & A_{1} \tag{8}\\
B_{1} & 0
\end{array}\right), \quad B_{0}=\left(\begin{array}{cc}
0 & 0 \\
B_{3} & 0
\end{array}\right), \quad C_{0}=\left(\begin{array}{cc}
0 & 0 \\
B_{4} & 0
\end{array}\right), \quad D_{0}=\left(\begin{array}{cc}
A_{2} & A_{2} \\
B_{2} & 0
\end{array}\right) .
$$

If $\left(I-A^{\pi}\right)(B A-A B)\left(I-A^{\pi}\right)=0$, using the representations in (5) and (6), we get A_{1} is nonsingular and $A_{1} B_{1}=B_{1} A_{1}$. Since ind $\left[\left(\mathrm{I}-\mathrm{A}^{\pi}\right) \mathrm{B}\left(\mathrm{I}-\mathrm{A}^{\pi}\right)\right]=\operatorname{ind}\left[\mathrm{B}_{1}\right]=\mathrm{r}$, by Lemma 2.5 , we get

$$
\begin{aligned}
R & =: I_{0}\left(\begin{array}{cc}
A_{0} & 0 \\
0 & 0
\end{array}\right)^{D} I_{0} \\
& =I_{0}\left(\begin{array}{cccc}
W_{1} B_{1}^{\pi}+W_{2} B_{1} B_{1}^{\pi} & B_{1}^{D}+W_{1} B_{1}^{\pi} & 0 & 0 \\
{\left[B_{1} B_{1}^{D}+W_{1} B_{1} B_{1}^{\pi}\right] A_{1}^{-1}} & -B_{1}^{D}+W_{2} B_{1} B_{1}^{\pi} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) I_{0} \\
& =\left(\begin{array}{ccc}
W_{1} B_{1}^{\pi}+W_{2} B_{1} B_{1}^{\pi} & 0 & B_{1}^{D}+W_{1} B_{1}^{\pi} \\
0 & 0 & 0 \\
{\left[\begin{array}{ccc}
\left.B_{1} B_{1}^{D}+W_{1} B_{1} B_{1}^{\pi}\right] A_{1}^{-1} & 0 & -B_{1}^{D}+W_{2} B_{1} B_{1}^{\pi} \\
0 & 0 & 0 \\
0
\end{array}\right)} \\
& =\left(\begin{array}{cc}
\Gamma_{1} \widetilde{B^{\pi}}+\Gamma_{2} \widetilde{B B^{\pi}} & \widetilde{B}^{D}+\Gamma_{1} \widetilde{B^{\pi}} \\
{\left[\widetilde{B B^{D}}+\Gamma_{1} \widetilde{B B^{\pi}}\right] A^{D}} & -\widetilde{B}^{D}+\Gamma_{2} \widetilde{B B^{\pi}}
\end{array}\right)
\end{array}\right. \\
& =
\end{aligned}
$$

where

$$
\begin{array}{ll}
W_{1}=\sum_{j=0}^{r-1}(-1)^{j} C(2 j+1, j) A_{1}^{-j-1} B_{1}^{j} & W_{2}=\sum_{j=0}^{r-1}(-1)^{j} C(2 j+2, j) A_{1}^{-j-2} B_{1^{\prime}}^{j} \\
\Gamma_{1}=\sum_{j=0}^{r-1}(-1)^{j} C(2 j+1, j)\left(A^{D}\right)^{j+1} \widetilde{B}^{j}, & \Gamma_{2}=\sum_{j=0}^{r-1}(-1)^{j} C(2 j+2, j)\left(A^{D}\right)^{j+2} \widetilde{B^{j}} .
\end{array}
$$

Since $B A A^{\pi}=0$, we get $B_{3} A_{2}=0$ and $B_{2} A_{2}=0$. By Lemma 2.4 , we get D_{0} is nilpotent with ind $\left(\mathrm{D}_{0}\right) \leq \mathrm{s}+1$. Note that $B_{3} A_{2}=0$ implies that $B_{0} C_{0}=0$ and $B_{0} D_{0}=0$. By Lemma 2.2, we obtain

$$
\begin{align*}
M^{D} & =I_{0}\left(\begin{array}{cc}
A_{0} & B_{0} \\
C_{0} & D_{0}
\end{array}\right)^{D} I_{0}=I_{0}\left(\begin{array}{cc}
A_{0}^{D} & \left(A_{0}^{D}\right)^{2} B_{0} \\
\sum_{i=0}^{s} D_{0}^{i} C_{0}\left(A_{0}^{D}\right)^{i+2} & \sum_{i=0}^{s} D_{0}^{i} C_{0}\left(A_{0}^{D}\right)^{i+3} B_{0}
\end{array}\right) I_{0} \\
& =I_{0}\left[\left(\begin{array}{cc}
A_{0}^{D} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=0}^{s}\left(\begin{array}{cc}
0 & 0 \\
0 & D_{0}^{i}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
C_{0} & 0
\end{array}\right)\left(\begin{array}{cc}
\left(A_{0}^{D}\right)^{i+2} & 0 \\
0 & 0
\end{array}\right)\right] \times\left[I+\left(\begin{array}{cc}
A_{0}^{D} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & B_{0} \\
0 & 0
\end{array}\right)\right] I_{0} \tag{9}\\
& =\left[R+\sum_{i=0}^{s}\left(\begin{array}{cc}
A A^{\pi} & A A^{\pi} \\
A^{\pi} B A^{\pi} & 0
\end{array}\right)^{i}\left(\begin{array}{cc}
0 & 0 \\
A^{\pi} B\left(I-A^{\pi}\right) & 0
\end{array}\right) R^{i+2}\right] \times\left[I+R\left(\begin{array}{cc}
0 & 0 \\
\left(I-A^{\pi}\right) B A^{\pi} & 0
\end{array}\right)\right] .
\end{align*}
$$

We remark that, from the above theorem we get the following corollaries.
Corollary 3.2. Let $M=\left(\begin{array}{cc}A & A \\ B & 0\end{array}\right)$.
(i) If $A B=B A$, ind $(\mathrm{A})=1$ and $\operatorname{ind}(\mathrm{B})=\mathrm{r}$, then

$$
M^{D}=\left(\begin{array}{cc}
\Gamma_{1} B^{\pi}+\Gamma_{2} B B^{\pi} & \left(I-A^{\pi}\right) B^{D}+\Gamma_{1} B^{\pi} \\
{\left[B B^{D}+\Gamma_{1} B B^{\pi}\right] A^{D}} & -\left(I-A^{\pi}\right) B^{D}+\Gamma_{2} B B^{\pi}
\end{array}\right),
$$

where

$$
\Gamma_{1}=\sum_{j=0}^{r-1}(-1)^{j} C(2 j+1, j)\left(A^{\#}\right)^{j+1} B^{j}, \quad \Gamma_{2}=\sum_{j=0}^{r-1}(-1)^{j} C(2 j+2, j)\left(A^{\#}\right)^{j+2} B^{j}
$$

(ii) If A, B are group invertible and $A B=B A$, then

$$
M^{D}=\left(\begin{array}{cc}
A^{\#} B^{\pi} & \left(I-A^{\pi}\right) B^{\#}+A^{\#} B^{\pi} \\
{\left[I-B^{\pi}\right] A^{\#}} & -\left(I-A^{\pi}\right) B^{\#}
\end{array}\right)
$$

In addition, if $A^{\pi} B=0$, then $A^{\pi} B^{\#}=0, M^{D}$ becomes the group inverse and

$$
M^{\#}=\left(\begin{array}{cc}
A^{\#} B^{\pi} & B^{\#}+A^{\#} B^{\pi} \\
{\left[I-B^{\pi}\right] A^{\#}} & -B^{\#}
\end{array}\right)
$$

(iii) If A, B are invertible, then

$$
M^{-1}=\left(\begin{array}{cc}
0 & B^{-1} \\
A^{-1} & -B^{-1}
\end{array}\right)
$$

Corollary 3.3. Let $M=\left(\begin{array}{cc}A & A \\ B & 0\end{array}\right)$, where $A, B \in \mathrm{C}^{n \times n}, A=A^{2}$ and $\operatorname{ind}(\mathrm{ABA})=\mathrm{r}$. Then
(i) (see [9, Theorem 3.2])

$$
M^{D}=\left[R+\left(\begin{array}{cc}
0 & 0 \tag{10}\\
(I-A) B A & 0
\end{array}\right) R^{2}\right]\left[I+R\left(\begin{array}{cc}
0 & 0 \\
A B(I-A) & 0
\end{array}\right)\right]
$$

where

$$
\left.\begin{array}{l}
R=\left(\begin{array}{cc}
X+Y & (A B)^{D} A+X \\
{\left[(A B)^{D}+X\right.}
\end{array}\right] A B A \\
-(A B)^{D} A+Y
\end{array}\right),
$$

(ii) (see [7, Theorem 3.1]) $M^{\#}$ exists if and only if $\operatorname{rank}(B)=\operatorname{rank}(B A B)$ and

$$
M^{\#}=\left(\begin{array}{cc}
A-(A B)^{\#}+(A B)^{\#} A-(A B)^{\#} A B A & A+(A B)^{\#} A+(A B)^{\#} A B A \tag{11}\\
(B A)^{\#} B-(B A)^{\#}(A B)^{\#} A B-(B A)^{\#} & -(B A)^{\#}
\end{array}\right)
$$

Proof. (i) If $A=A^{2}$, we have ind(A) $=1, A=A^{D}, A^{\pi}=I-A$,

$$
\widetilde{B}^{D}=\left[\left(I-A^{\pi}\right) B\left(I-A^{\pi}\right)\right]^{D}=(A B A)^{D}=A B\left[(A A B)^{D}\right]^{2} A=(A B)^{D} A
$$

and

$$
\widetilde{B}^{j}=(A B A)^{j}=(A B)^{j} A=A(B A)^{j} .
$$

So

$$
\widetilde{B}^{\pi}=(A B A)^{\pi}=I-(A B A)^{D}(A B A)=I-(A B)^{D} A B A=I-A+(A B)^{\pi} A=I-A+A(B A)^{\pi} .
$$

Hence, Γ_{1} and Γ_{2} in (3.2) reduce as

$$
\begin{aligned}
& \Gamma_{1}=\sum_{j=0}^{r-1}(-1)^{j} C(2 j+1, j)\left(A^{D}\right)^{j+1} \widetilde{B}^{j}=\sum_{j=0}^{r-1}(-1)^{j} C(2 j+1, j)(A B)^{j} A, \\
& \Gamma_{2}=\sum_{j=0}^{r-1}(-1)^{j} C(2 j+2, j)\left(A^{D}\right)^{j+2} \widetilde{B}^{j}=\sum_{j=0}^{r-1}(-1)^{j} C(2 j+2, j)(A B)^{j} A .
\end{aligned}
$$

Let

$$
X=\Gamma_{1} \widetilde{B}^{\pi}=\sum_{j=0}^{r-1}(-1)^{j} C(2 j+1, j)(A B)^{\pi}(A B)^{j} A, \quad Y=\Gamma_{2} \widetilde{B B^{\pi}}=\sum_{j=0}^{r-1}(-1)^{j} C(2 j+2, j)(A B)^{\pi}(A B)^{j+1} A
$$

Then R in (3.2) reduces as

$$
R=\left(\begin{array}{cc}
\Gamma_{1} \widetilde{B}^{\pi}+\Gamma_{2} \widetilde{B B^{\pi}} & \widetilde{B}^{D}+\Gamma_{1} \widetilde{B}^{\pi} \\
{\left[\widetilde{B B}^{D}+\Gamma_{1} \widetilde{B B^{\pi}}\right] A^{D}} & -\widetilde{B}^{D}+\Gamma_{2} \widetilde{B B^{\pi}}
\end{array}\right)=\left(\begin{array}{cc}
X+Y & (A B)^{D} A+X \\
{\left[(A B)^{D}+X\right] A B A} & -(A B)^{D} A+Y
\end{array}\right)
$$

By Theorem 3.1, we get

$$
\begin{aligned}
M^{D} & =\left[R+\sum_{i=0}^{1}\left(\begin{array}{cc}
0 & 0 \\
(I-A) B(I-A) & 0
\end{array}\right)^{i}\left(\begin{array}{cc}
0 & 0 \\
(I-A) B A & 0
\end{array}\right) R^{i+2}\right] \times\left[I+R\left(\begin{array}{cc}
0 & 0 \\
A B(I-A) & 0
\end{array}\right)\right] \\
& =\left[R+\left(\begin{array}{cc}
0 & 0 \\
(I-A) B A & 0
\end{array}\right) R^{2}\right]\left[I+R\left(\begin{array}{cc}
0 & 0 \\
A B(I-A) & 0
\end{array}\right)\right] .
\end{aligned}
$$

(ii) See Theorem 3.1 in [7] for the proof that $M^{\#}$ exists if and only if $\operatorname{rank}(B)=\operatorname{rank}(B A B)$. By Lemma 2.1, we have ind $(\mathrm{ABA}) \leq 1, A B$ and $B A$ are group invertible. So, by item (i), we get $X=(A B)^{\pi} A, Y=0$,

$$
R=\left(\begin{array}{cc}
(A B)^{\pi} A & (A B)^{\#} A+(A B)^{\pi} A \\
(A B)^{\#} A B A & (A B)^{\#} A-(A B)^{\#} A
\end{array}\right)
$$

and

$$
R^{2}=\left(\begin{array}{cc}
(A B)^{\pi} A+(A B)^{\#} A & (A B)^{\pi} A-\left[(A B)^{\#}\right]^{2} A \\
-(A B)^{\#} A & (A B)^{\#} A+\left[(A B)^{\#}\right]^{2} A
\end{array}\right)
$$

Thus, collecting the above computations in the expression (10) for M^{D}, we get the statement of (11).

Note that

$$
\sum_{j=0}^{r-1}(-1)^{j} C(2 j, j) B^{j} B^{\pi}=\sum_{j=0}^{r-1}(-1)^{j} C(2 j+1, j) B^{j} B^{\pi}+\sum_{j=0}^{r-1}(-1)^{j} C(2 j+2, j) B^{j+1} B^{\pi}
$$

In Corollary 3.3, if we set $A=I$ and $Z=\sum_{j=0}^{r-1}(-1)^{j} C(2 j, j) B^{j} B^{\pi}$, then we get $Y=Z-X$ and Corollary 3.3 (resp. Theorem 3.1) reduces as the following result which had been given in [3].

Corollary 3.4. ([3, Theorem 3.3]) Let $M=\left(\begin{array}{cc}I & I \\ B & 0\end{array}\right)$, where $B \in \mathrm{C}^{n \times n}$ and $\operatorname{ind}(\mathrm{B})=\mathrm{r}$. Then

$$
M^{D}=\left(\begin{array}{cc}
Z & B^{D}+X \\
B^{D} B+X B & -B^{D}+Z-X
\end{array}\right)
$$

where $X=\sum_{j=0}^{r-1}(-1)^{j} C(2 j+1, j) B^{j} B^{\pi}, \quad Z=\sum_{j=0}^{r-1}(-1)^{j} C(2 j, j) B^{j} B^{\pi}$.
Our next purpose is to obtain a representation for the Drazin inverse of block antitriangular matrix $M=\left(\begin{array}{cc}A & B \\ C & 0\end{array}\right)$, where $A, C \in C^{n \times n}$, which in some different ways generalizes recent results given in [10, 14]. We start introducing a different method to give matrix block representation. Let $S=-C A^{D} B, \operatorname{ind}(A)=m$ and $\operatorname{ind}(S)=n$. In (5) and (6), if we set

$$
X_{1}=\mathcal{N}\left(A^{\pi}\right), \quad X_{2}=\mathcal{R}\left(A^{\pi}\right), \quad Y_{1}=\mathcal{N}\left(S^{\pi}\right) \quad \text { and } \quad Y_{2}=\mathcal{R}\left(S^{\pi}\right)
$$

Then $X \oplus Y=X_{1} \oplus X_{2} \oplus Y_{1} \oplus Y_{2}$. In this case, A and S have the forms

$$
\begin{align*}
& A=A_{1} \oplus A_{2} \text { with } A_{1} \text { nonsingular, } \quad A_{2}^{m}=0 \quad \text { and } \quad A^{D}=A_{1}^{-1} \oplus 0, \tag{12}\\
& S=S_{1} \oplus S_{2} \text { with } S_{1} \text { nonsingular, } S_{2}^{n}=0 \quad \text { and } \quad S^{D}=S_{1}^{-1} \oplus 0 .
\end{align*}
$$

Using the decomposition $X \oplus Y=X_{1} \oplus X_{2} \oplus Y_{1} \oplus Y_{2}$, we have

$$
M=\left(\begin{array}{cccc}
A_{1} & 0 & B_{1} & B_{3} \tag{13}\\
0 & A_{2} & B_{4} & B_{2} \\
C_{1} & C_{3} & 0 & 0 \\
C_{4} & C_{2} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
X_{1} \\
X_{2} \\
Y_{1} \\
Y_{2}
\end{array}\right) \longrightarrow\left(\begin{array}{c}
X_{1} \\
X_{2} \\
Y_{1} \\
Y_{2}
\end{array}\right)
$$

Note that the generalized Schur complement

$$
S=S_{1} \oplus S_{2}=-C A^{D} B=-\left(\begin{array}{ll}
C_{1} & C_{3} \\
C_{4} & C_{2}
\end{array}\right)\left(\begin{array}{cc}
A_{1}^{-1} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
B_{1} & B_{3} \\
B_{4} & B_{2}
\end{array}\right)=\left(\begin{array}{cc}
-C_{1} A_{1}^{-1} B_{1} & -C_{1} A_{1}^{-1} B_{3} \\
-C_{4} A_{1}^{-1} B_{1} & -C_{4} A_{1}^{-1} B_{3}
\end{array}\right)
$$

Comparing the two sides of the above equation, we have

$$
S_{1}=-C_{1} A_{1}^{-1} B_{1}, \quad S_{2}=-C_{4} A_{1}^{-1} B_{3}, \quad C_{1} A_{1}^{-1} B_{3}=0 \text { and } C_{4} A_{1}^{-1} B_{1}=0
$$

In this case, $I_{0}=I \oplus\left(\begin{array}{cc}0 & I \\ I & 0\end{array}\right) \oplus I$ as a matrix from $X_{1} \oplus X_{2} \oplus Y_{1} \oplus Y_{2}$ onto $X_{1} \oplus Y_{1} \oplus X_{2} \oplus Y_{2}$ is nonsingular with $I_{0}=I_{0}^{*}=I_{0}^{-1}$. Hence

$$
M^{D}=I_{0}\left(\begin{array}{cccc}
A_{1} & B_{1} & 0 & B_{3} \tag{14}\\
C_{1} & 0 & C_{3} & 0 \\
0 & B_{4} & A_{2} & B_{2} \\
C_{4} & 0 & C_{2} & 0
\end{array}\right)^{D} I_{0}:=I_{0}\left(\begin{array}{cc}
A_{0} & B_{0} \\
C_{0} & D_{0}
\end{array}\right)^{D} I_{0}
$$

where

$$
A_{0}=\left(\begin{array}{cc}
A_{1} & B_{1} \tag{15}\\
C_{1} & 0
\end{array}\right), \quad B_{0}=\left(\begin{array}{cc}
0 & B_{3} \\
C_{3} & 0
\end{array}\right), \quad C_{0}=\left(\begin{array}{cc}
0 & B_{4} \\
C_{4} & 0
\end{array}\right), \quad D_{0}=\left(\begin{array}{cc}
A_{2} & B_{2} \\
C_{2} & 0
\end{array}\right) .
$$

Since the Schur complement of A_{1} in A_{0} is $-C_{1} A_{1}^{-1} B_{1}=S_{1}$ and S_{1} is nonsingular, it follows that A_{0} is nonsingular with

$$
A_{0}^{-1}=\left(\begin{array}{cc}
A_{1}^{-1}+A_{1}^{-1} B_{1} S_{1}^{-1} C_{1} A_{1}^{-1} & -A_{1}^{-1} B_{1} S_{1}^{-1} \tag{16}\\
-S_{1}^{-1} C_{1} A_{1}^{-1} & S_{1}^{-1}
\end{array}\right) .
$$

Let $R=I_{0}\left(\begin{array}{cc}A_{0}^{-1} & 0 \\ 0 & 0\end{array}\right) I_{0}$. Using the rearrangement effect of I_{0}, we get

$$
R=\left(\begin{array}{cc}
A^{D}+A^{D} B S^{D} C A^{D} & -A^{D} B S^{D} \tag{17}\\
-S^{D} C A^{D} & S^{D}
\end{array}\right)
$$

The expression (17) is called the generalized-Banachiewicz-Schur form of the matrix M and can be found in some recent papers [14].

Now, we are in position to prove the following theorem which provides expressions for M^{D}.

Theorem 3.5. Let $M=\left(\begin{array}{cc}A & B \\ C & 0\end{array}\right)$ and $S=-C A^{D} B$ with $\operatorname{ind}(A)=m$. If

$$
\begin{equation*}
\left(I-S^{\pi}\right) C A^{\pi} B=0, \quad\left(I-S^{\pi}\right) C A^{\pi} A=0, \quad\left(I-A^{\pi}\right) B S^{\pi} C=0, \quad B S^{\pi} C A^{\pi}=0 \tag{18}
\end{equation*}
$$

then

$$
M^{D}=\left[R+\sum_{i=0}^{m+1}\left(\begin{array}{cc}
A A^{\pi} & A^{\pi} B S^{\pi} \\
S^{\pi} C A^{\pi} & 0
\end{array}\right)^{i}\left(\begin{array}{cc}
0 & A^{\pi} B\left(I-S^{\pi}\right) \\
S^{\pi} C\left(I-A^{\pi}\right) & 0
\end{array}\right) R^{i+2}\right] \times\left[I+R\left(\begin{array}{cc}
0 & \left(I-A^{\pi}\right) B S^{\pi} \\
\left(I-S^{\pi}\right) C A^{\pi} & 0
\end{array}\right)\right] .
$$

where R is defined as in (17).

Proof. Let A_{0}, B_{0}, C_{0} and D_{0} be defined by (15). Similar to the proof of Theorem 3.1, it is trivial to check that the conditions in (18) imply that $B_{0} C_{0}=0$ and $B_{0} D_{0}=0$. Note that

$$
\left(\begin{array}{cc}
A_{2} & B_{2} \\
0 & 0
\end{array}\right)^{k}=\left(\begin{array}{cc}
A_{2}^{k} & A_{2}^{k-1} B_{2} \\
0 & 0
\end{array}\right)=0 \quad \text { for } \quad k \geq m+1
$$

The condition $B S^{\pi} C A^{\pi}=0$ implies that $B_{2} C_{2}=0$ and $\left(\begin{array}{cc}A_{2} & B_{2} \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}0 & 0 \\ C_{2} & 0\end{array}\right)=0$. So

$$
\begin{align*}
D_{0}^{m+2} & =\left(\begin{array}{cc}
A_{2} & B_{2} \\
C_{2} & 0
\end{array}\right)^{m+2}=\left[\left(\begin{array}{cc}
A_{2} & B_{2} \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
C_{2} & 0
\end{array}\right)\right]^{m+2} \\
& =\left(\begin{array}{cc}
A_{2} & B_{2} \\
0 & 0
\end{array}\right)^{m+2}+\left(\begin{array}{cc}
0 & 0 \\
C_{2} & 0
\end{array}\right)\left(\begin{array}{cc}
A_{2} & B_{2} \\
0 & 0
\end{array}\right)^{m+1}=0 . \tag{19}
\end{align*}
$$

D_{0} is nilpotent and ind $\left(D_{0}\right) \leq m+2$. By Lemma 2.2 and the proof in (9), we obtain

$$
\begin{aligned}
M^{D}= & I_{0}\left(\begin{array}{ll}
A_{0} & B_{0} \\
C_{0} & D_{0}
\end{array}\right)^{D} I_{0}=I_{0}\left(\begin{array}{cc}
A_{0}^{D} & \left(A_{0}^{D}\right)^{2} B_{0} \\
\sum_{i=0}^{m+1} D_{0}^{i} C_{0}\left(A_{0}^{D}\right)^{i+2} & \sum_{i=0}^{m+1} D_{0}^{i} C_{0}\left(A_{0}^{D}\right)^{i+3} B_{0}
\end{array}\right) I_{0} \\
= & I_{0}\left[\left(\begin{array}{cc}
A_{0}^{D} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=0}^{m+1}\left(\begin{array}{cc}
0 & 0 \\
0 & D_{0}^{i}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
C_{0} & 0
\end{array}\right)\left(\begin{array}{cc}
\left.A_{0}^{D}\right)^{i+2} & 0 \\
0 & 0
\end{array}\right)\right] \times\left[I+\left(\begin{array}{cc}
A_{0}^{D} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & B_{0} \\
0 & 0
\end{array}\right)\right] I_{0} \\
= & {\left[R+\sum_{i=0}^{m+1}\left(\begin{array}{cc}
A A^{\pi} & A^{\pi} B S^{\pi} \\
S^{\pi} C A^{\pi} & 0
\end{array}\right)^{i}\left(\begin{array}{cc}
0 & A^{\pi} B\left(I-S^{\pi}\right) \\
S^{\pi} C\left(I-A^{\pi}\right) & 0
\end{array}\right) R^{i+2}\right] } \\
& \times\left[I+R\left(\begin{array}{cc}
0 & \left(I-A^{\pi}\right) B S^{\pi} \\
\left(I-S^{\pi}\right) C A^{\pi} & 0
\end{array}\right)\right] .
\end{aligned}
$$

We remark that our result has generalized some results in the literature. In [10], Chong Guang Cao has given the group inverse of $M=\left(\begin{array}{cc}P P^{*} & P \\ P & 0\end{array}\right)$, where P is an idempotent. Note that

$$
\left(P P^{*}\right)^{D}=\left(P P^{*}\right)^{\#}=\left(P P^{*}\right)^{+} \quad \text { and } \quad P P^{*}\left(P P^{*}\right)^{D} P=P P^{*}\left(P P^{*}\right)^{+} P=P
$$

If $A=P P^{*}, B=C=P$ in Theorem 3.5, then

$$
S=-C A^{D} B=-P\left(P P^{*}\right)^{D} P=-\left(P P^{*}\right)^{D} P, \quad S^{D}=-P P^{*} P, \quad S^{\pi}=I-P
$$

It follows that

$$
A^{\pi} B=0, \quad A^{\pi} A=0, \quad B S^{\pi}=0, \quad S^{\pi} C=0
$$

and R in (17) reduces as

$$
R=\left(\begin{array}{cc}
A^{D}+A^{D} B S^{D} C A^{D} & -A^{D} B S^{D} \\
-S^{D} C A^{D} & S^{D}
\end{array}\right)=\left(\begin{array}{cc}
0 & P \\
P P^{*}\left(P P^{*}\right)^{D} & -P P^{*} P
\end{array}\right)
$$

By a direct computation we get the following result.
Corollary 3.6. [10, Theorem 2.1] Let P be an idempotent matrix and $M=\left(\begin{array}{cc}P P^{*} & P \\ P & 0\end{array}\right)$. Then

$$
M^{\#}=R\left[I+R\left(\begin{array}{cc}
0 & 0 \\
P\left[I-P P^{*}\left(P P^{*}\right)^{D}\right] & 0
\end{array}\right)\right]=\left(\begin{array}{cc}
P P^{*}(I-P) & P \\
\left(P P^{*}\right)^{2}(P-I)+P & -P P^{*} P
\end{array}\right) .
$$

In Corollay 3.6, the reason that M^{D} is replaced by $M^{\#}$ is M satisfies the relation $M M^{D} M=M$. Similar to Corollary 3.6, if M is the matrix from the set

$$
\left\{\left(\begin{array}{cc}
P & P \\
P P^{*} & 0
\end{array}\right), \quad\left(\begin{array}{cc}
P P^{*} & P P^{*} \\
P & 0
\end{array}\right), \quad\left(\begin{array}{cc}
P & P \\
P^{*} & 0
\end{array}\right),\left(\begin{array}{cc}
P & P P^{*} \\
P P^{*} & 0
\end{array}\right),\left(\begin{array}{cc}
P & P P^{*} \\
P^{*} & 0
\end{array}\right)\right\}
$$

then M satisfies Theorem 3.5. Hence, Theorem 2.1-Theorem 2.6 in [10] are all the special cases of our Theorem 3.5.

If A in Theorem 3.5 is nonsingular and $A^{-1} B C$ is group invertible, then $A^{\pi}=0$ and $\operatorname{ind}(A)=0$ and

$$
\begin{aligned}
0 & =B C\left(A^{-1} B C\right)^{\pi}=B C-B C\left(A^{-1} B C\right)^{D} A^{-1} B C=B C-B C A^{-1} B C\left[\left(A^{-1} B C\right)^{D}\right]^{2} A^{-1} B C \\
& =B\left[I-C A^{-1} B C\left[\left(A^{-1} B C\right)^{D}\right]^{2} A^{-1} B\right] C=B\left[I-C A^{-1} B\left(C A^{-1} B\right)^{D}\right] C=B S^{\pi} C .
\end{aligned}
$$

From the above computations, we get the conditions in (18) hold and Theorem 3.5 reduces as the following:

Corollary 3.7. Let $M=\left(\begin{array}{ll}A & B \\ C & 0\end{array}\right)$, A be nonsingular, $S=-C A^{-1} B$ such that $A^{-1} B C$ is group invertible, then

$$
M^{D}=\left[R+\left(\begin{array}{cc}
0 & 0 \\
S^{\pi} C & 0
\end{array}\right) R^{2}\right] \times\left[I+R\left(\begin{array}{cc}
0 & B S^{\pi} \\
0 & 0
\end{array}\right)\right]
$$

Finally, we derive from Theorem 3.5 some particular representations of A^{D} under certain additional conditions.

Corollary 3.8. Let $M=\left(\begin{array}{cc}A & B \\ C & 0\end{array}\right)$ and $S=-C A^{D} B$ with ind $(A)=m$. Let R be defined as in (17).
(i) If $C\left(I-A A^{D}\right)=0$ and the generalized Schur complement $S=-C A^{D} B$ is nonsingular, then

$$
M^{D}=R+\sum_{i=0}^{m+1}\left(\begin{array}{cc}
A A^{\pi} & 0 \\
0 & 0
\end{array}\right)^{i}\left(\begin{array}{cc}
0 & A^{\pi} B \\
0 & 0
\end{array}\right) R^{i+2}
$$

(ii) (see [14, Theorem 1.1]) If $C\left(I-A A^{D}\right)=0,\left(I-A A^{D}\right) B=0$ and the generalized Schur complement $S=-C A^{D} B$ is nonsingular, then

$$
M^{D}=\left(\begin{array}{cc}
A^{D}+A^{D} B S^{-1} C A^{D} & -A^{D} B S^{-1} \\
-S^{-1} C A^{D} & S^{-1}
\end{array}\right)
$$

(iii) (see [14, Theorem 3.1 or Corollary 3.2]) If $C\left(I-A A^{D}\right) B=0, C\left(I-A A^{D}\right) A=0$ and the generalized Schur complement $S=-C A^{D} B$ is nonsingular, then

$$
M^{D}=\left[I+\sum_{i=0}^{m-1}\left(\begin{array}{cc}
0 & A^{i} A^{\pi} B \\
0 & 0
\end{array}\right) R^{i+1}\right] R\left[I+R\left(\begin{array}{cc}
0 & 0 \\
C A^{\pi} & 0
\end{array}\right)\right]
$$

In Corollary 3.8(iii), if $C A^{\pi}=0, A^{\pi} B=0$ and the generalized Schur complement $S=-C A^{D} B$ is nonsingular,, then $M^{D}=R$, which is famous Banachiewicz-Schur formula.

4. Acknowledgments

The authors thank Prof. Dragana S. Cvetković-Ilić and the referee for their very useful and detailed comments which greatly improve the presentation.

References

[1] S. L. Campbell and C. D. Meyer, Generalized Inverse of Linear Transformations, Pitman, London, 1979; Reprint, Dover, New York, 1991.
[2] S. L. Campbell, The Drazin inverse and systems of second order linear differential equations, Linear and Multilinear Algebra 14 (1983) 195-198.
[3] N. Castro-González and E. Dopazo, Representations of the Drazin inverse for a class of block matrices, Linear Algebra Appl. 400 (2005) 253-269.
[4] M. Catral, D. D. Olesky and P. Van Den Driessche, Block representations of the Drazin inverse of a bipartite matrix, Electronic Journal of Linear Algebra 18 (2009) 98-107.
[5] D. S. Cvetković-Ilić, D. S. Djordjević and Y. Wei, Additive results for the generalized Drazin inverse in a Banach algebra, Linear Algebra and its Applications 418 (2006) 53-61.
[6] D. S. Cvetković-Ilić, A note on the representation for the Drazin inverse of 2×2 block matrices, Linear Algebra and its Applications 429 (2008) 242-248.
[7] C. Bu, J. Zhao, J. Zheng, Group inverse for a class 2×2 block matrices over skew fields, Applied Mathematics and Computation 204 (2008) 45-49.
[8] C. Bu, J. Zhao, K. Zhang, Some results on group inverses of block matrixs over skew fields, Electronic Journal of Linear Algebra 18 (2009) 117-125.
[9] C. Bu, J. Zhao and J. Tang, Representation of the Drazin Inverse for Special Block Matrix, Applied Mathematics and Computation 217 (2011) 4935-4943.
[10] Chong Guang Cao, Representations of the group inverse of some 2×2 block matrices, International Mathematical Forum 1 (2006) 1511-1517.
[11] C. Deng, The Drazin inverse of bounded operators with commutativity up to a factor, Appl. Math. Comput. 206 (2008) 695-703.
[12] M. Eiermann, I. Marek and W. Niethammer, On the solution of singular linear systems of algebraic equations by semiiterative methods, Numer. Math. 53 (1988) 265-283.
[13] G.H. Golub, C. Greif, On solving bolck-structured indefinite linear systems, SIAM J. Sci. Comput. 24 (2003) 2076-2092.
[14] R. Hartwig, X. Li and Y. Wei, Reprsentations for the Drazin inverse of 2×2 block matrix, SIAM J. Matrix Anal. Appl. 27 (2006) 757-771
[15] R. E. Hartwig, G. Wang and Y. Wei, Some additive results on Drazin inverse, Linear Algebra Appl. 322 (2001) 207-217.
[16] I.C.F. Ipsen, A note on preconditioning nonsymmetric matrices, SIAM J. Sci. Comput. 23 (2001) 1050-1051.
[17] C. Siefert and E. de Sturler, Preconditioners for generalized saddle-point problems, SIAM J. Numer. Anal. 44 (2006) $1275-1296$.

[^0]: 2010 Mathematics Subject Classification. 15A09; 47A05.
 Keywords. Anti-triangular matrix, Drazin inverse, Group inverse, Block matrix.
 Received: 4 April 2011; Accepted: 20 August 2012
 Communicated by Dragana S. Cvetković-Ilić
 Partial support was provided by a grant from the Ph.D. Programs Foundation (No.20094407120001)
 Email address: cydeng@scnu.edu.cn; cy-deng@263.net (Chun Yuan Deng)

